On mechanisms by which a soft neutron spectrum may induce accelerated embrittlement
Both low displacement rates and softened neutron spectrum favor survival of a higher fraction of point defects per displacement for producing micro-structural changes leading to hardening and embrittlement. Low displacement rate results in low bulk recombination rate. A high thermal to fast neutron...
        Saved in:
      
    
          | Published in | Journal of nuclear materials Vol. 170; no. 3; pp. 236 - 245 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.03.1990
     | 
| Online Access | Get full text | 
| ISSN | 0022-3115 1873-4820  | 
| DOI | 10.1016/0022-3115(90)90294-W | 
Cover
| Summary: | Both low displacement rates and softened neutron spectrum favor survival of a higher fraction of point defects per displacement for producing micro-structural changes leading to hardening and embrittlement. Low displacement rate results in low bulk recombination rate. A high thermal to fast neutron flux ratio results in a large fraction of point defects produced in small cascades from (n,γ) and (n,α) reactions. Defects from such cascades generally avoid in-cascade recombination, while most of the defects created in large cascades produced by fast neutrons are lost to in-cascade recombination. Thus thermal neutrons produce more available defects per unit displacement dose. It is argued that the spectral effect may dominate the accelerated embrittlement observed in ferritic steels at the High Flux Isotope Reactor (HFIR) pressure vessel location. The rate effect is expected to be a secondary factor at temperatures as low as 50°C, where the HFIR data were obtained. Our analysis suggests generally that components subject to neutron environments with high thermal-to-fast ratios and irradiated at low temperatures may be subject to accelerated radiation effects. | 
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
| ISSN: | 0022-3115 1873-4820  | 
| DOI: | 10.1016/0022-3115(90)90294-W |