A Haar-Fisz Algorithm for Poisson Intensity Estimation

This article introduces a new method for the estimation of the intensity of an inhomogeneous one-dimensional Poisson process. The Haar-Fisz transformation transforms a vector of binned Poisson counts to approximate normality with variance one. Hence we can use any suitable Gaussian wavelet shrinkage...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 13; no. 3; pp. 621 - 638
Main Authors Fryzlewicz, Piotr, Nason, Guy P
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.09.2004
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1198/106186004X2697

Cover

More Information
Summary:This article introduces a new method for the estimation of the intensity of an inhomogeneous one-dimensional Poisson process. The Haar-Fisz transformation transforms a vector of binned Poisson counts to approximate normality with variance one. Hence we can use any suitable Gaussian wavelet shrinkage method to estimate the Poisson intensity. Since the Haar-Fisz operator does not commute with the shift operator we can dramatically improve accuracy by always cycle spinning before the Haar-Fisz transform as well as optionally after. Extensive simulations show that our approach usually significantly outperformed state-of-the-art competitors but was occasionally comparable. Our method is fast, simple, automatic, and easy to code. Our technique is applied to the estimation of the intensity of earthquakes in northern California. We show that our technique gives visually similar results to the current state-of-the-art.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1061-8600
1537-2715
DOI:10.1198/106186004X2697