Neural-network–based algorithm for the inverse problem of measuring K-shell ionization cross-sections of Si induced by 3–25 keV electrons and 4.5–9 keV positrons using the thick-target method

In this study, a neural network method is proposed for solving the inverse problem in the measurement of inner-shell ionization cross-sections using the thick-target method. It was applied to calculate the K -shell ionization cross-section of silicon (Si) from positron impacts in the energy range fr...

Full description

Saved in:
Bibliographic Details
Published inEurophysics letters Vol. 143; no. 6; pp. 65003 - 65009
Main Authors Li, Y. D., Wu, Y., Huang, C. J., Liu, Z. H., Pan, M.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences, IOP Publishing and Società Italiana di Fisica 01.09.2023
IOP Publishing
Subjects
Online AccessGet full text
ISSN0295-5075
1286-4854
1286-4854
DOI10.1209/0295-5075/acf60b

Cover

Abstract In this study, a neural network method is proposed for solving the inverse problem in the measurement of inner-shell ionization cross-sections using the thick-target method. It was applied to calculate the K -shell ionization cross-section of silicon (Si) from positron impacts in the energy range from 4.5 to 9 keV, using a Monte Carlo simulation program called PENELOPE to construct a comprehensive characteristic X-ray yield and cross-section database, serving as a foundation for training the neural network. The experimental values are compared with those obtained using regularization, yield differential, and distorted-wave Born approximation (DWBA) theoretical models. Our findings reveal that the cross-section results obtained from all three algorithms are in good agreement with the theoretical DWBA values within the error range. Moreover, our study highlights the superiority of the neural network algorithm in solving ill-posed problems, compared with traditional regularization algorithms and the yield differential method. Furthermore, we re-analyse the experimental data of electron-induced ionization cross-sections on a pure thick Si target in the energy range from 3 to 25 keV, which were originally obtained by Zhu et al . who used a regularization method. The reprocessed cross-sections obtained in this study exhibit good agreement with the reported results within the error range. To the best of our knowledge, this is the first experimental report of the K -shell ionization cross-sections of Si from positron impact.
AbstractList In this study, a neural network method is proposed for solving the inverse problem in the measurement of inner-shell ionization cross-sections using the thick-target method. It was applied to calculate the K -shell ionization cross-section of silicon (Si) from positron impacts in the energy range from 4.5 to 9 keV, using a Monte Carlo simulation program called PENELOPE to construct a comprehensive characteristic X-ray yield and cross-section database, serving as a foundation for training the neural network. The experimental values are compared with those obtained using regularization, yield differential, and distorted-wave Born approximation (DWBA) theoretical models. Our findings reveal that the cross-section results obtained from all three algorithms are in good agreement with the theoretical DWBA values within the error range. Moreover, our study highlights the superiority of the neural network algorithm in solving ill-posed problems, compared with traditional regularization algorithms and the yield differential method. Furthermore, we re-analyse the experimental data of electron-induced ionization cross-sections on a pure thick Si target in the energy range from 3 to 25 keV, which were originally obtained by Zhu et al . who used a regularization method. The reprocessed cross-sections obtained in this study exhibit good agreement with the reported results within the error range. To the best of our knowledge, this is the first experimental report of the K -shell ionization cross-sections of Si from positron impact.
In this study, a neural network method is proposed for solving the inverse problem in the measurement of inner-shell ionization cross-sections using the thick-target method. It was applied to calculate the K-shell ionization cross-section of silicon (Si) from positron impacts in the energy range from 4.5 to 9 keV, using a Monte Carlo simulation program called PENELOPE to construct a comprehensive characteristic X-ray yield and cross-section database, serving as a foundation for training the neural network. The experimental values are compared with those obtained using regularization, yield differential, and distorted-wave Born approximation (DWBA) theoretical models. Our findings reveal that the cross-section results obtained from all three algorithms are in good agreement with the theoretical DWBA values within the error range. Moreover, our study highlights the superiority of the neural network algorithm in solving ill-posed problems, compared with traditional regularization algorithms and the yield differential method. Furthermore, we re-analyse the experimental data of electron-induced ionization cross-sections on a pure thick Si target in the energy range from 3 to 25 keV, which were originally obtained by Zhu et al. who used a regularization method. The reprocessed cross-sections obtained in this study exhibit good agreement with the reported results within the error range. To the best of our knowledge, this is the first experimental report of the K-shell ionization cross-sections of Si from positron impact.
Author Li, Y. D.
Liu, Z. H.
Pan, M.
Huang, C. J.
Wu, Y.
Author_xml – sequence: 1
  givenname: Y. D.
  surname: Li
  fullname: Li, Y. D.
  organization: North China Electric Power University Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, - Beijing 102206, China
– sequence: 2
  givenname: Y.
  surname: Wu
  fullname: Wu, Y.
  organization: North China Electric Power University Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, - Beijing 102206, China
– sequence: 3
  givenname: C. J.
  surname: Huang
  fullname: Huang, C. J.
  organization: North China Electric Power University Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, - Beijing 102206, China
– sequence: 4
  givenname: Z. H.
  surname: Liu
  fullname: Liu, Z. H.
  organization: North China Electric Power University Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, - Beijing 102206, China
– sequence: 5
  givenname: M.
  surname: Pan
  fullname: Pan, M.
  organization: North China Electric Power University Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, - Beijing 102206, China
BookMark eNqNkc1u1TAQhS1UJG4Le5aWWLDBrR3HcbJEFX9qBQt-tpaTjG_c6xsH26G6rHgHnokX4Unq3CDYgMRqNDpnvhmdOUUnox8BoceMnrOCNhe0aAQRVIoL3ZmKtvfQhhV1RcpalCdo81t-gE5jvKGUsZpVG_TjLcxBOzJCuvVh9_Pb91ZH6LF2Wx9sGvbY-IDTANiOXyBEwFPwrYM99gbvQcc52HGLr0gcwDls_Wi_6pQL7oKPkUToli4u9vc2Q_q5y_j2gHneVQi8g08YXHaFxaXHHpfnIkvNUZl8tKsyx2XPckgabLcjSYctpHxCGnz_EN032kV49KueoY8vX3y4fE2u3716c_n8mnSci0S4hrptOOOGik7WVSlZZcpOSikoaNO2phdCSMPbwkguKpCdgQY4lUbwtpH8DLGVO4-TPtxq59QU7F6Hg2JULX9QS9BqCVqtf8gzT9aZHNznGWJSN34OYz5TccYorSU9kunqOsYWwPwP-Ok6Yv30hwmTU6zkqlKVoJSrqTfZ-ewvzn-C7wBxgrry
CODEN EULEEJ
Cites_doi 10.1016/j.radphyschem.2020.109321
10.1016/j.jspi.2022.11.001
10.1016/j.radphyschem.2014.09.009
10.1016/j.radphyschem.2005.11.032
10.1016/j.radphyschem.2016.01.033
10.1016/j.nimb.2005.12.051
10.1016/j.radphyschem.2022.110632
10.1016/j.cam.2020.112984
10.1103/PhysRevA.77.042702
10.1016/0168-583X(96)00193-0
10.1088/1674-1056/26/5/057802
10.1007/s00521-010-0489-y
ContentType Journal Article
Copyright Copyright © 2023 EPLA
Copyright_xml – notice: Copyright © 2023 EPLA
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1209/0295-5075/acf60b
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1286-4854
ExternalDocumentID 10.1209/0295-5075/acf60b
10_1209_0295_5075_acf60b
epl23100481
GroupedDBID -~X
1JI
4.4
5B3
5GY
5VS
5ZH
6TJ
7.M
7.Q
AAFWJ
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABGRX
ABQJV
ABVAM
ACAFW
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
AZPVJ
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
H~9
IHE
IJHAN
IOP
IZVLO
KOT
LAP
MV1
N5L
N9A
P2P
PIG
PJBAE
R4D
RED
REP
RID
RIN
RNS
ROL
RPA
SJN
SY9
TN5
UCJ
UPT
ZMT
~02
AAYXX
ABNSH
AEINN
CITATION
7U5
8FD
H8D
L7M
02O
042
186
1WK
AALHV
AAOGA
ABZDU
ACACO
ACARI
ACRPL
ADNMO
ADTOC
AERVB
AETEA
AFFNX
AGQPQ
AHSEE
AI.
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
MVM
NS0
NT-
NT.
Q02
S3P
T37
UNPAY
VH1
XOL
ZE2
ZY4
ID FETCH-LOGICAL-c335t-3ae8b9313f05c7864716f4c77750eafbbfd5557f3b2f7356e7cfe9e307f53b973
IEDL.DBID UNPAY
ISSN 0295-5075
1286-4854
IngestDate Sun Sep 07 10:50:47 EDT 2025
Mon Jun 30 15:52:41 EDT 2025
Wed Oct 01 00:51:53 EDT 2025
Wed Aug 21 03:40:36 EDT 2024
Tue Oct 17 22:30:19 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-3ae8b9313f05c7864716f4c77750eafbbfd5557f3b2f7356e7cfe9e307f53b973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1209/0295-5075/acf60b
PQID 3110087097
PQPubID 1806341
PageCount 7
ParticipantIDs unpaywall_primary_10_1209_0295_5075_acf60b
proquest_journals_3110087097
iop_journals_10_1209_0295_5075_acf60b
crossref_primary_10_1209_0295_5075_acf60b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Europhysics letters
PublicationTitleAbbrev EPL
PublicationTitleAlternate EPL
PublicationYear 2023
Publisher EDP Sciences, IOP Publishing and Società Italiana di Fisica
IOP Publishing
Publisher_xml – name: EDP Sciences, IOP Publishing and Società Italiana di Fisica
– name: IOP Publishing
References Tian (epl23100481bib12) 2018
He (epl23100481bib1) 1996; 114
Walter (epl23100481bib14) 2023; 224
Park (epl23100481bib24) 2016; 10112
Liang (epl23100481bib10) 2021; 180
Fang (epl23100481bib17) 2023; 40
Yuan (epl23100481bib9) 2018
Wu (epl23100481bib13) 2018; 97
Nagashima (epl23100481bib11) 2007; 76
Mei (epl23100481bib5) 2021
Tavares (epl23100481bib18) 2021; 381
Effati (epl23100481bib15) 2012; 21
Hansen (epl23100481bib25) 2010; 7
Tang (epl23100481bib16) 2022; 39
Zhao (epl23100481bib2) 2016; 122
Liang (epl23100481bib22) 2021
Salvat (epl23100481bib26) 2009
An (epl23100481bib3) 2006; 246
An (epl23100481bib6) 2008; 77
Chen (epl23100481bib23) 2023; 203
Chang (epl23100481bib21) 2018
Zhao (epl23100481bib8) 2015; 107
Perkins (epl23100481bib27) 1991
Zhu (epl23100481bib4) 2009; 79
Kuang (epl23100481bib19) 2017; 26
Crucinio (epl23100481bib7) 2021; 118
Zhang (epl23100481bib20) 2020; 171
References_xml – volume: 79
  start-page: 5
  year: 2009
  ident: epl23100481bib4
  publication-title: Phys. Rev. A
– volume: 10112
  start-page: 189
  year: 2016
  ident: epl23100481bib24
  publication-title: Asian Conference on Computer Vision, ACCV
– year: 2021
  ident: epl23100481bib22
– volume: 180
  year: 2021
  ident: epl23100481bib10
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2020.109321
– volume: 224
  start-page: 109
  year: 2023
  ident: epl23100481bib14
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2022.11.001
– volume: 107
  start-page: 47
  year: 2015
  ident: epl23100481bib8
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2014.09.009
– year: 2018
  ident: epl23100481bib9
– volume: 76
  start-page: 3
  year: 2007
  ident: epl23100481bib11
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2005.11.032
– year: 2021
  ident: epl23100481bib5
– volume: 7
  start-page: 213
  year: 2010
  ident: epl23100481bib25
  publication-title: SIAM J. Appl. Math
– volume: 122
  start-page: 66
  year: 2016
  ident: epl23100481bib2
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2016.01.033
– volume: 246
  start-page: 2
  year: 2006
  ident: epl23100481bib3
  publication-title: Nucl. Instrum. Methods B
  doi: 10.1016/j.nimb.2005.12.051
– volume: 97
  start-page: 3
  year: 2018
  ident: epl23100481bib13
  publication-title: Phys. Rev. A
– volume: 40
  start-page: 1
  year: 2023
  ident: epl23100481bib17
  publication-title: Acta Mech. Solida Sin.
– volume: 203
  year: 2023
  ident: epl23100481bib23
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2022.110632
– year: 1991
  ident: epl23100481bib27
  publication-title: US Department of Energy, Office of Scientific and Technical Information
– volume: 118
  start-page: 1
  year: 2021
  ident: epl23100481bib7
  publication-title: J. Am. Stat. Assoc.
– year: 2018
  ident: epl23100481bib21
– volume: 381
  year: 2021
  ident: epl23100481bib18
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.112984
– year: 2009
  ident: epl23100481bib26
– volume: 77
  start-page: 4
  year: 2008
  ident: epl23100481bib6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.042702
– volume: 39
  start-page: 1
  year: 2022
  ident: epl23100481bib16
  publication-title: Chin. J. Comput. Mech.
– volume: 171
  year: 2020
  ident: epl23100481bib20
  publication-title: Radiat. Phys. Chem.
– volume: 114
  start-page: 3
  year: 1996
  ident: epl23100481bib1
  publication-title: Nucl. Instrum. Methods B
  doi: 10.1016/0168-583X(96)00193-0
– year: 2018
  ident: epl23100481bib12
– volume: 26
  start-page: 5
  year: 2017
  ident: epl23100481bib19
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/5/057802
– volume: 21
  start-page: 1
  year: 2012
  ident: epl23100481bib15
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0489-y
SSID ssj0011816
Score 2.4169133
Snippet In this study, a neural network method is proposed for solving the inverse problem in the measurement of inner-shell ionization cross-sections using the...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65003
SubjectTerms Accuracy
Algorithms
Born approximation
Characteristic X rays
Electrons
Error analysis
Ill posed problems
Inverse problems
Ionization cross sections
Monte Carlo simulation
Neural networks
Positrons
Regularization
Regularization methods
Silicon
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbaIgQX_hELBc0BDiB5m8RxnKinClFVIAESFPWAFNmOXVabZqMmK1ROvAPPxIv0STq2k4VFCBC3SB7ZE4_t-Wx_niHksYoTGZsiopzLjKZaJVRWaUyzJDF5zpQtjI_2-To7OExfHvGjDbK7eguzaIelf4qfIVBw6MIQCiEqdqKk4BRhDN-R2maR2iSXWI7A2L3ee_N2dYWArstfVI7Swx3l72pY80mb2O4a3LyybFp59lnW9U-eZ_86-TjqHAgn8-myV1P95Zdwjv_5UzfItQGRwl4QvUk2THOLXPbMUN3dJt9d-A5Z0ybwxc-_fnOOrwJZHy9OZ_2nE0DYCwgjYdY4ioeBIUcNLCyc-BNI9I7winaOcgru-De8_ATfGbTzXLCmc-LvZlhJhYOtAnUGDNtKOMzNBxiT9XQgmwrSKceiwpd40pkvcQz-Y6-Io_DPaeC4Q0iRfYcc7r94__yADrkfqGaM95RJk6uCxcxGXIs8Qx-a2VQLgQjHSKuUrTjnwjKVWMF4ZoS2pjC4YlnOVCHYXbLVLBpzj4BKo9TE0opYpS7UjkRQak1sdVbFNhLVhDwdrV-2IcRH6bZGaJbSmaV0ZimDWSbkCVqwHOZ59wc5WJMzbY2bLFZmJTYesbKt7IRsj2PshxxzEfxwCS3EhDxbjbu_qnX_H9V6QK4mCNICR26bbPWnS_MQQVWvHvnJcwHJYB8p
  priority: 102
  providerName: IOP Publishing
Title Neural-network–based algorithm for the inverse problem of measuring K-shell ionization cross-sections of Si induced by 3–25 keV electrons and 4.5–9 keV positrons using the thick-target method
URI https://iopscience.iop.org/article/10.1209/0295-5075/acf60b
https://www.proquest.com/docview/3110087097
https://doi.org/10.1209/0295-5075/acf60b
UnpaywallVersion publishedVersion
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1286-4854
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011816
  issn: 0295-5075
  databaseCode: IOP
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbYrRBc-EcslGoOcADJ28SO7eRYIaoCUqkEi8opshO7rDbNRk1WqJx4B56JF-FJGDtZ6CLEz9kj_2jGns_jzzOEPDIx07HNIiqEljQpDKO6TGIqGbNpyo3LbMj2eSgPZsnLY3E8xDv8X5iL7_csynYjlgmKmEXs6sLJyIzIlhSIusdka3Z4tPc-hFAGEX-3YimOmIpkeJH8XRcbHmg0XzYb4PLKqm70-UddVRf8zP71PulRG9ITenrJYrrqzLT49Evyxn9Zwg1ybQCbsNdbx01yyda3yOVA-iza2-Srz8yhK1r3VPBvn794n1aCrk6WZ_PuwykgogVEiDCvPXvDwlB-BpYOTkNwER0fvKKtZ5OCj-z2nzohrJy2geZVt178zRw7KdGOSjDnwHEsJmBh38G6Dk8Lui4hmQpsykJL4JOFFk_OPwkT8ez8Be3p69BXv75DZvvP3z47oENZB1pwLjrKtU1NxmPuIlGoVKJ7lC4plELwYrUzxpVCCOW4YU5xIa0qnM0sHkZOcJMpfpeM62Vt7xEwSZTYWDsVm8Rn0dGIN52NXSHL2EWqnJAna1XnTZ-9I_e3HlRL7tWSe7XkvVom5DHaQj5s4fYPcrAhZ5sK7088lzkOHvG8Kd2EbK8N6qcc98n58HTM1IQ8_WFkf53W_f8RfkCuMgRhPQdum4y7s5V9iKCpMztk9OL10c6wa74DssITyg
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoET8X_hELBeYAB5C8m8RxvDkiYFUoKpWgqDdjJ3ZZbZqNmqxQOfEOPBMvwpMwtpPCIgRI3CJ5Yjsex_Ml_vwNIQ90nKjY5BHlXGU0LXRCVZnGNEsSM50ybXPj1T53s-399OUBP-jznPqzMMumX_rHeBmEgsMQBimEKJ9ESc4pwhg-UYXNIj1pSrtBznqdEneC7_Xe6TYChi-_WTnc0e9T_q6Wtbi0gW2vQc4Lq7pRJx9VVf0UfWaXyfuh34F0shivOj0uPv0i6fgfD3aFXOqRKTwJ5lfJGVNfI-c8Q7Ror5OvTsZDVbQOvPFvn7-4AFiCqg6Xx_PuwxEg_AWEkzCvHdXDQJ-rBpYWjvyfSIySsENbRz0F9xs4nAAFPyC09ZywunXmb-ZYSYmTrgR9AgzbSjgszDsYkva0oOoS0jHHotyXePKZL3FM_kPfEUflX9DAdYeQKvsG2Z89f_t0m_Y5IGjBGO8oU2aqcxYzG_FCTDOMpZlNCyEQ6RhltbYl51xYphMrGM-MKKzJDa5cljOdC3aTbNbL2twioNMoNbGyItapk9xRCE6tiW2RlbGNRDkij4YZIJsg9SHdJxK6RjrXSOcaGVwzIg_Ri7J_39s_2MGanWkq_NhiMpPYeMQkenhEtoZ59sOOOSU_XEpzMSKPT-feX7t1-x-7dZ-c33s2k69e7O7cIRcTxG2BNrdFNrvjlbmLOKvT9_y79B1gLSSK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELboVggulF-x0KI5wAEkbxM7tpNjVbWqQKqQYFE5RXZil9Wm2ajJCpUT78Az8SI8CWMn23YR4ufskX80Y8_n8ecZQp6bmOnYZhEVQkuaFIZRXSYxlYzZNOXGZTZk-zyWR9Pk9Yk4GeId_i_M9fd7FmW7EcsERcwidnXhZGQ2yKYUiLpHZHN6_HbvYwihDCL-bsVSHDEVyfAi-bsu1jzQxmzRrIHLW8u60RefdVVd8zOHW33SozakJ_T0kvlk2ZlJ8eWX5I3_soS75M4ANmGvt4575Iat75ObgfRZtA_Id5-ZQ1e07qngP75-8z6tBF2dLs5n3aczQEQLiBBhVnv2hoWh_AwsHJyF4CI6PnhDW88mBR_Z7T91Qlg5bQPNq269-LsZdlKiHZVgLoDjWEzA3H6AVR2eFnRdQjIR2JSFlsAnCy2enH8aJuLZ-XPa09ehr379kEwPD97vH9GhrAMtOBcd5dqmJuMxd5EoVCrRPUqXFEoheLHaGeNKIYRy3DCnuJBWFc5mFg8jJ7jJFH9ERvWito8JmCRKbKydik3is-hoxJvOxq6QZewiVY7Jy5Wq86bP3pH7Ww-qJfdqyb1a8l4tY_ICbSEftnD7BzlYk7NNhfcnnsscB4943pRuTLZXBnUlx31yPjwdMzUmry6N7K_TevI_wk_JbYYgrOfAbZNRd760OwiaOvNs2C8_AUGLEsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-network%E2%80%93based+algorithm+for+the+inverse+problem+of+measuring+K-shell+ionization+cross-sections+of+Si+induced+by+3%E2%80%9325+keV+electrons+and+4.5%E2%80%939+keV+positrons+using+the+thick-target+method&rft.jtitle=Europhysics+letters&rft.au=Li%2C+Y.+D.&rft.au=Wu%2C+Y.&rft.au=Huang%2C+C.+J.&rft.au=Liu%2C+Z.+H.&rft.date=2023-09-01&rft.issn=0295-5075&rft.eissn=1286-4854&rft.volume=143&rft.issue=6&rft.spage=65003&rft_id=info:doi/10.1209%2F0295-5075%2Facf60b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1209_0295_5075_acf60b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0295-5075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0295-5075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0295-5075&client=summon