Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces

We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear space...

Full description

Saved in:
Bibliographic Details
Published inESAIM. Mathematical modelling and numerical analysis Vol. 54; no. 6; pp. 2159 - 2197
Main Authors Ehrlacher, Virginie, Lombardi, Damiano, Mula, Olga, Vialard, François-Xavier
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.11.2020
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Subjects
Online AccessGet full text
ISSN0764-583X
2822-7840
1290-3841
2804-7214
DOI10.1051/m2an/2020013

Cover

More Information
Summary:We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L 2 -Wasserstein space.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0764-583X
2822-7840
1290-3841
2804-7214
DOI:10.1051/m2an/2020013