The Existence and Construction of (K5∖e)-Designs of Orders 27, 135, 162, and 216

The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a (K27,K5∖e)‐des...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial designs Vol. 21; no. 7; pp. 280 - 302
Main Author Kolotolu, Emre
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.07.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1063-8539
1520-6610
DOI10.1002/jcd.21340

Cover

Abstract The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a (K27,K5∖e)‐design. I show that |Aut(Γ)| divides 2k3 for some k≥0 and that Sym(3)≰Aut(Γ). I construct (K27,K5∖e)‐designs by prescribing Z6 as an automorphism group, and show that up to isomorphism there are exactly 24 (K27,K5∖e)‐designs with Z6 as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed Z6. Finally, the existence of (K5∖e)‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864.
AbstractList The problem of the existence of a decomposition of the complete graph K n into disjoint copies of K 5 e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let [Gamma] be a ( K 27 , K 5 e )-design. I show that | A u t ( [Gamma] ) | divides 2k3 for some k ≥ 0 and that S y m ( 3 ) ≤ A u t ( [Gamma] ). I construct ( K 27 , K 5 e )-designs by prescribing Z 6 as an automorphism group, and show that up to isomorphism there are exactly 24 ( K 27 , K 5 e )-designs with Z 6 as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed Z 6. Finally, the existence of ( K 5 e )-designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851-864. [PUBLICATION ABSTRACT]
The problem of the existence of a decomposition of the complete graph into disjoint copies of has been solved for all admissible orders n , except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a ‐design. I show that divides 2 k 3 for some and that . I construct ‐designs by prescribing as an automorphism group, and show that up to isomorphism there are exactly 24 ‐designs with as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed . Finally, the existence of ‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864.
The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a (K27,K5∖e)‐design. I show that |Aut(Γ)| divides 2k3 for some k≥0 and that Sym(3)≰Aut(Γ). I construct (K27,K5∖e)‐designs by prescribing Z6 as an automorphism group, and show that up to isomorphism there are exactly 24 (K27,K5∖e)‐designs with Z6 as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed Z6. Finally, the existence of (K5∖e)‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864.
Author Kolotoğlu, Emre
Author_xml – sequence: 1
  givenname: Emre
  surname: Kolotolu
  fullname: Kolotolu, Emre
BookMark eNp1kEtOwzAQhi0EEqWw4AaR2FCJtGNP7MRL1PJsRSUEArGxnMSBlJKAnYr2BpyAA3ISElpYINjMjEb_N49_i6wXZWEI2aXQpQCsN0nSLqMYwBppUc7AF4LCel2DQD_iKDfJlnMTAJASRYtcXj0Y72ieu8oUifF0kXr9snCVnSVVXhZemXn7Q_7x9m46_sC4_L5wTW9sU2Odx8IDjyKvg2AHXzCjYptsZHrqzM4qt8n18dFV_9QfjU_O-ocjP0Hk4KcMAx0DaBAsDjCWHCSXlMUo6ps5CJGC0aGOOQ9EyDKDNMmEzKjEEClG2CZ7y7nPtnyZGVepSTmzRb1SUWQhjQJea9ukt1QltnTOmkwleaWb3yqr86mioBrjVG2c-jKuJjq_iGebP2m7-FO7mv6aT83if6E67w--CX9JNJbPfwhtH5UIMeTq5uJEBUMpBlF0q-7wE5MMiA8
CODEN JDESEU
CitedBy_id crossref_primary_10_1002_jcd_21405
crossref_primary_10_1002_jcd_21428
Cites_doi 10.1017/CBO9780511549533
10.1137/S0097539792229507
10.1002/jcd.20170
10.1002/jcd.20226
10.1137/060660084
ContentType Journal Article
Copyright 2012 Wiley Periodicals, Inc.
Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: 2012 Wiley Periodicals, Inc.
– notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/jcd.21340
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1520-6610
EndPage 302
ExternalDocumentID 2945518751
10_1002_jcd_21340
JCD21340
ark_67375_WNG_4K96D88X_Z
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
1ZS
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
6TJ
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BNHUX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
FEDTE
FSPIC
G-S
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
LATKE
LAW
LC2
LC3
LEEKS
LH4
LP6
LP7
LW6
LYRES
M6L
MEWTI
MK4
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
W99
WH7
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3350-d234ab00a062b43b95095912b366615066d0ea7ab554672fe31cf69f193731383
IEDL.DBID DR2
ISSN 1063-8539
IngestDate Fri Jul 25 12:19:52 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Wed Oct 01 02:12:57 EDT 2025
Wed Aug 20 07:26:23 EDT 2025
Sun Sep 21 06:18:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3350-d234ab00a062b43b95095912b366615066d0ea7ab554672fe31cf69f193731383
Notes ArticleID:JCD21340
ark:/67375/WNG-4K96D88X-Z
istex:54D5917010032FB627C4698FB8C3A179E4E530C3
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 1327184519
PQPubID 1006355
PageCount 23
ParticipantIDs proquest_journals_1327184519
crossref_citationtrail_10_1002_jcd_21340
crossref_primary_10_1002_jcd_21340
wiley_primary_10_1002_jcd_21340_JCD21340
istex_primary_ark_67375_WNG_4K96D88X_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07
July 2013
2013-07-00
20130701
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of combinatorial designs
PublicationTitleAlternate J. Combin. Designs
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References G. Ge and A. C. H. Ling, On the existence of (K5∖e)-designs with application to optical networks, SIAM J Discrete Math 21(4) (2007), 851-864.
Q. Li and Y. Chang, A few more (Kv,K5−e)-designs, Bull Inst Combin Appl 45 (2005) 11-16.
S. G. Hartke, P. R. J. Östergård, D. Bryant, and S. I. El-Zanati, The nonexistence of a (K6−e)-decomposition of the complete graph K29, J Combin Des 18 (2010), 94-104.
D. Dor and M. Tarsi, Graph decomposition is NP-complete: A proof of Holyer's conjecture, SIAM J Comput 26 (1997), 1166-1187.
P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J Combin Des 16 (2008), 373-410.
T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, UK, 1999.
J. C. Bermond, C. Huang, A. Rosa, and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphswith five vertices, Ars Combin 10 (1980), 211-254.
2007
1996
2007; 21
2010; 18
1997; 26
2005; 45
2008; 16
1980; 10
1999
e_1_2_7_5_1
e_1_2_7_3_1
Hartke S. G. (e_1_2_7_9_1) 2010; 18
Bryant D. (e_1_2_7_6_1) 2007
e_1_2_7_8_1
Abel R. J. R. (e_1_2_7_2_1) 2007
e_1_2_7_7_1
Heinrich K. (e_1_2_7_10_1) 1996
Li Q. (e_1_2_7_11_1) 2005; 45
Bermond J. C. (e_1_2_7_4_1) 1980; 10
References_xml – reference: Q. Li and Y. Chang, A few more (Kv,K5−e)-designs, Bull Inst Combin Appl 45 (2005) 11-16.
– reference: G. Ge and A. C. H. Ling, On the existence of (K5∖e)-designs with application to optical networks, SIAM J Discrete Math 21(4) (2007), 851-864.
– reference: S. G. Hartke, P. R. J. Östergård, D. Bryant, and S. I. El-Zanati, The nonexistence of a (K6−e)-decomposition of the complete graph K29, J Combin Des 18 (2010), 94-104.
– reference: P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J Combin Des 16 (2008), 373-410.
– reference: J. C. Bermond, C. Huang, A. Rosa, and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphswith five vertices, Ars Combin 10 (1980), 211-254.
– reference: D. Dor and M. Tarsi, Graph decomposition is NP-complete: A proof of Holyer's conjecture, SIAM J Comput 26 (1997), 1166-1187.
– reference: T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, UK, 1999.
– volume: 45
  start-page: 11
  year: 2005
  end-page: 16
  article-title: A few more ‐designs
  publication-title: Bull Inst Combin Appl
– start-page: 160
  year: 2007
  end-page: 193
– volume: 10
  start-page: 211
  year: 1980
  end-page: 254
  article-title: Decomposition of complete graphs into isomorphic subgraphswith five vertices
  publication-title: Ars Combin
– volume: 26
  start-page: 1166
  year: 1997
  end-page: 1187
  article-title: Graph decomposition is NP‐complete: A proof of Holyer's conjecture
  publication-title: SIAM J Comput
– start-page: 361
  year: 1996
  end-page: 366
– start-page: 477
  year: 2007
  end-page: 486
– volume: 21
  start-page: 851
  issue: 4
  year: 2007
  end-page: 864
  article-title: On the existence of ‐designs with application to optical networks
  publication-title: SIAM J Discrete Math
– volume: 18
  start-page: 94
  year: 2010
  end-page: 104
  article-title: The nonexistence of a ‐decomposition of the complete graph
  publication-title: J Combin Des
– volume: 16
  start-page: 373
  year: 2008
  end-page: 410
  article-title: A survey on the existence of ‐designs
  publication-title: J Combin Des
– year: 1999
– start-page: 160
  volume-title: Handbook of Combinatorial Designs
  year: 2007
  ident: e_1_2_7_2_1
– ident: e_1_2_7_5_1
  doi: 10.1017/CBO9780511549533
– ident: e_1_2_7_7_1
  doi: 10.1137/S0097539792229507
– start-page: 361
  volume-title: The CRC Handbook of Combinatorial Designs
  year: 1996
  ident: e_1_2_7_10_1
– ident: e_1_2_7_3_1
  doi: 10.1002/jcd.20170
– volume: 18
  start-page: 94
  year: 2010
  ident: e_1_2_7_9_1
  article-title: The nonexistence of a ‐decomposition of the complete graph K 29
  publication-title: J Combin Des
  doi: 10.1002/jcd.20226
– ident: e_1_2_7_8_1
  doi: 10.1137/060660084
– volume: 45
  start-page: 11
  year: 2005
  ident: e_1_2_7_11_1
  article-title: A few more ‐designs
  publication-title: Bull Inst Combin Appl
– volume: 10
  start-page: 211
  year: 1980
  ident: e_1_2_7_4_1
  article-title: Decomposition of complete graphs into isomorphic subgraphswith five vertices
  publication-title: Ars Combin
– start-page: 477
  volume-title: Handbook of Combinatorial Designs
  year: 2007
  ident: e_1_2_7_6_1
SSID ssj0009936
Score 1.9685143
Snippet The problem of the existence of a decomposition of the complete graph Kn into disjoint copies of K5∖e has been solved for all admissible orders n, except for...
The problem of the existence of a decomposition of the complete graph into disjoint copies of has been solved for all admissible orders n , except for 27, 36,...
The problem of the existence of a decomposition of the complete graph K n into disjoint copies of K 5 e has been solved for all admissible orders n, except for...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms (K5∖e)-design
05C51
graph decomposition
isomorph rejection 2010 Mathematics Subject Classifications: 05B30
isomorph rejection 2010 Mathematics Subject Classifications: 05B30, 05C51
Studies
Title The Existence and Construction of (K5∖e)-Designs of Orders 27, 135, 162, and 216
URI https://api.istex.fr/ark:/67375/WNG-4K96D88X-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21340
https://www.proquest.com/docview/1327184519
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1520-6610
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009936
  issn: 1063-8539
  databaseCode: ABDBF
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1520-6610
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009936
  issn: 1063-8539
  databaseCode: AMVHM
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1063-8539
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1520-6610
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSx0xEA-iF3uoH7X0-VGClKLgPjeTTbJLT8XnB0otFMVHKYQkmz3U8hRXQTx57LEn_0D_kk6yb1ctFkovy7JM2GxmZn8zYfIbQt45wSx4A4mvFE8y5yAx1qSJQXDxUIiS2cj2eSj3jrP9oRhOkA_tWZiGH6LbcAueEf_XwcGNrTcfSEO_u7If6MhCvs64jOnUlwfqKMTdeLIIIThBSCpaVqEUNruRT7BoKizr9ZNA83G4GvFmZ4Z8a2falJmc9q8ubd_d_EHi-J-fMktejuNQ-rExnDky4Ufz5MWnjsS1fkWO0ITo9nWYMFoGNaOShvaeLeEsPavo2oG4_3nn1-9vfw1iKUgdnn4OdJ41BbVBGRd4kbARhwOTC-R4Z_toay8ZN2FIHOciTUrgmUHfNKkEm3FbiLBzyMByTHwCPaEsU2-UsaHcTUHlOXOVLCoMDBVnmP--JpOjs5F_Q6gQyuTCWJdXRSYhyw2A8sJ7V5jKM9Uja606tBszlIdGGT90w60MGhdKx4XqkdVO9Lyh5XhO6H3UaSdhLk5DHZsS-uRwV2cHhRzk-VB_7ZHlVul67MK1xjQdcTuw7-C8ovb-_ia9vzWIN4v_LrpEpiG21gilv8tkErXnVzDAubRvoyX_BpaN8TA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5K-6A--Fu8WnURkQrNNZnN7ibgi_Raz157glzxKMiyu9k82HIVr0LxyUcfffIP7F_i7OaSWlEQX0IIs2SzM5NvZpn9BuCpE5lFbzDxteJJ7hwmxpo0MQQuHktRZTayfY7l8CDfnYrpErxoz8I0_BDdhlvwjPi_Dg4eNqQ3L1hDP7iqH_jIKGFfySXlKSEkentBHkXIG88WEQgnBEplyyuU4mY39BIarYSFPbsUav4asEbE2bkB79u5NoUmR_3Pp7bvvvxG4_i_H3MTri9CUfaysZ1bsORnt-HafsfjOr8DE7Iitn0WZkzGwcysYqHDZ8s5y05qtj4S599--OfnX78PYjXIPDx9Exg95wzVBsu4oIvEjTgcM3kXDna2J1vDZNGHIXGcizSpkOeG3NOkEm3ObSnC5mGGllPuExgKZZV6o4wNFW8Ka88zV8uypthQ8YxS4HuwPDuZ-fvAhFCmEMa6oi5ziXlhEJUX3rvS1D5TPVhv9aHdgqQ89Mo41g29MmpaKB0XqgdPOtGPDTPHn4SeRaV2EubTUShlU0K_G7_S-aiUg6KY6sMerLVa1wsvnmvK1Am6AwEPzSuq7-9v0rtbg3iz-u-ij-HKcLK_p_dej0cP4CrGThuhEngNlkmT_iHFO6f2UTTrn8qp9VE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KC6IP9TderbqISIXmmsxmswn4UpqetaenSItHQZbdzeahLdfiVSh96qOPPvkH9i_p7OaSWlEQX0IIs2SzM5NvZpn9BuCFFYlBpzFyteRRai1G2ug40gQuDgtRJSawfY6yrd10eyzGc_C6PQvT8EN0G27eM8L_2ju4O67qtSvW0H1b9T0fGSXsC6kocl_QV366Io8i5A1niwiEIwKlouUVinGtG3oNjRb8wp5eCzV_DVgD4gxuw5d2rk2hyUH_24np27PfaBz_92PuwOIsFGXrje3chTk3uQe33nc8rtP7sENWxDZP_YzJOJieVMx3-Gw5Z9lRzVaG4uL7T_fq4vxHGapBpv7pB8_oOWUoV1nCBV0yXA3DMckewO5gc2djK5r1YYgs5yKOKuSpJvfUcYYm5aYQfvMwQcMp9_EMhVkVOy218RVvEmvHE1tnRU2xoeQJpcAPYX5yNHGPgAkhdS60sXldpBmmuUaUTjhnC127RPZgpdWHsjOSct8r41A19MqoaKFUWKgePO9Ejxtmjj8JvQxK7ST01wNfyiaF-jx6o9JhkZV5PlZ7PVhuta5mXjxVlKkTdHsCHppXUN_f36S2N8pws_Tvos_gxsdyoN69HQ0fw00MjTZ8IfAyzJMi3RMKd07M02DVl3-h9NU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Existence+and+Construction+of+%28+K+5+%E2%88%96+e+%29%E2%80%90Designs+of+Orders+27%2C+135%2C+162%2C+and+216&rft.jtitle=Journal+of+combinatorial+designs&rft.au=Koloto%C4%9Flu%2C+Emre&rft.date=2013-07-01&rft.issn=1063-8539&rft.eissn=1520-6610&rft.volume=21&rft.issue=7&rft.spage=280&rft.epage=302&rft_id=info:doi/10.1002%2Fjcd.21340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcd_21340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8539&client=summon