A class of one-step time integration schemes for second-order hyperbolic differential equations
We present a class of extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations u tt = c 2 u xx + p( x,t,u), subject to initial conditions and boundary conditions of Dirichlet type or of Neumann type. We obtain one-step time integration schemes of...
Saved in:
| Published in | Mathematical and computer modelling Vol. 33; no. 4; pp. 431 - 443 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.02.2001
Elsevier Science |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0895-7177 1872-9479 |
| DOI | 10.1016/S0895-7177(00)00253-3 |
Cover
| Abstract | We present a class of
extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations
u
tt
=
c
2
u
xx
+
p(
x,t,u), subject to initial conditions and boundary conditions of Dirichlet type or of Neumann type. We obtain
one-step time integration schemes of orders two, three, and four; the schemes are unconditionally stable. For nonlinear problems, the second- and the third-order schemes have tridiagonal Jacobians, and the fourth-order schemes have pentadiagonal Jacobians. The accuracy and stability of the obtained schemes is illustrated computationally by considering numerical examples, including the sine-Gordon equation. |
|---|---|
| AbstractList | We present a class of
extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations
u
tt
=
c
2
u
xx
+
p(
x,t,u), subject to initial conditions and boundary conditions of Dirichlet type or of Neumann type. We obtain
one-step time integration schemes of orders two, three, and four; the schemes are unconditionally stable. For nonlinear problems, the second- and the third-order schemes have tridiagonal Jacobians, and the fourth-order schemes have pentadiagonal Jacobians. The accuracy and stability of the obtained schemes is illustrated computationally by considering numerical examples, including the sine-Gordon equation. |
| Author | Al-Zanaidi, M.A. Chawla, M.M. |
| Author_xml | – sequence: 1 givenname: M.M. surname: Chawla fullname: Chawla, M.M. – sequence: 2 givenname: M.A. surname: Al-Zanaidi fullname: Al-Zanaidi, M.A. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=885833$$DView record in Pascal Francis |
| BookMark | eNqFkM1KAzEURoNUsK0-ghBwo4vRm5lmMoMLKcU_KLhQ1yGT3NjIdFKTKPTtbafqwk1Xd_Odw-WMyKDzHRJyyuCSASuvnqGqeSaYEOcAFwA5L7LigAxZJfKsnoh6QIZ_kyMyivEdAHgN1ZDIKdWtipF6SzfWLCZc0eSWSF2X8C2o5HxHo17gEiO1PtCI2ncm88FgoIv1CkPjW6epcdZiwC451VL8-OzJeEwOrWojnvzcMXm9u32ZPWTzp_vH2XSe6aLgKWOM27opNeimapQ1kKsCDS9RWGOBqbrheS3yvGoEKAEMeKmQTawqDeOgTTEmZzvvSkWtWhtUp12Uq-CWKqxlVfGqKDar691KBx9jQCu1S_2jKSjXSgZyW1T2ReU2lwSQfVG5pfk_-le_j7vZcbgJ8OUwyKgddhqNC6iTNN7tMXwDo8aR0A |
| CitedBy_id | crossref_primary_10_1016_j_amc_2006_07_077 |
| Cites_doi | 10.1016/0898-1221(85)90106-3 10.1016/S0895-7177(99)00019-9 10.1016/S0898-1221(99)00182-0 |
| ContentType | Journal Article |
| Copyright | 2001 2001 INIST-CNRS |
| Copyright_xml | – notice: 2001 – notice: 2001 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/S0895-7177(00)00253-3 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1872-9479 |
| EndPage | 443 |
| ExternalDocumentID | 885833 10_1016_S0895_7177_00_00253_3 S0895717700002533 |
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29M 4.4 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABFNM ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SSB SSD SST SSW SSZ T5K T9H TN5 VOH WUQ XPP XSW YNT YQT ZMT AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD IQODW SSH |
| ID | FETCH-LOGICAL-c335t-115f9b6c0cb8bafd02a3ed56e7fdf01a9b5297228b70a701056ae14fa6d150cd3 |
| IEDL.DBID | AIKHN |
| ISSN | 0895-7177 |
| IngestDate | Wed Apr 02 07:22:08 EDT 2025 Wed Oct 01 04:07:50 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Fri Feb 23 02:11:13 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | P-stability Newmark method Modified Simpson rule Sine-Gordon equation Second-order nonlinear hyperbolic equations Extended one-step time integration schemes Extended trapezoidal formula Second order equation Neumann problem Integration Stability Initial condition Differential equation One step method Trapezoidal rule Nonlinear problems Boundary condition Jacobi matrix Partial differential equation Non linear equation Simpson ruel Hyperbolic equation Pentadiagonal matrix Dirichlet problem Tridiagonal matrix Sine Gordon equation |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c335t-115f9b6c0cb8bafd02a3ed56e7fdf01a9b5297228b70a701056ae14fa6d150cd3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0895717700002533 |
| PageCount | 13 |
| ParticipantIDs | pascalfrancis_primary_885833 crossref_citationtrail_10_1016_S0895_7177_00_00253_3 crossref_primary_10_1016_S0895_7177_00_00253_3 elsevier_sciencedirect_doi_10_1016_S0895_7177_00_00253_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2001-02-01 |
| PublicationDateYYYYMMDD | 2001-02-01 |
| PublicationDate_xml | – month: 02 year: 2001 text: 2001-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Mathematical and computer modelling |
| PublicationYear | 2001 |
| Publisher | Elsevier Ltd Elsevier Science |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
| References | Chawla, Al-Zanaidi, Al-Ghonaim (BIB8) 1999; 29 Chawla, Al-Zanaidi (BIB9) 1997; 5 Thomas (BIB4) 1995 Mitchell, Griffiths (BIB1) 1980 Fried (BIB7) 1979 Chawla, Al-Zanaidi (BIB6) 1999; 38 Debnath (BIB10) 1997 Smith (BIB2) 1985 Usmani, Agarwal (BIB5) 1985; 11 Morton, Mayers (BIB3) 1994 Usmani (10.1016/S0895-7177(00)00253-3_BIB5) 1985; 11 Chawla (10.1016/S0895-7177(00)00253-3_BIB8) 1999; 29 Chawla (10.1016/S0895-7177(00)00253-3_BIB9) 1997; 5 Thomas (10.1016/S0895-7177(00)00253-3_BIB4) 1995 Morton (10.1016/S0895-7177(00)00253-3_BIB3) 1994 Debnath (10.1016/S0895-7177(00)00253-3_BIB10) 1997 Smith (10.1016/S0895-7177(00)00253-3_BIB2) 1985 Fried (10.1016/S0895-7177(00)00253-3_BIB7) 1979 Chawla (10.1016/S0895-7177(00)00253-3_BIB6) 1999; 38 Mitchell (10.1016/S0895-7177(00)00253-3_BIB1) 1980 |
| References_xml | – volume: 38 start-page: 51 year: 1999 end-page: 59 ident: BIB6 article-title: An extended trapezoidal formula for the diffusion equation publication-title: Computers Math. Applic. – volume: 11 start-page: 1183 year: 1985 end-page: 1191 ident: BIB5 article-title: An A-stable extended trapezoidal rule for the numerical integration of ordinary differential equations publication-title: Computers Math. Applic. – year: 1985 ident: BIB2 publication-title: Numerical Solution of Partial Differential Equations: Finite Difference Methods – year: 1995 ident: BIB4 publication-title: Numerical Partial Differential Equations: Finite Difference Methods – year: 1979 ident: BIB7 publication-title: Numerical Solution of Differential Equations – volume: 5 start-page: 535 year: 1997 end-page: 547 ident: BIB9 article-title: Double-stride methods for oscillatory problems publication-title: Neural, Parallel & Sci. Computations – year: 1997 ident: BIB10 publication-title: Nonlinear Partial Differential Equations for Scientists and Engineers – year: 1980 ident: BIB1 publication-title: The Finite Difference Method in Partial Differential Equations – year: 1994 ident: BIB3 publication-title: Numerical Solution of Partial Differential Equations – volume: 29 start-page: 63 year: 1999 end-page: 72 ident: BIB8 article-title: Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions publication-title: Mathl. Comput. Modelling – year: 1980 ident: 10.1016/S0895-7177(00)00253-3_BIB1 – volume: 11 start-page: 1183 issue: 12 year: 1985 ident: 10.1016/S0895-7177(00)00253-3_BIB5 article-title: An A-stable extended trapezoidal rule for the numerical integration of ordinary differential equations publication-title: Computers Math. Applic. doi: 10.1016/0898-1221(85)90106-3 – year: 1997 ident: 10.1016/S0895-7177(00)00253-3_BIB10 – year: 1995 ident: 10.1016/S0895-7177(00)00253-3_BIB4 – volume: 5 start-page: 535 year: 1997 ident: 10.1016/S0895-7177(00)00253-3_BIB9 article-title: Double-stride methods for oscillatory problems publication-title: Neural, Parallel & Sci. Computations – volume: 29 start-page: 63 issue: 2 year: 1999 ident: 10.1016/S0895-7177(00)00253-3_BIB8 article-title: Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions publication-title: Mathl. Comput. Modelling doi: 10.1016/S0895-7177(99)00019-9 – year: 1979 ident: 10.1016/S0895-7177(00)00253-3_BIB7 – volume: 38 start-page: 51 issue: 2 year: 1999 ident: 10.1016/S0895-7177(00)00253-3_BIB6 article-title: An extended trapezoidal formula for the diffusion equation publication-title: Computers Math. Applic. doi: 10.1016/S0898-1221(99)00182-0 – year: 1994 ident: 10.1016/S0895-7177(00)00253-3_BIB3 – year: 1985 ident: 10.1016/S0895-7177(00)00253-3_BIB2 |
| SSID | ssj0005908 |
| Score | 1.5836627 |
| Snippet | We present a class of
extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations
u
tt
=
c
2
u
xx
+
p(... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 431 |
| SubjectTerms | Exact sciences and technology Extended one-step time integration schemes Extended trapezoidal formula Mathematical analysis Mathematics Modified Simpson rule Newmark method P-stability Partial differential equations Sciences and techniques of general use Second-order nonlinear hyperbolic equations Sine-Gordon equation |
| Title | A class of one-step time integration schemes for second-order hyperbolic differential equations |
| URI | https://dx.doi.org/10.1016/S0895-7177(00)00253-3 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 1872-9479 dateEnd: 20131201 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: IXB dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWUAI8RSPUnlggME0iZPYGUtFVUCwAFK3yI5tUamU0pSV3845j5YOqBKjrdzFurPuzvL5-wAuwsQm3F24RywLaGiZpYJJRUWoWMaFb3Rxg__4FPdfw_tBNFiDbv0WxrVVVrG_jOlFtK5m2pU125PhsP3siSTCwwh3ITfAqmUdNjD_CNGAjc7dQ_9p0emRFMR07nvqBBYPeUolxeSl510Veij7K0VtT2SOhrMl48WvNNTbhZ2qfiSdcol7sGbG-7D1C1UQR49zKNb8ANIOyVyFTD4s-Rgbil6dEMcoT2qkCPQMwTOueTc5wRKW5O6MrGkBykne8Jw6VQ48mNRcKhgTRsR8lhjh-SG89m5fun1asSrQjLFoRrEEtImKMy9TQkmrvUAyo6PYcKut58tERUHCg0Ao7knuCDRjafzQylhj8ZhpdgSNMa73GEgYx8oYIXxuCk71xIu0FIFEc2qNik8grA2ZZhXkuGO-GKWL3jK0f8oLwHGHU4r2T9kJXM_FJiXmxioBUXspXdo8KeaFVaLNJa_OfyiEe492-n_NZ7BZ9qu51pcmNGbTL3OOBcxMtWD9-ttvVdsUR3eDmx9iROsD |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQAhxFMUCnhggMFtGiexM1YVVXmUhSKxRXZsi0qlLU1Z-e2cnaSPASExxrIv1p11vpPvvg-h6yA2MbMP7iFNfRIYaginQhIeSJoy3tLKveD3n6Pea_DwFr5VUKfshbFllYXvz32689bFSLPQZnM6HDZfPB6HkIww63J9iFo20GYQ-sxmYI3vlTqP2NHS2dnETl-28eQi3OCN5906KYT-dkHtTkUGajM538XKJdTdR3tF9Ijb-QYPUEWPD9HOCqYgfPUXQKzZEUraOLXxMZ4YPBlrAjadYssnj0ucCLALhgxXf-gMQwCLM5shK-IgOfE7ZKkzaaGDccmkAh5hhPVnjhCeHaPX7t2g0yMFpwJJKQ3nBAJAE8so9VLJpTDK8wXVKow0M8p4LRHL0I-Z73PJPMEsfWYkdCswIlIQOqaKnqDqGPZ7inAQRVJrzltMO0b12AuV4L4AdSoFgmsoKBWZpAXguOW9GCXLyjLQf8Ic3LhFKQX9J7SGGotl0xxx468FvLRSsnZ0ErgV_lpaX7Pq4oec2260s_9LvkJbvUH_KXm6f348R9t55Zotgqmj6nz2pS8glJnLS3dUfwDL_erH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+one-step+time+integration+schemes+for+second-order+hyperbolic+differential+equations&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Chawla%2C+M.M.&rft.au=Al-Zanaidi%2C+M.A.&rft.date=2001-02-01&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=33&rft.issue=4&rft.spage=431&rft.epage=443&rft_id=info:doi/10.1016%2FS0895-7177%2800%2900253-3&rft.externalDocID=S0895717700002533 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon |