The Existence and Construction of (K5∖e)-Designs of Orders 27, 135, 162, and 216
The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a (K27,K5∖e)‐des...
        Saved in:
      
    
          | Published in | Journal of combinatorial designs Vol. 21; no. 7; pp. 280 - 302 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          Blackwell Publishing Ltd
    
        01.07.2013
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1063-8539 1520-6610  | 
| DOI | 10.1002/jcd.21340 | 
Cover
| Abstract | The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a (K27,K5∖e)‐design. I show that |Aut(Γ)| divides 2k3 for some k≥0 and that Sym(3)≰Aut(Γ). I construct (K27,K5∖e)‐designs by prescribing Z6 as an automorphism group, and show that up to isomorphism there are exactly 24 (K27,K5∖e)‐designs with Z6 as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed Z6. Finally, the existence of (K5∖e)‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864. | 
    
|---|---|
| AbstractList | The problem of the existence of a decomposition of the complete graph K n into disjoint copies of K 5 e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let [Gamma] be a ( K 27 , K 5 e )-design. I show that | A u t ( [Gamma] ) | divides 2k3 for some k ≥ 0 and that S y m ( 3 ) ≤ A u t ( [Gamma] ). I construct ( K 27 , K 5 e )-designs by prescribing Z 6 as an automorphism group, and show that up to isomorphism there are exactly 24 ( K 27 , K 5 e )-designs with Z 6 as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed Z 6. Finally, the existence of ( K 5 e )-designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851-864. [PUBLICATION ABSTRACT] The problem of the existence of a decomposition of the complete graph into disjoint copies of has been solved for all admissible orders n , except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a ‐design. I show that divides 2 k 3 for some and that . I construct ‐designs by prescribing as an automorphism group, and show that up to isomorphism there are exactly 24 ‐designs with as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed . Finally, the existence of ‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864. The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a (K27,K5∖e)‐design. I show that |Aut(Γ)| divides 2k3 for some k≥0 and that Sym(3)≰Aut(Γ). I construct (K27,K5∖e)‐designs by prescribing Z6 as an automorphism group, and show that up to isomorphism there are exactly 24 (K27,K5∖e)‐designs with Z6 as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed Z6. Finally, the existence of (K5∖e)‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864.  | 
    
| Author | Kolotoğlu, Emre | 
    
| Author_xml | – sequence: 1 givenname: Emre surname: Kolotolu fullname: Kolotolu, Emre  | 
    
| BookMark | eNp1kEtOwzAQhi0EEqWw4AaR2FCJtGNP7MRL1PJsRSUEArGxnMSBlJKAnYr2BpyAA3ISElpYINjMjEb_N49_i6wXZWEI2aXQpQCsN0nSLqMYwBppUc7AF4LCel2DQD_iKDfJlnMTAJASRYtcXj0Y72ieu8oUifF0kXr9snCVnSVVXhZemXn7Q_7x9m46_sC4_L5wTW9sU2Odx8IDjyKvg2AHXzCjYptsZHrqzM4qt8n18dFV_9QfjU_O-ocjP0Hk4KcMAx0DaBAsDjCWHCSXlMUo6ps5CJGC0aGOOQ9EyDKDNMmEzKjEEClG2CZ7y7nPtnyZGVepSTmzRb1SUWQhjQJea9ukt1QltnTOmkwleaWb3yqr86mioBrjVG2c-jKuJjq_iGebP2m7-FO7mv6aT83if6E67w--CX9JNJbPfwhtH5UIMeTq5uJEBUMpBlF0q-7wE5MMiA8 | 
    
| CODEN | JDESEU | 
    
| CitedBy_id | crossref_primary_10_1002_jcd_21405 crossref_primary_10_1002_jcd_21428  | 
    
| Cites_doi | 10.1017/CBO9780511549533 10.1137/S0097539792229507 10.1002/jcd.20170 10.1002/jcd.20226 10.1137/060660084  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.  | 
    
| Copyright_xml | – notice: 2012 Wiley Periodicals, Inc. – notice: Copyright © 2013 Wiley Periodicals, Inc.  | 
    
| DBID | BSCLL AAYXX CITATION  | 
    
| DOI | 10.1002/jcd.21340 | 
    
| DatabaseName | Istex CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1520-6610 | 
    
| EndPage | 302 | 
    
| ExternalDocumentID | 2945518751 10_1002_jcd_21340 JCD21340 ark_67375_WNG_4K96D88X_Z  | 
    
| Genre | article | 
    
| GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1OB 1OC 1ZS 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5VS 6TJ 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADIZJ ADMGS ADNMO ADOZA ADXAS ADXHL AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BNHUX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD FEDTE FSPIC G-S GODZA H.T H.X HF~ HGLYW HVGLF HZ~ H~9 LATKE LAW LC2 LC3 LEEKS LH4 LP6 LP7 LW6 LYRES M6L MEWTI MK4 MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 UPT V2E VH1 W99 WH7 WOHZO WQJ WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~WT AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c3350-d234ab00a062b43b95095912b366615066d0ea7ab554672fe31cf69f193731383 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1063-8539 | 
    
| IngestDate | Fri Jul 25 12:19:52 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Wed Oct 01 02:12:57 EDT 2025 Wed Aug 20 07:26:23 EDT 2025 Sun Sep 21 06:18:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3350-d234ab00a062b43b95095912b366615066d0ea7ab554672fe31cf69f193731383 | 
    
| Notes | ArticleID:JCD21340 ark:/67375/WNG-4K96D88X-Z istex:54D5917010032FB627C4698FB8C3A179E4E530C3 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14  | 
    
| PQID | 1327184519 | 
    
| PQPubID | 1006355 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_journals_1327184519 crossref_citationtrail_10_1002_jcd_21340 crossref_primary_10_1002_jcd_21340 wiley_primary_10_1002_jcd_21340_JCD21340 istex_primary_ark_67375_WNG_4K96D88X_Z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-07 July 2013 2013-07-00 20130701  | 
    
| PublicationDateYYYYMMDD | 2013-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken | 
    
| PublicationTitle | Journal of combinatorial designs | 
    
| PublicationTitleAlternate | J. Combin. Designs | 
    
| PublicationYear | 2013 | 
    
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc  | 
    
| References | G. Ge and A. C. H. Ling, On the existence of (K5∖e)-designs with application to optical networks, SIAM J Discrete Math 21(4) (2007), 851-864. Q. Li and Y. Chang, A few more (Kv,K5−e)-designs, Bull Inst Combin Appl 45 (2005) 11-16. S. G. Hartke, P. R. J. Östergård, D. Bryant, and S. I. El-Zanati, The nonexistence of a (K6−e)-decomposition of the complete graph K29, J Combin Des 18 (2010), 94-104. D. Dor and M. Tarsi, Graph decomposition is NP-complete: A proof of Holyer's conjecture, SIAM J Comput 26 (1997), 1166-1187. P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J Combin Des 16 (2008), 373-410. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, UK, 1999. J. C. Bermond, C. Huang, A. Rosa, and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphswith five vertices, Ars Combin 10 (1980), 211-254. 2007 1996 2007; 21 2010; 18 1997; 26 2005; 45 2008; 16 1980; 10 1999 e_1_2_7_5_1 e_1_2_7_3_1 Hartke S. G. (e_1_2_7_9_1) 2010; 18 Bryant D. (e_1_2_7_6_1) 2007 e_1_2_7_8_1 Abel R. J. R. (e_1_2_7_2_1) 2007 e_1_2_7_7_1 Heinrich K. (e_1_2_7_10_1) 1996 Li Q. (e_1_2_7_11_1) 2005; 45 Bermond J. C. (e_1_2_7_4_1) 1980; 10  | 
    
| References_xml | – reference: Q. Li and Y. Chang, A few more (Kv,K5−e)-designs, Bull Inst Combin Appl 45 (2005) 11-16. – reference: G. Ge and A. C. H. Ling, On the existence of (K5∖e)-designs with application to optical networks, SIAM J Discrete Math 21(4) (2007), 851-864. – reference: S. G. Hartke, P. R. J. Östergård, D. Bryant, and S. I. El-Zanati, The nonexistence of a (K6−e)-decomposition of the complete graph K29, J Combin Des 18 (2010), 94-104. – reference: P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J Combin Des 16 (2008), 373-410. – reference: J. C. Bermond, C. Huang, A. Rosa, and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphswith five vertices, Ars Combin 10 (1980), 211-254. – reference: D. Dor and M. Tarsi, Graph decomposition is NP-complete: A proof of Holyer's conjecture, SIAM J Comput 26 (1997), 1166-1187. – reference: T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, UK, 1999. – volume: 45 start-page: 11 year: 2005 end-page: 16 article-title: A few more ‐designs publication-title: Bull Inst Combin Appl – start-page: 160 year: 2007 end-page: 193 – volume: 10 start-page: 211 year: 1980 end-page: 254 article-title: Decomposition of complete graphs into isomorphic subgraphswith five vertices publication-title: Ars Combin – volume: 26 start-page: 1166 year: 1997 end-page: 1187 article-title: Graph decomposition is NP‐complete: A proof of Holyer's conjecture publication-title: SIAM J Comput – start-page: 361 year: 1996 end-page: 366 – start-page: 477 year: 2007 end-page: 486 – volume: 21 start-page: 851 issue: 4 year: 2007 end-page: 864 article-title: On the existence of ‐designs with application to optical networks publication-title: SIAM J Discrete Math – volume: 18 start-page: 94 year: 2010 end-page: 104 article-title: The nonexistence of a ‐decomposition of the complete graph publication-title: J Combin Des – volume: 16 start-page: 373 year: 2008 end-page: 410 article-title: A survey on the existence of ‐designs publication-title: J Combin Des – year: 1999 – start-page: 160 volume-title: Handbook of Combinatorial Designs year: 2007 ident: e_1_2_7_2_1 – ident: e_1_2_7_5_1 doi: 10.1017/CBO9780511549533 – ident: e_1_2_7_7_1 doi: 10.1137/S0097539792229507 – start-page: 361 volume-title: The CRC Handbook of Combinatorial Designs year: 1996 ident: e_1_2_7_10_1 – ident: e_1_2_7_3_1 doi: 10.1002/jcd.20170 – volume: 18 start-page: 94 year: 2010 ident: e_1_2_7_9_1 article-title: The nonexistence of a ‐decomposition of the complete graph K 29 publication-title: J Combin Des doi: 10.1002/jcd.20226 – ident: e_1_2_7_8_1 doi: 10.1137/060660084 – volume: 45 start-page: 11 year: 2005 ident: e_1_2_7_11_1 article-title: A few more ‐designs publication-title: Bull Inst Combin Appl – volume: 10 start-page: 211 year: 1980 ident: e_1_2_7_4_1 article-title: Decomposition of complete graphs into isomorphic subgraphswith five vertices publication-title: Ars Combin – start-page: 477 volume-title: Handbook of Combinatorial Designs year: 2007 ident: e_1_2_7_6_1  | 
    
| SSID | ssj0009936 | 
    
| Score | 1.9685143 | 
    
| Snippet | The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for... The problem of the existence of a decomposition of the complete graph into disjoint copies of has been solved for all admissible orders n , except for 27, 36,... The problem of the existence of a decomposition of the complete graph K n into disjoint copies of K 5 e has been solved for all admissible orders n, except for...  | 
    
| SourceID | proquest crossref wiley istex  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 280 | 
    
| SubjectTerms | (K5∖e)-design 05C51 graph decomposition isomorph rejection 2010 Mathematics Subject Classifications: 05B30 isomorph rejection 2010 Mathematics Subject Classifications: 05B30, 05C51 Studies  | 
    
| Title | The Existence and Construction of (K5∖e)-Designs of Orders 27, 135, 162, and 216 | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-4K96D88X-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21340 https://www.proquest.com/docview/1327184519  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1520-6610 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009936 issn: 1063-8539 databaseCode: ABDBF dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1520-6610 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009936 issn: 1063-8539 databaseCode: AMVHM dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1063-8539 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1520-6610 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009936 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSx0xEA-iF3uoH7X0-VGClKLgPjeTTbJLT8XnB0otFMVHKYQkmz3U8hRXQTx57LEn_0D_kk6yb1ctFkovy7JM2GxmZn8zYfIbQt45wSx4A4mvFE8y5yAx1qSJQXDxUIiS2cj2eSj3jrP9oRhOkA_tWZiGH6LbcAueEf_XwcGNrTcfSEO_u7If6MhCvs64jOnUlwfqKMTdeLIIIThBSCpaVqEUNruRT7BoKizr9ZNA83G4GvFmZ4Z8a2falJmc9q8ubd_d_EHi-J-fMktejuNQ-rExnDky4Ufz5MWnjsS1fkWO0ITo9nWYMFoGNaOShvaeLeEsPavo2oG4_3nn1-9vfw1iKUgdnn4OdJ41BbVBGRd4kbARhwOTC-R4Z_toay8ZN2FIHOciTUrgmUHfNKkEm3FbiLBzyMByTHwCPaEsU2-UsaHcTUHlOXOVLCoMDBVnmP--JpOjs5F_Q6gQyuTCWJdXRSYhyw2A8sJ7V5jKM9Uja606tBszlIdGGT90w60MGhdKx4XqkdVO9Lyh5XhO6H3UaSdhLk5DHZsS-uRwV2cHhRzk-VB_7ZHlVul67MK1xjQdcTuw7-C8ovb-_ia9vzWIN4v_LrpEpiG21gilv8tkErXnVzDAubRvoyX_BpaN8TA | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5K-6A--Fu8WnURkQrNNZnN7ibgi_Raz157glzxKMiyu9k82HIVr0LxyUcfffIP7F_i7OaSWlEQX0IIs2SzM5NvZpn9BuCpE5lFbzDxteJJ7hwmxpo0MQQuHktRZTayfY7l8CDfnYrpErxoz8I0_BDdhlvwjPi_Dg4eNqQ3L1hDP7iqH_jIKGFfySXlKSEkentBHkXIG88WEQgnBEplyyuU4mY39BIarYSFPbsUav4asEbE2bkB79u5NoUmR_3Pp7bvvvxG4_i_H3MTri9CUfaysZ1bsORnt-HafsfjOr8DE7Iitn0WZkzGwcysYqHDZ8s5y05qtj4S599--OfnX78PYjXIPDx9Exg95wzVBsu4oIvEjTgcM3kXDna2J1vDZNGHIXGcizSpkOeG3NOkEm3ObSnC5mGGllPuExgKZZV6o4wNFW8Ka88zV8uypthQ8YxS4HuwPDuZ-fvAhFCmEMa6oi5ziXlhEJUX3rvS1D5TPVhv9aHdgqQ89Mo41g29MmpaKB0XqgdPOtGPDTPHn4SeRaV2EubTUShlU0K_G7_S-aiUg6KY6sMerLVa1wsvnmvK1Am6AwEPzSuq7-9v0rtbg3iz-u-ij-HKcLK_p_dej0cP4CrGThuhEngNlkmT_iHFO6f2UTTrn8qp9VE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KC6IP9TderbqISIXmmsxmswn4UpqetaenSItHQZbdzeahLdfiVSh96qOPPvkH9i_p7OaSWlEQX0IIs2SzM5NvZpn9BuCFFYlBpzFyteRRai1G2ug40gQuDgtRJSawfY6yrd10eyzGc_C6PQvT8EN0G27eM8L_2ju4O67qtSvW0H1b9T0fGSXsC6kocl_QV366Io8i5A1niwiEIwKlouUVinGtG3oNjRb8wp5eCzV_DVgD4gxuw5d2rk2hyUH_24np27PfaBz_92PuwOIsFGXrje3chTk3uQe33nc8rtP7sENWxDZP_YzJOJieVMx3-Gw5Z9lRzVaG4uL7T_fq4vxHGapBpv7pB8_oOWUoV1nCBV0yXA3DMckewO5gc2djK5r1YYgs5yKOKuSpJvfUcYYm5aYQfvMwQcMp9_EMhVkVOy218RVvEmvHE1tnRU2xoeQJpcAPYX5yNHGPgAkhdS60sXldpBmmuUaUTjhnC127RPZgpdWHsjOSct8r41A19MqoaKFUWKgePO9Ejxtmjj8JvQxK7ST01wNfyiaF-jx6o9JhkZV5PlZ7PVhuta5mXjxVlKkTdHsCHppXUN_f36S2N8pws_Tvos_gxsdyoN69HQ0fw00MjTZ8IfAyzJMi3RMKd07M02DVl3-h9NU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Existence+and+Construction+of+%28+K+5+%E2%88%96+e+%29%E2%80%90Designs+of+Orders+27%2C+135%2C+162%2C+and+216&rft.jtitle=Journal+of+combinatorial+designs&rft.au=Koloto%C4%9Flu%2C+Emre&rft.date=2013-07-01&rft.issn=1063-8539&rft.eissn=1520-6610&rft.volume=21&rft.issue=7&rft.spage=280&rft.epage=302&rft_id=info:doi/10.1002%2Fjcd.21340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcd_21340 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8539&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8539&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8539&client=summon |