Dynamic linear mixed models with ARMA covariance matrix

Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be...

Full description

Saved in:
Bibliographic Details
Published inCommunications for statistical applications and methods Vol. 23; no. 6; pp. 575 - 585
Main Authors Han, Eun-Jeong, Lee, Keunbaik
Format Journal Article
LanguageEnglish
Korean
Published 한국통계학회 30.11.2016
Subjects
Online AccessGet full text
ISSN2287-7843
2383-4757
2383-4757
DOI10.5351/CSAM.2016.23.6.575

Cover

Abstract Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods.
AbstractList Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle {\it et al.}, 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. KCI Citation Count: 3
Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods.
Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods.
Author Eun-jeong Han
Keunbaik Lee
Author_xml – sequence: 1
  fullname: Han, Eun-Jeong
– sequence: 2
  fullname: Lee, Keunbaik
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002171256$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kD1PwzAQhi0EEgX6B2DJwsCQYPvs2B2jUqBAqcTHbDl2AqaJg-IU2n9P2qLecjc876PTe4IOfeMLhM4JTjhwcj1-zWYJxSRNKCRpwgU_QAMKEmImuDjsbypFLCSDYzQM4QtjTLgUmLABEjdrr2tnosr5QrdR7VaFjerGFlWIfl33GWUvsywyzY9unfamiGrdtW51ho5KXYVi-L9P0fvt5G18Hz_N76bj7Ck2ALyLqS5ZSoDyUjLLLc3zkZWc5mCEKUojtdEGhM5tXgrGYEMAZakhFgCnIwKn6Grn9W2pFsapRrvt_mjUolXZy9tUESr7wT0LO3bpv_X6V1eV-m5drdu1IlhtqlIm6FptqlIUVKr6qvrU5S61cKFzyttQqYfscb6hsICUC4zl9pN_zi97aWGd3tuf5zcTQhgmI0p77mLvC3sEmARGUvgDwW19dg
CitedBy_id crossref_primary_10_29220_CSAM_2018_25_1_061
crossref_primary_10_1007_s42952_019_00003_1
crossref_primary_10_21307_stattrans_2019_034
ContentType Journal Article
DBID HZB
Q5X
DBRKI
TDB
JDI
ADTOC
UNPAY
ACYCR
DEWEY 519.5
DOI 10.5351/CSAM.2016.23.6.575
DatabaseName KISS(한국학술정보)
Korean Studies Information Service System (KISS) B-Type
DBPIA - 디비피아
누리미디어 DBpia
KoreaScience
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitleList


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Dynamic linear mixed models with ARMA covariance matrix
EISSN 2383-4757
EndPage 585
ExternalDocumentID oai_kci_go_kr_ARTI_1288880
10.5351/csam.2016.23.6.575
JAKO201607365700891
NODE11401922
3483416
GroupedDBID .UV
9ZL
ALMA_UNASSIGNED_HOLDINGS
ARCSS
HZB
JDI
M~E
Q5X
TUS
DBRKI
TDB
ADTOC
AMVHM
UNPAY
ACYCR
ID FETCH-LOGICAL-c335t-2af461325f84d5d2bb9d852b3c7cefc8acac37abdbf74435d2b3246c1d3306913
IEDL.DBID UNPAY
ISSN 2287-7843
2383-4757
IngestDate Sun Mar 09 07:51:10 EDT 2025
Wed Oct 01 16:45:41 EDT 2025
Fri Dec 22 11:59:19 EST 2023
Thu Mar 13 19:39:53 EDT 2025
Wed Jan 24 03:12:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cholesky decomposition
heteroscedastic
within-subject variation
positive definite
serial correlation
covariance matrix
longitudinal data
Language English
Korean
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-2af461325f84d5d2bb9d852b3c7cefc8acac37abdbf74435d2b3246c1d3306913
Notes The Korean Statistical Society
KISTI1.1003/JNL.JAKO201607365700891
G704-000420.2016.23.6.007
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.csam.or.kr/journal/download_pdf.php?doi=10.5351/CSAM.2016.23.6.575
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1288880
unpaywall_primary_10_5351_csam_2016_23_6_575
kisti_ndsl_JAKO201607365700891
nurimedia_primary_NODE11401922
kiss_primary_3483416
PublicationCentury 2000
PublicationDate 20161130
PublicationDateYYYYMMDD 2016-11-30
PublicationDate_xml – month: 11
  year: 2016
  text: 20161130
  day: 30
PublicationDecade 2010
PublicationTitle Communications for statistical applications and methods
PublicationTitleAlternate CSAM(Communications for Statistical Applications and Methods)
PublicationYear 2016
Publisher 한국통계학회
Publisher_xml – name: 한국통계학회
SSID ssj0001587014
ssib053376881
ssib044733355
Score 1.9955753
Snippet Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject...
SourceID nrf
unpaywall
kisti
nurimedia
kiss
SourceType Open Website
Open Access Repository
Publisher
StartPage 575
SubjectTerms Cholesky decomposition
covariance matrix
heteroscedastic
longitudinal data
positive definite
serial correlation
within-subject variation
통계학
Title Dynamic linear mixed models with ARMA covariance matrix
URI https://kiss.kstudy.com/ExternalLink/Ar?key=3483416
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11401922
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201607365700891&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
http://www.csam.or.kr/journal/download_pdf.php?doi=10.5351/CSAM.2016.23.6.575
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002171256
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Communications for Statistical Applications and Methods, 2016, 23(6), , pp.575-585
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2383-4757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001587014
  issn: 2287-7843
  databaseCode: AMVHM
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2383-4757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044733355
  issn: 2287-7843
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6V5AAXHiqI8IgsxBE78b5sH60-FIqcIiConFb78KIoiR05SVv49czYaQTihIQvtqX1jjwz9nyzmv2GkLeGSsGtiEMDeDSECO3DjOtx6EXGRcmoiUtc7yimcjLjF1fi6ojctbfCqkq70auobqJFM9rrc-SQOL7WTq2db1kj4HsH-BoJJuLRyee8wBotGVEWyQjwxz3SlwKgeY_0Z9OP-TdsMAeZQZikbRUdRCkW8kQk3SaadpJW6B-TwD8aINwGQCsiuTnEnqqBkHW_2iHvPhgPrnfVWv-40cvlbzHp_BGp7nb2dKUoi2i3NZH9-TfR4_953cfk4R69Bnnnbk_IUVkdk-S062ofIGLVTbCa35YuaFvsbAJc5w3yT0Ue2Poa8nJ0smCFfQFun5LZ-dmXk0m478cQWsbENqTac4j-VPiUO-GoMZlLBTXMJrb0NtVWW5Zo44xPOMAwGAFwTdrYMXCELGbPSK-qq_I5CbLMGOMc86X0nFNnxiVlnqY2Q8I2GQ_IMSpfrTvKDcVwzTOWAzJsjaEqt1mqi_zDJW0Z8hgW8IzTDJ57A1ZSCztXyJuN5--1WjQKsoP3CmIxHGOY5WDEg4Tp5elZjNlmRumAvDtY9jAAsiXUv0J7KRSrKFNSgf5f_Nvwl-QB3nf8ka9Ib9vsyteAbLZmSPp58XVSDPd--wu4He_o
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6V9AAXHiqI8KgsxJF14n3ZPlp9qC1KioBI5bTah7eKktiRk0Dh1zNjpxEVp0r1xba03pFnxp5vVrPfEPLRMiWFkwm1gEcpROhAc2GGNMhcyJIzm5S43jEaq7OJuLiSV3vktr0VVlW6lVnEdRPPmsFWnwOPxPG18XrpQ8saAd87wNdYcpkMjr4VI6zRUjHjsYoBfzwi-0oCNO-R_cn4S_EDG8xBZkDTrK2igyjFqUhl2m2iaSdphd6ZBP7RAOFWAFoRyU0h9lQNhKzH1QZ598F4cL2plub3LzOf_xOTTp-R6nZnT1eKMos3axu7P_8TPT7M6z4nT7foNSo6d3tB9srqgKTHXVf7CBGraaLF9Kb0UdtiZxXhOm9UfB0Vkat_Ql6OThYtsC_AzUsyOT35fnRGt_0YqONcrikzQUD0ZzJkwkvPrM19JpnlLnVlcJlxxvHUWG9DKgCGwQiAa8olnoMj5Al_RXpVXZWvSZTn1lrveShVEIJ5OywZDyxzORK2qaRPDlD5etlRbmiOa56J6pPD1hi68qu5vig-X7KWIY9jAc8wy-G5D2AlPXNTjbzZeL6u9azRkB2ca4jFcAxhlp0RdxLGl8cnCWabOWN98mln2d0AyJZQ_xrtpVGsZlwrDfp_c7_hb8kTvO_4I9-R3rrZlO8B2azt4dZf_wJAju5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+linear+mixed+models+with+ARMA+covariance+matrix&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Eun-jeong+Han&rft.au=Keunbaik+Lee&rft.date=2016-11-30&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=2287-7843&rft.eissn=2383-4757&rft.volume=23&rft.issue=6&rft.spage=575&rft.epage=585&rft_id=info:doi/10.5351%2FCSAM.2016.23.6.575&rft.externalDocID=NODE11401922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon