A class of one-step time integration schemes for second-order hyperbolic differential equations

We present a class of extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations u tt = c 2 u xx + p( x,t,u), subject to initial conditions and boundary conditions of Dirichlet type or of Neumann type. We obtain one-step time integration schemes of...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computer modelling Vol. 33; no. 4; pp. 431 - 443
Main Authors Chawla, M.M., Al-Zanaidi, M.A.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2001
Elsevier Science
Subjects
Online AccessGet full text
ISSN0895-7177
1872-9479
DOI10.1016/S0895-7177(00)00253-3

Cover

Abstract We present a class of extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations u tt = c 2 u xx + p( x,t,u), subject to initial conditions and boundary conditions of Dirichlet type or of Neumann type. We obtain one-step time integration schemes of orders two, three, and four; the schemes are unconditionally stable. For nonlinear problems, the second- and the third-order schemes have tridiagonal Jacobians, and the fourth-order schemes have pentadiagonal Jacobians. The accuracy and stability of the obtained schemes is illustrated computationally by considering numerical examples, including the sine-Gordon equation.
AbstractList We present a class of extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations u tt = c 2 u xx + p( x,t,u), subject to initial conditions and boundary conditions of Dirichlet type or of Neumann type. We obtain one-step time integration schemes of orders two, three, and four; the schemes are unconditionally stable. For nonlinear problems, the second- and the third-order schemes have tridiagonal Jacobians, and the fourth-order schemes have pentadiagonal Jacobians. The accuracy and stability of the obtained schemes is illustrated computationally by considering numerical examples, including the sine-Gordon equation.
Author Al-Zanaidi, M.A.
Chawla, M.M.
Author_xml – sequence: 1
  givenname: M.M.
  surname: Chawla
  fullname: Chawla, M.M.
– sequence: 2
  givenname: M.A.
  surname: Al-Zanaidi
  fullname: Al-Zanaidi, M.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=885833$$DView record in Pascal Francis
BookMark eNqFkM1KAzEURoNUsK0-ghBwo4vRm5lmMoMLKcU_KLhQ1yGT3NjIdFKTKPTtbafqwk1Xd_Odw-WMyKDzHRJyyuCSASuvnqGqeSaYEOcAFwA5L7LigAxZJfKsnoh6QIZ_kyMyivEdAHgN1ZDIKdWtipF6SzfWLCZc0eSWSF2X8C2o5HxHo17gEiO1PtCI2ncm88FgoIv1CkPjW6epcdZiwC451VL8-OzJeEwOrWojnvzcMXm9u32ZPWTzp_vH2XSe6aLgKWOM27opNeimapQ1kKsCDS9RWGOBqbrheS3yvGoEKAEMeKmQTawqDeOgTTEmZzvvSkWtWhtUp12Uq-CWKqxlVfGqKDar691KBx9jQCu1S_2jKSjXSgZyW1T2ReU2lwSQfVG5pfk_-le_j7vZcbgJ8OUwyKgddhqNC6iTNN7tMXwDo8aR0A
CitedBy_id crossref_primary_10_1016_j_amc_2006_07_077
Cites_doi 10.1016/0898-1221(85)90106-3
10.1016/S0895-7177(99)00019-9
10.1016/S0898-1221(99)00182-0
ContentType Journal Article
Copyright 2001
2001 INIST-CNRS
Copyright_xml – notice: 2001
– notice: 2001 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/S0895-7177(00)00253-3
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-9479
EndPage 443
ExternalDocumentID 885833
10_1016_S0895_7177_00_00253_3
S0895717700002533
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABFNM
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SST
SSW
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
XSW
YNT
YQT
ZMT
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
IQODW
SSH
ID FETCH-LOGICAL-c335t-115f9b6c0cb8bafd02a3ed56e7fdf01a9b5297228b70a701056ae14fa6d150cd3
IEDL.DBID AIKHN
ISSN 0895-7177
IngestDate Wed Apr 02 07:22:08 EDT 2025
Wed Oct 01 04:07:50 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Fri Feb 23 02:11:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords P-stability
Newmark method
Modified Simpson rule
Sine-Gordon equation
Second-order nonlinear hyperbolic equations
Extended one-step time integration schemes
Extended trapezoidal formula
Second order equation
Neumann problem
Integration
Stability
Initial condition
Differential equation
One step method
Trapezoidal rule
Nonlinear problems
Boundary condition
Jacobi matrix
Partial differential equation
Non linear equation
Simpson ruel
Hyperbolic equation
Pentadiagonal matrix
Dirichlet problem
Tridiagonal matrix
Sine Gordon equation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-115f9b6c0cb8bafd02a3ed56e7fdf01a9b5297228b70a701056ae14fa6d150cd3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0895717700002533
PageCount 13
ParticipantIDs pascalfrancis_primary_885833
crossref_citationtrail_10_1016_S0895_7177_00_00253_3
crossref_primary_10_1016_S0895_7177_00_00253_3
elsevier_sciencedirect_doi_10_1016_S0895_7177_00_00253_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-02-01
PublicationDateYYYYMMDD 2001-02-01
PublicationDate_xml – month: 02
  year: 2001
  text: 2001-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Mathematical and computer modelling
PublicationYear 2001
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Chawla, Al-Zanaidi, Al-Ghonaim (BIB8) 1999; 29
Chawla, Al-Zanaidi (BIB9) 1997; 5
Thomas (BIB4) 1995
Mitchell, Griffiths (BIB1) 1980
Fried (BIB7) 1979
Chawla, Al-Zanaidi (BIB6) 1999; 38
Debnath (BIB10) 1997
Smith (BIB2) 1985
Usmani, Agarwal (BIB5) 1985; 11
Morton, Mayers (BIB3) 1994
Usmani (10.1016/S0895-7177(00)00253-3_BIB5) 1985; 11
Chawla (10.1016/S0895-7177(00)00253-3_BIB8) 1999; 29
Chawla (10.1016/S0895-7177(00)00253-3_BIB9) 1997; 5
Thomas (10.1016/S0895-7177(00)00253-3_BIB4) 1995
Morton (10.1016/S0895-7177(00)00253-3_BIB3) 1994
Debnath (10.1016/S0895-7177(00)00253-3_BIB10) 1997
Smith (10.1016/S0895-7177(00)00253-3_BIB2) 1985
Fried (10.1016/S0895-7177(00)00253-3_BIB7) 1979
Chawla (10.1016/S0895-7177(00)00253-3_BIB6) 1999; 38
Mitchell (10.1016/S0895-7177(00)00253-3_BIB1) 1980
References_xml – volume: 38
  start-page: 51
  year: 1999
  end-page: 59
  ident: BIB6
  article-title: An extended trapezoidal formula for the diffusion equation
  publication-title: Computers Math. Applic.
– volume: 11
  start-page: 1183
  year: 1985
  end-page: 1191
  ident: BIB5
  article-title: An A-stable extended trapezoidal rule for the numerical integration of ordinary differential equations
  publication-title: Computers Math. Applic.
– year: 1985
  ident: BIB2
  publication-title: Numerical Solution of Partial Differential Equations: Finite Difference Methods
– year: 1995
  ident: BIB4
  publication-title: Numerical Partial Differential Equations: Finite Difference Methods
– year: 1979
  ident: BIB7
  publication-title: Numerical Solution of Differential Equations
– volume: 5
  start-page: 535
  year: 1997
  end-page: 547
  ident: BIB9
  article-title: Double-stride methods for oscillatory problems
  publication-title: Neural, Parallel & Sci. Computations
– year: 1997
  ident: BIB10
  publication-title: Nonlinear Partial Differential Equations for Scientists and Engineers
– year: 1980
  ident: BIB1
  publication-title: The Finite Difference Method in Partial Differential Equations
– year: 1994
  ident: BIB3
  publication-title: Numerical Solution of Partial Differential Equations
– volume: 29
  start-page: 63
  year: 1999
  end-page: 72
  ident: BIB8
  article-title: Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions
  publication-title: Mathl. Comput. Modelling
– year: 1980
  ident: 10.1016/S0895-7177(00)00253-3_BIB1
– volume: 11
  start-page: 1183
  issue: 12
  year: 1985
  ident: 10.1016/S0895-7177(00)00253-3_BIB5
  article-title: An A-stable extended trapezoidal rule for the numerical integration of ordinary differential equations
  publication-title: Computers Math. Applic.
  doi: 10.1016/0898-1221(85)90106-3
– year: 1997
  ident: 10.1016/S0895-7177(00)00253-3_BIB10
– year: 1995
  ident: 10.1016/S0895-7177(00)00253-3_BIB4
– volume: 5
  start-page: 535
  year: 1997
  ident: 10.1016/S0895-7177(00)00253-3_BIB9
  article-title: Double-stride methods for oscillatory problems
  publication-title: Neural, Parallel & Sci. Computations
– volume: 29
  start-page: 63
  issue: 2
  year: 1999
  ident: 10.1016/S0895-7177(00)00253-3_BIB8
  article-title: Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions
  publication-title: Mathl. Comput. Modelling
  doi: 10.1016/S0895-7177(99)00019-9
– year: 1979
  ident: 10.1016/S0895-7177(00)00253-3_BIB7
– volume: 38
  start-page: 51
  issue: 2
  year: 1999
  ident: 10.1016/S0895-7177(00)00253-3_BIB6
  article-title: An extended trapezoidal formula for the diffusion equation
  publication-title: Computers Math. Applic.
  doi: 10.1016/S0898-1221(99)00182-0
– year: 1994
  ident: 10.1016/S0895-7177(00)00253-3_BIB3
– year: 1985
  ident: 10.1016/S0895-7177(00)00253-3_BIB2
SSID ssj0005908
Score 1.5836627
Snippet We present a class of extended one-step time integration schemes for the integration of second-order nonlinear hyperbolic equations u tt = c 2 u xx + p(...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 431
SubjectTerms Exact sciences and technology
Extended one-step time integration schemes
Extended trapezoidal formula
Mathematical analysis
Mathematics
Modified Simpson rule
Newmark method
P-stability
Partial differential equations
Sciences and techniques of general use
Second-order nonlinear hyperbolic equations
Sine-Gordon equation
Title A class of one-step time integration schemes for second-order hyperbolic differential equations
URI https://dx.doi.org/10.1016/S0895-7177(00)00253-3
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131201
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: IXB
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWUAI8RSPUnlggME0iZPYGUtFVUCwAFK3yI5tUamU0pSV3845j5YOqBKjrdzFurPuzvL5-wAuwsQm3F24RywLaGiZpYJJRUWoWMaFb3Rxg__4FPdfw_tBNFiDbv0WxrVVVrG_jOlFtK5m2pU125PhsP3siSTCwwh3ITfAqmUdNjD_CNGAjc7dQ_9p0emRFMR07nvqBBYPeUolxeSl510Veij7K0VtT2SOhrMl48WvNNTbhZ2qfiSdcol7sGbG-7D1C1UQR49zKNb8ANIOyVyFTD4s-Rgbil6dEMcoT2qkCPQMwTOueTc5wRKW5O6MrGkBykne8Jw6VQ48mNRcKhgTRsR8lhjh-SG89m5fun1asSrQjLFoRrEEtImKMy9TQkmrvUAyo6PYcKut58tERUHCg0Ao7knuCDRjafzQylhj8ZhpdgSNMa73GEgYx8oYIXxuCk71xIu0FIFEc2qNik8grA2ZZhXkuGO-GKWL3jK0f8oLwHGHU4r2T9kJXM_FJiXmxioBUXspXdo8KeaFVaLNJa_OfyiEe492-n_NZ7BZ9qu51pcmNGbTL3OOBcxMtWD9-ttvVdsUR3eDmx9iROsD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQAhxFMUCnhggMFtGiexM1YVVXmUhSKxRXZsi0qlLU1Z-e2cnaSPASExxrIv1p11vpPvvg-h6yA2MbMP7iFNfRIYaginQhIeSJoy3tLKveD3n6Pea_DwFr5VUKfshbFllYXvz32689bFSLPQZnM6HDZfPB6HkIww63J9iFo20GYQ-sxmYI3vlTqP2NHS2dnETl-28eQi3OCN5906KYT-dkHtTkUGajM538XKJdTdR3tF9Ijb-QYPUEWPD9HOCqYgfPUXQKzZEUraOLXxMZ4YPBlrAjadYssnj0ucCLALhgxXf-gMQwCLM5shK-IgOfE7ZKkzaaGDccmkAh5hhPVnjhCeHaPX7t2g0yMFpwJJKQ3nBAJAE8so9VLJpTDK8wXVKow0M8p4LRHL0I-Z73PJPMEsfWYkdCswIlIQOqaKnqDqGPZ7inAQRVJrzltMO0b12AuV4L4AdSoFgmsoKBWZpAXguOW9GCXLyjLQf8Ic3LhFKQX9J7SGGotl0xxx468FvLRSsnZ0ErgV_lpaX7Pq4oec2260s_9LvkJbvUH_KXm6f348R9t55Zotgqmj6nz2pS8glJnLS3dUfwDL_erH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+one-step+time+integration+schemes+for+second-order+hyperbolic+differential+equations&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Chawla%2C+M.M.&rft.au=Al-Zanaidi%2C+M.A.&rft.date=2001-02-01&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=33&rft.issue=4&rft.spage=431&rft.epage=443&rft_id=info:doi/10.1016%2FS0895-7177%2800%2900253-3&rft.externalDocID=S0895717700002533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon