Dynamic linear mixed models with ARMA covariance matrix
Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be...
Saved in:
Published in | Communications for statistical applications and methods Vol. 23; no. 6; pp. 575 - 585 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English Korean |
Published |
한국통계학회
30.11.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2287-7843 2383-4757 |
DOI | 10.5351/CSAM.2016.23.6.575 |
Cover
Abstract | Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. |
---|---|
AbstractList | Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (betweensubject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods. |
Author | Eun-jeong Han Keunbaik Lee |
Author_xml | – sequence: 1 fullname: Han, Eun-Jeong – sequence: 2 fullname: Lee, Keunbaik |
BookMark | eNo9j7tOwzAYRj0UiVL6ArBkYUyw_fvWMSp3WlXiMluOnQhD4lZxoM3b01DU6VvOd6RzhkZhHUqELgjOOHByPX_NlxnFRGQUMpFxyUdoTKmSqVQMTtE0xk-MMeFKYsLGSN70wTTeJrUPpWmTxu9KlzRrV9Yx2fruI8lflnli1z-m9SbYMmlM1_rdOTqpTB3L6f9O0Pvd7dv8IV2s7h_n-SK1ALxLqamYIEB5pZjjjhbFzClOC7DSlpVVxhoL0hSuqCRjMBBAmbDEAWAxIzBBcPB-h43pt6au9ab1jWl7TbAekrWNptFDsqaghd4n719Xh9eXj53XwcVaP-XPq4HCEgSXGKs_--WRi0cxMAWMCPgFkIdhiQ |
CitedBy_id | crossref_primary_10_29220_CSAM_2018_25_1_061 crossref_primary_10_1007_s42952_019_00003_1 crossref_primary_10_21307_stattrans_2019_034 |
ContentType | Journal Article |
DBID | HZB Q5X JDI ADTOC UNPAY |
DEWEY | 519.5 |
DOI | 10.5351/CSAM.2016.23.6.575 |
DatabaseName | Korean Studies Information Service System (KISS) Korean Studies Information Service System (KISS) B-Type KoreaScience Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
DocumentTitleAlternate | Dynamic linear mixed models with ARMA covariance matrix |
EndPage | 585 |
ExternalDocumentID | 10.5351/csam.2016.23.6.575 JAKO201607365700891 3483416 |
GroupedDBID | .UV 9ZL ALMA_UNASSIGNED_HOLDINGS ARCSS HZB JDI M~E Q5X TUS ADTOC AMVHM DBRKI TDB UNPAY |
ID | FETCH-LOGICAL-c335t-2af461325f84d5d2bb9d852b3c7cefc8acac37abdbf74435d2b3246c1d3306913 |
IEDL.DBID | UNPAY |
ISSN | 2287-7843 2383-4757 |
IngestDate | Wed Oct 01 16:45:41 EDT 2025 Fri Dec 22 11:59:19 EST 2023 Wed Jan 24 03:12:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Cholesky decomposition heteroscedastic within-subject variation positive definite serial correlation longitudinal data covariance matrix |
Language | English Korean |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-2af461325f84d5d2bb9d852b3c7cefc8acac37abdbf74435d2b3246c1d3306913 |
Notes | The Korean Statistical Society KISTI1.1003/JNL.JAKO201607365700891 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.csam.or.kr/journal/download_pdf.php?doi=10.5351/CSAM.2016.23.6.575 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_5351_csam_2016_23_6_575 kisti_ndsl_JAKO201607365700891 kiss_primary_3483416 |
PublicationCentury | 2000 |
PublicationDate | 20161130 |
PublicationDateYYYYMMDD | 2016-11-30 |
PublicationDate_xml | – month: 11 year: 2016 text: 20161130 day: 30 |
PublicationDecade | 2010 |
PublicationTitle | Communications for statistical applications and methods |
PublicationTitleAlternate | CSAM(Communications for Statistical Applications and Methods) |
PublicationYear | 2016 |
Publisher | 한국통계학회 |
Publisher_xml | – name: 한국통계학회 |
SSID | ssj0001587014 ssib053376881 ssib044733355 |
Score | 1.9972969 |
Snippet | Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject... |
SourceID | unpaywall kisti kiss |
SourceType | Open Access Repository Publisher |
StartPage | 575 |
SubjectTerms | Cholesky decomposition covariance matrix heteroscedastic longitudinal data positive definite serial correlation within-subject variation |
Title | Dynamic linear mixed models with ARMA covariance matrix |
URI | https://kiss.kstudy.com/ExternalLink/Ar?key=3483416 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201607365700891&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 http://www.csam.or.kr/journal/download_pdf.php?doi=10.5351/CSAM.2016.23.6.575 |
UnpaywallVersion | publishedVersion |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2287-7843 databaseCode: M~E dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib044733355 providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB612wNw4KGCugVWPnAk2cZ2bOcYlVZV0RYErFROlmPHUtXd7Gof9HHob-9Msq1AnJA4RrInyWQSf-N88w3AB2-486RvR9zFROoYE8dNSA60jjzUMottIe3oTJ2M5el5fr4FD-2tiFXpl26azhbp5WK48ecwkHD8zAU7D7FVjcD3HeFrmos8Gx5-L0fE0VIpF6lKEX9sw46i_0092BmffS1_UoM5zAwSbVoWHa5SdFm57opoWiPtSf8wgt9ohHBLBK2E5C6ewZN1M3c3V24y-W0FOn4BzUMdT0c8uUzXqyr1t3_LOv6fm3sJzzdYlZVdcL2CrbrZBf2p62HPCJ-6BZteXNeBtQ11lox2dVn5bVQyP_uFWTiFFJtSF4Dr1zA-PvpxeJJsui8kXoh8lXAXJa71PI9GhjzwqiqCyXklvPZ19MZ554V2Vaiilgi6cASCM-WzIDANKTLxBnrNrKn3gNUGYYH3Svm6kBFzPFkbaYTyFdoueOjDLrnazjuBDStohzNTfRi0rrdNWE7safn5C2_18ATRdQ5MkfXh4-MzeZyMWQ15zpKnLU2wXFhl0XP7_zb8LTyl407n8R30Vot1_R4RyKoawPbo7miwia57HhLT9w |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7QE4UFBBbIHKB44k29iO7RyjQlUVbUHASuVkOf6Qqu5mV_tRCr-emWRbUXFC4hjJniSTSfzGefMG4K033HnStyPuYiZ1SpnjJmRHWiceoixSV0g7PlenE3l2UV7swG17K2JV-pWb5fNlfrUcbf05CiQcP3fBLkLqVCPwfUf4mpeiLEbHX-sxcbRUzkWucsQfD2BX0f-mAexOzj_X36nBHGYGmTYdiw5XKbqsUvdFNJ2R7qT3jOA3GiHcCkErIbnLx_Bw0y7czx9uOv1jBTrZg_a2jqcnnlzlm3WT-19_yzr-n5t7Ck-2WJXVfXA9g53Y7oN-3_ewZ4RP3ZLNLm9iYF1DnRWjXV1WfxnXzM-vMQunkGIz6gJw8xwmJx--HZ9m2-4LmReiXGfcJYlrPS-TkaEMvGmqYEreCK99TN4477zQrglN0hJBF45AcKZ8EQSmIVUhXsCgnbfxJbBoEBZ4r5SPlUyY48lopBHKN2i74mEI--Rqu-gFNqygHc5CDeGwc71tw2pqz-qPn3inhyeIrnNkqmII7-6eyd1kzGrIc5Y8bWmC5cIqi547-Lfhr-ARHfc6j69hsF5u4htEIOvmcBtXvwEq09LG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+linear+mixed+models+with+ARMA+covariance+matrix&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Han%2C+Eun-Jeong&rft.au=Lee%2C+Keunbaik&rft.date=2016-11-30&rft.issn=2287-7843&rft.volume=23&rft.issue=6&rft.spage=575&rft.epage=585&rft_id=info:doi/10.5351%2FCSAM.2016.23.6.575&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201607365700891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon |