Dynamic linear mixed models with ARMA covariance matrix
Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be...
Saved in:
| Published in | Communications for statistical applications and methods Vol. 23; no. 6; pp. 575 - 585 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English Korean |
| Published |
한국통계학회
30.11.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2287-7843 2383-4757 2383-4757 |
| DOI | 10.5351/CSAM.2016.23.6.575 |
Cover
| Abstract | Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. |
|---|---|
| AbstractList | Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle {\it et al.}, 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. KCI Citation Count: 3 Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. |
| Author | Eun-jeong Han Keunbaik Lee |
| Author_xml | – sequence: 1 fullname: Han, Eun-Jeong – sequence: 2 fullname: Lee, Keunbaik |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002171256$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNo9kD1PwzAQhi0EEgX6B2DJwsCQYPvs2B2jUqBAqcTHbDl2AqaJg-IU2n9P2qLecjc876PTe4IOfeMLhM4JTjhwcj1-zWYJxSRNKCRpwgU_QAMKEmImuDjsbypFLCSDYzQM4QtjTLgUmLABEjdrr2tnosr5QrdR7VaFjerGFlWIfl33GWUvsywyzY9unfamiGrdtW51ho5KXYVi-L9P0fvt5G18Hz_N76bj7Ck2ALyLqS5ZSoDyUjLLLc3zkZWc5mCEKUojtdEGhM5tXgrGYEMAZakhFgCnIwKn6Grn9W2pFsapRrvt_mjUolXZy9tUESr7wT0LO3bpv_X6V1eV-m5drdu1IlhtqlIm6FptqlIUVKr6qvrU5S61cKFzyttQqYfscb6hsICUC4zl9pN_zi97aWGd3tuf5zcTQhgmI0p77mLvC3sEmARGUvgDwW19dg |
| CitedBy_id | crossref_primary_10_29220_CSAM_2018_25_1_061 crossref_primary_10_1007_s42952_019_00003_1 crossref_primary_10_21307_stattrans_2019_034 |
| ContentType | Journal Article |
| DBID | HZB Q5X DBRKI TDB JDI ADTOC UNPAY ACYCR |
| DEWEY | 519.5 |
| DOI | 10.5351/CSAM.2016.23.6.575 |
| DatabaseName | KISS(한국학술정보) Korean Studies Information Service System (KISS) B-Type DBPIA - 디비피아 누리미디어 DBpia KoreaScience Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| DocumentTitleAlternate | Dynamic linear mixed models with ARMA covariance matrix |
| EISSN | 2383-4757 |
| EndPage | 585 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_1288880 10.5351/csam.2016.23.6.575 JAKO201607365700891 NODE11401922 3483416 |
| GroupedDBID | .UV 9ZL ALMA_UNASSIGNED_HOLDINGS ARCSS HZB JDI M~E Q5X TUS DBRKI TDB ADTOC AMVHM UNPAY ACYCR |
| ID | FETCH-LOGICAL-c335t-2af461325f84d5d2bb9d852b3c7cefc8acac37abdbf74435d2b3246c1d3306913 |
| IEDL.DBID | UNPAY |
| ISSN | 2287-7843 2383-4757 |
| IngestDate | Sun Mar 09 07:51:10 EDT 2025 Wed Oct 01 16:45:41 EDT 2025 Fri Dec 22 11:59:19 EST 2023 Thu Mar 13 19:39:53 EDT 2025 Wed Jan 24 03:12:00 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Cholesky decomposition heteroscedastic within-subject variation positive definite serial correlation covariance matrix longitudinal data |
| Language | English Korean |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c335t-2af461325f84d5d2bb9d852b3c7cefc8acac37abdbf74435d2b3246c1d3306913 |
| Notes | The Korean Statistical Society KISTI1.1003/JNL.JAKO201607365700891 G704-000420.2016.23.6.007 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.csam.or.kr/journal/download_pdf.php?doi=10.5351/CSAM.2016.23.6.575 |
| PageCount | 11 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1288880 unpaywall_primary_10_5351_csam_2016_23_6_575 kisti_ndsl_JAKO201607365700891 nurimedia_primary_NODE11401922 kiss_primary_3483416 |
| PublicationCentury | 2000 |
| PublicationDate | 20161130 |
| PublicationDateYYYYMMDD | 2016-11-30 |
| PublicationDate_xml | – month: 11 year: 2016 text: 20161130 day: 30 |
| PublicationDecade | 2010 |
| PublicationTitle | Communications for statistical applications and methods |
| PublicationTitleAlternate | CSAM(Communications for Statistical Applications and Methods) |
| PublicationYear | 2016 |
| Publisher | 한국통계학회 |
| Publisher_xml | – name: 한국통계학회 |
| SSID | ssj0001587014 ssib053376881 ssib044733355 |
| Score | 1.9955753 |
| Snippet | Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject... |
| SourceID | nrf unpaywall kisti nurimedia kiss |
| SourceType | Open Website Open Access Repository Publisher |
| StartPage | 575 |
| SubjectTerms | Cholesky decomposition covariance matrix heteroscedastic longitudinal data positive definite serial correlation within-subject variation 통계학 |
| Title | Dynamic linear mixed models with ARMA covariance matrix |
| URI | https://kiss.kstudy.com/ExternalLink/Ar?key=3483416 https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11401922 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201607365700891&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 http://www.csam.or.kr/journal/download_pdf.php?doi=10.5351/CSAM.2016.23.6.575 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002171256 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Communications for Statistical Applications and Methods, 2016, 23(6), , pp.575-585 |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2383-4757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001587014 issn: 2287-7843 databaseCode: AMVHM dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2383-4757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044733355 issn: 2287-7843 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6V5AAXHiqI8IgsxBE78b5sH60-FIqcIiConFb78KIoiR05SVv49czYaQTihIQvtqX1jjwz9nyzmv2GkLeGSsGtiEMDeDSECO3DjOtx6EXGRcmoiUtc7yimcjLjF1fi6ojctbfCqkq70auobqJFM9rrc-SQOL7WTq2db1kj4HsH-BoJJuLRyee8wBotGVEWyQjwxz3SlwKgeY_0Z9OP-TdsMAeZQZikbRUdRCkW8kQk3SaadpJW6B-TwD8aINwGQCsiuTnEnqqBkHW_2iHvPhgPrnfVWv-40cvlbzHp_BGp7nb2dKUoi2i3NZH9-TfR4_953cfk4R69Bnnnbk_IUVkdk-S062ofIGLVTbCa35YuaFvsbAJc5w3yT0Ue2Poa8nJ0smCFfQFun5LZ-dmXk0m478cQWsbENqTac4j-VPiUO-GoMZlLBTXMJrb0NtVWW5Zo44xPOMAwGAFwTdrYMXCELGbPSK-qq_I5CbLMGOMc86X0nFNnxiVlnqY2Q8I2GQ_IMSpfrTvKDcVwzTOWAzJsjaEqt1mqi_zDJW0Z8hgW8IzTDJ57A1ZSCztXyJuN5--1WjQKsoP3CmIxHGOY5WDEg4Tp5elZjNlmRumAvDtY9jAAsiXUv0J7KRSrKFNSgf5f_Nvwl-QB3nf8ka9Ib9vsyteAbLZmSPp58XVSDPd--wu4He_o |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6V9AAXHiqI8KgsxJF14n3ZPlp9qC1KioBI5bTah7eKktiRk0Dh1zNjpxEVp0r1xba03pFnxp5vVrPfEPLRMiWFkwm1gEcpROhAc2GGNMhcyJIzm5S43jEaq7OJuLiSV3vktr0VVlW6lVnEdRPPmsFWnwOPxPG18XrpQ8saAd87wNdYcpkMjr4VI6zRUjHjsYoBfzwi-0oCNO-R_cn4S_EDG8xBZkDTrK2igyjFqUhl2m2iaSdphd6ZBP7RAOFWAFoRyU0h9lQNhKzH1QZ598F4cL2plub3LzOf_xOTTp-R6nZnT1eKMos3axu7P_8TPT7M6z4nT7foNSo6d3tB9srqgKTHXVf7CBGraaLF9Kb0UdtiZxXhOm9UfB0Vkat_Ql6OThYtsC_AzUsyOT35fnRGt_0YqONcrikzQUD0ZzJkwkvPrM19JpnlLnVlcJlxxvHUWG9DKgCGwQiAa8olnoMj5Al_RXpVXZWvSZTn1lrveShVEIJ5OywZDyxzORK2qaRPDlD5etlRbmiOa56J6pPD1hi68qu5vig-X7KWIY9jAc8wy-G5D2AlPXNTjbzZeL6u9azRkB2ca4jFcAxhlp0RdxLGl8cnCWabOWN98mln2d0AyJZQ_xrtpVGsZlwrDfp_c7_hb8kTvO_4I9-R3rrZlO8B2azt4dZf_wJAju5M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+linear+mixed+models+with+ARMA+covariance+matrix&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Eun-jeong+Han&rft.au=Keunbaik+Lee&rft.date=2016-11-30&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=2287-7843&rft.eissn=2383-4757&rft.volume=23&rft.issue=6&rft.spage=575&rft.epage=585&rft_id=info:doi/10.5351%2FCSAM.2016.23.6.575&rft.externalDocID=NODE11401922 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon |