Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches

A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analys...

Full description

Saved in:
Bibliographic Details
Published inComputational and mathematical methods in medicine Vol. 2021; pp. 1 - 14
Main Authors Bangyal, Waqas Haider, Qasim, Rukhma, Rehman, Najeeb ur, Ahmad, Zeeshan, Dar, Hafsa, Rukhsar, Laiqa, Aman, Zahra, Ahmad, Jamil
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
Subjects
Online AccessGet full text
ISSN1748-670X
1748-6718
1748-6718
DOI10.1155/2021/5514220

Cover

Abstract A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.
AbstractList A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.
A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K -nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.
A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.
A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, -nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.
Author Qasim, Rukhma
Ahmad, Zeeshan
Bangyal, Waqas Haider
Dar, Hafsa
Aman, Zahra
Ahmad, Jamil
Rehman, Najeeb ur
Rukhsar, Laiqa
AuthorAffiliation 2 Department of Software Engineering, University of Gujrat, Pakistan
3 Professor Computer Science, Hazara University, Manshera, KPK, Pakistan
1 Department of Computer Science, University of Gujrat, Pakistan
AuthorAffiliation_xml – name: 2 Department of Software Engineering, University of Gujrat, Pakistan
– name: 3 Professor Computer Science, Hazara University, Manshera, KPK, Pakistan
– name: 1 Department of Computer Science, University of Gujrat, Pakistan
Author_xml – sequence: 1
  givenname: Waqas Haider
  orcidid: 0000-0002-5797-4821
  surname: Bangyal
  fullname: Bangyal, Waqas Haider
  organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk
– sequence: 2
  givenname: Rukhma
  surname: Qasim
  fullname: Qasim, Rukhma
  organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk
– sequence: 3
  givenname: Najeeb ur
  orcidid: 0000-0003-1662-2069
  surname: Rehman
  fullname: Rehman, Najeeb ur
  organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk
– sequence: 4
  givenname: Zeeshan
  surname: Ahmad
  fullname: Ahmad, Zeeshan
  organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk
– sequence: 5
  givenname: Hafsa
  orcidid: 0000-0003-4538-6632
  surname: Dar
  fullname: Dar, Hafsa
  organization: Department of Software EngineeringUniversity of GujratPakistanuog.edu.pk
– sequence: 6
  givenname: Laiqa
  orcidid: 0000-0003-0996-9419
  surname: Rukhsar
  fullname: Rukhsar, Laiqa
  organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk
– sequence: 7
  givenname: Zahra
  orcidid: 0000-0001-9329-4519
  surname: Aman
  fullname: Aman, Zahra
  organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk
– sequence: 8
  givenname: Jamil
  orcidid: 0000-0001-8058-5480
  surname: Ahmad
  fullname: Ahmad, Jamil
  organization: Professor Computer ScienceHazara UniversityMansheraKPKPakistanhu.edu.pk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34819990$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEUha2KqoHQXdeVl0h0ij1-zMwGCSW8pKhsEsTOMp5rYpjYw3hC4N83YUKASoWVbd3vnHN1vIO2fPCA0A9KflMqxEFKUnogBOVpSr6gbZrxPJEZzbc2d3LVQzsx3hIiaCboN9RjPKdFUZBtNBlCC6Z1weNg8Ym-A_wHFhGP4bHFg0rH6KwzugM8Hlxcng8TWuBJdP4GDwFqPALd-NXrqK6boM0U4i76anUV4fv67KPJyfF4cJaMLk7PB0ejxDAmSEKtNZm0hhdaG56CkELmGZXMgpSMX2ea5FnJSMZKUkgjuJGCgZE2F7K0Zcn6KOl8577WTwtdVapu3Ew3T4oStapHrepR63qW_GHH1_PrGZQGfNvoV03QTr2feDdVN-FB5ZLkvBBLg721QRPu5xBbNXPRQFVpD2EeVSpJKjmhZIX-fJu1CXnpfgn86gDThBgbsJ_tnv6DG9c-f8xyU1f9T7TfiabOl3rhPo74C7nBr5k
CitedBy_id crossref_primary_10_1007_s41870_024_01971_2
crossref_primary_10_3390_app13010283
crossref_primary_10_2196_37658
crossref_primary_10_1155_2022_7733860
crossref_primary_10_1109_ACCESS_2023_3253040
crossref_primary_10_32604_cmc_2023_046963
crossref_primary_10_1177_20552076241284773
crossref_primary_10_1016_j_jjimei_2022_100133
crossref_primary_10_1109_ACCESS_2024_3398582
crossref_primary_10_1016_j_heliyon_2024_e37760
crossref_primary_10_1007_s42979_024_02899_x
crossref_primary_10_1080_10255842_2024_2302225
crossref_primary_10_1007_s11227_023_05179_2
crossref_primary_10_1007_s13278_024_01300_2
crossref_primary_10_1007_s13278_024_01204_1
crossref_primary_10_1155_2022_9047053
crossref_primary_10_1142_S021848852450017X
crossref_primary_10_1155_2022_8918722
crossref_primary_10_1016_j_compag_2023_108454
crossref_primary_10_1016_j_jjimei_2022_100086
crossref_primary_10_4108_eetpht_10_6459
crossref_primary_10_1016_j_cie_2022_108452
crossref_primary_10_1051_itmconf_20235603005
crossref_primary_10_32604_cmc_2023_033753
crossref_primary_10_1016_j_cie_2024_110579
crossref_primary_10_3390_bdcc7010046
crossref_primary_10_1016_j_jobe_2024_111046
crossref_primary_10_32604_cmes_2023_026812
crossref_primary_10_3390_electronics12194125
crossref_primary_10_1177_20552076231193213
crossref_primary_10_1016_j_patter_2022_100659
crossref_primary_10_1142_S0218488524500272
crossref_primary_10_1142_S0218488524500119
crossref_primary_10_1016_j_nlp_2024_100053
crossref_primary_10_3390_fi17030129
crossref_primary_10_1016_j_compbiomed_2025_109880
crossref_primary_10_1142_S021962202250050X
crossref_primary_10_1007_s11760_023_02731_8
crossref_primary_10_32604_csse_2023_027502
crossref_primary_10_3310_UDIR6682
crossref_primary_10_1007_s00521_023_09306_1
crossref_primary_10_32604_iasc_2023_040502
crossref_primary_10_1155_2022_4719266
crossref_primary_10_1371_journal_pone_0315407
crossref_primary_10_1109_ACCESS_2023_3298441
crossref_primary_10_3390_su151813847
crossref_primary_10_1007_s00521_024_10304_0
crossref_primary_10_1109_ACCESS_2024_3522992
crossref_primary_10_1142_S0218488525500035
crossref_primary_10_3390_info13110527
crossref_primary_10_62762_TIS_2024_461943
crossref_primary_10_1007_s11227_024_06216_4
Cites_doi 10.1155/2021/6628889
10.1166/jmihi.2019.2654
10.1016/j.future.2017.09.048
10.1007/11816102_11
10.7763/ijet.2013.v5.548
10.1016/j.neucom.2016.10.086
10.1002/cpe.4783
10.1007/s12559-017-9492-2
10.1016/j.knosys.2020.105949
10.3390/app11167591
10.1016/j.icte.2020.07.003
10.1155/2015/674296
10.1016/j.procs.2018.01.150
10.1109/FUZZ-IEEE.2017.8015577
10.1109/accthpa49271.2020.9213236
10.4018/IJACI.2019070106
10.1007/s41870-017-0080-1
10.1016/b978-0-12-819043-2.00003-4
10.1016/j.knosys.2019.02.008
10.1155/2021/5990999
10.1007/s12204-017-1818-4
10.1037/met0000111
10.14569/IJACSA.2018.090723
10.1109/INMIC50486.2020.9318127
10.1007/978-3-030-73696-5_17
10.7763/ijet.2013.v5.538
10.1109/ICWS.2017.46
10.18653/v1/p16-2096
10.1007/s10660-019-09354-7
10.3390/app9112347
10.18653/v1/p19-1052
10.1007/s40558-015-0047-7
10.1109/ICCCI.2017.8117734
10.1016/j.osnem.2021.100123
10.1109/ICISC.2017.8068607
10.1109/access.2020.3022867
10.1016/j.ijinfomgt.2016.06.003
10.1007/s00521-019-04248-z
10.1016/j.apm.2019.02.032
10.13140/RG.2.2.26509.56805
10.1504/IJBIC.2020.105861
10.1016/j.eij.2021.03.001
10.1007/978-3-030-30490-4_9
10.1109/ICCWAMTIP.2018.8632592
10.1109/MS.2019.2919573
10.1177/0047287517729757
10.1016/j.procs.2018.05.109
10.1016/j.future.2017.10.028
10.1080/0952813X.2011.639091
10.3390/ijerph15112537
10.1109/CSPC.2017.8305851
10.1109/3ICT.2018.8855772
10.18653/v1/w17-1101
10.1109/MIS.2016.31
10.3390/app11178190
10.32604/iasc.2022.015810
10.1109/ACCESS.2017.2776930
ContentType Journal Article
Copyright Copyright © 2021 Waqas Haider Bangyal et al.
Copyright © 2021 Waqas Haider Bangyal et al. 2021
Copyright_xml – notice: Copyright © 2021 Waqas Haider Bangyal et al.
– notice: Copyright © 2021 Waqas Haider Bangyal et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/5514220
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Korobeinikov, Andrei
Editor_xml – sequence: 1
  givenname: Andrei
  surname: Korobeinikov
  fullname: Korobeinikov, Andrei
EndPage 14
ExternalDocumentID 10.1155/2021/5514220
PMC8608495
34819990
10_1155_2021_5514220
Genre Journal Article
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
PGMZT
3V.
7X7
88E
8FE
8FG
8FI
8FJ
ABJCF
ABUWG
AFKRA
AWYRJ
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
FYUFA
HCIFZ
HF~
HMCUK
IPNFZ
L6V
M1P
M7S
NPM
O5S
PQQKQ
PROAC
PSQYO
PTHSS
RIG
UKHRP
7X8
5PM
ADTOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c3350-1ffc76fc49aac42e565687163fe6634b7a087d3073d096c54c653ec6f856dfdd3
IEDL.DBID M48
ISSN 1748-670X
1748-6718
IngestDate Sun Oct 26 03:45:53 EDT 2025
Tue Sep 30 16:54:54 EDT 2025
Wed Oct 01 13:59:06 EDT 2025
Wed Feb 19 02:10:53 EST 2025
Wed Oct 01 00:53:31 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Sun Jun 02 19:14:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Waqas Haider Bangyal et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3350-1ffc76fc49aac42e565687163fe6634b7a087d3073d096c54c653ec6f856dfdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Andrei Korobeinikov
ORCID 0000-0003-1662-2069
0000-0001-9329-4519
0000-0001-8058-5480
0000-0003-4538-6632
0000-0003-0996-9419
0000-0002-5797-4821
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/2021/5514220
PMID 34819990
PQID 2602640105
PQPubID 23479
PageCount 14
ParticipantIDs unpaywall_primary_10_1155_2021_5514220
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608495
proquest_miscellaneous_2602640105
pubmed_primary_34819990
crossref_primary_10_1155_2021_5514220
crossref_citationtrail_10_1155_2021_5514220
hindawi_primary_10_1155_2021_5514220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2021
Publisher Hindawi
Publisher_xml – name: Hindawi
References 44
45
46
47
48
W. S. Paka (56) 2021
T. Raha (55) 2021
51
53
10
54
11
12
13
14
15
59
16
A. Wani (49) 2021
17
T. Felber (58) 2021
18
19
B. Koloski (52) 2021
1
2
3
4
5
6
7
8
9
60
61
63
20
64
21
65
22
23
24
26
27
28
29
K. Chatsiou (50) 2020
30
31
32
33
34
35
36
37
B. G. Priya (62) 2019; 7
38
39
A. Krishna (25) 2019
A. Yahya (57) 2020; 18
40
41
42
43
References_xml – volume-title: Sentiment Analysis of Restaurant Reviews Using Machine Learning Techniques, vol. 545
  year: 2019
  ident: 25
– ident: 4
  doi: 10.1155/2021/6628889
– ident: 6
  doi: 10.1166/jmihi.2019.2654
– ident: 32
  doi: 10.1016/j.future.2017.09.048
– ident: 8
  doi: 10.1007/11816102_11
– ident: 10
  doi: 10.7763/ijet.2013.v5.548
– ident: 34
  doi: 10.1016/j.neucom.2016.10.086
– ident: 48
  doi: 10.1002/cpe.4783
– ident: 27
  doi: 10.1007/s12559-017-9492-2
– ident: 43
  doi: 10.1016/j.knosys.2020.105949
– year: 2021
  ident: 55
  article-title: Identifying COVID-19 fake news in social media
– ident: 12
  doi: 10.3390/app11167591
– year: 2020
  ident: 50
  article-title: Text classification of manifestos and COVID-19 press briefings using BERT and convolutional neural networks
– ident: 42
  doi: 10.1016/j.icte.2020.07.003
– year: 2021
  ident: 58
  article-title: Constraint 2021: Machine Learning Models for COVID-19 Fake News Detection Shared Task
– ident: 19
  doi: 10.1155/2015/674296
– year: 2021
  ident: 49
  article-title: Evaluating deep learning approaches for Covid19 fake news detection
– ident: 64
  doi: 10.1016/j.procs.2018.01.150
– ident: 29
  doi: 10.1109/FUZZ-IEEE.2017.8015577
– ident: 40
  doi: 10.1109/accthpa49271.2020.9213236
– ident: 36
  doi: 10.4018/IJACI.2019070106
– ident: 59
  doi: 10.1007/s41870-017-0080-1
– ident: 3
  doi: 10.1016/b978-0-12-819043-2.00003-4
– ident: 37
  doi: 10.1016/j.knosys.2019.02.008
– ident: 11
  doi: 10.1155/2021/5990999
– year: 2021
  ident: 56
  article-title: Cross-SEAN: a cross-stitch semi-supervised neural attention model for COVID-19 fake news detection
– volume: 7
  start-page: 859
  issue: 4
  year: 2019
  ident: 62
  article-title: Emoji based sentiment analysis using KNN
  publication-title: International Journal of Scientific Research and Reviews
– ident: 33
  doi: 10.1007/s12204-017-1818-4
– ident: 18
  doi: 10.1037/met0000111
– ident: 5
  doi: 10.14569/IJACSA.2018.090723
– ident: 9
  doi: 10.1109/INMIC50486.2020.9318127
– year: 2021
  ident: 52
  article-title: Identification of COVID-19 related fake news via neural stacking
  doi: 10.1007/978-3-030-73696-5_17
– ident: 13
  doi: 10.7763/ijet.2013.v5.538
– volume: 18
  issue: 12
  year: 2020
  ident: 57
  article-title: Detection of COVID-19 fake news text data using random forest and decision tree classifiers abstract
  publication-title: International Journal of Computer Science and Information Security (IJCSIS)
– ident: 1
  doi: 10.1109/ICWS.2017.46
– ident: 17
  doi: 10.18653/v1/p16-2096
– ident: 41
  doi: 10.1007/s10660-019-09354-7
– ident: 38
  doi: 10.3390/app9112347
– ident: 47
  doi: 10.18653/v1/p19-1052
– ident: 23
  doi: 10.1007/s40558-015-0047-7
– ident: 60
  doi: 10.1109/ICCCI.2017.8117734
– ident: 54
  doi: 10.1016/j.osnem.2021.100123
– ident: 61
  doi: 10.1109/ICISC.2017.8068607
– ident: 53
  doi: 10.1109/access.2020.3022867
– ident: 24
  doi: 10.1016/j.ijinfomgt.2016.06.003
– ident: 45
  doi: 10.1007/s00521-019-04248-z
– ident: 39
  doi: 10.1016/j.apm.2019.02.032
– ident: 51
  doi: 10.13140/RG.2.2.26509.56805
– ident: 7
  doi: 10.1504/IJBIC.2020.105861
– ident: 35
  doi: 10.1016/j.eij.2021.03.001
– ident: 46
  doi: 10.1007/978-3-030-30490-4_9
– ident: 2
  doi: 10.1109/ICCWAMTIP.2018.8632592
– ident: 44
  doi: 10.1109/MS.2019.2919573
– ident: 21
  doi: 10.1177/0047287517729757
– ident: 65
  doi: 10.1016/j.procs.2018.05.109
– ident: 31
  doi: 10.1016/j.future.2017.10.028
– ident: 26
  doi: 10.1080/0952813X.2011.639091
– ident: 30
  doi: 10.3390/ijerph15112537
– ident: 63
  doi: 10.1109/CSPC.2017.8305851
– ident: 20
  doi: 10.1109/3ICT.2018.8855772
– ident: 16
  doi: 10.18653/v1/w17-1101
– ident: 22
  doi: 10.1109/MIS.2016.31
– ident: 14
  doi: 10.3390/app11178190
– ident: 15
  doi: 10.32604/iasc.2022.015810
– ident: 28
  doi: 10.1109/ACCESS.2017.2776930
SSID ssj0051751
Score 2.526674
Snippet A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Bayes Theorem
Computational Biology
COVID-19
Databases, Factual
Decision Trees
Deep Learning
Disinformation
Humans
Logistic Models
Models, Statistical
Natural Language Processing
Neural Networks, Computer
SARS-CoV-2
Social Media
Social Networking
Support Vector Machine
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA4qeLyIt_UigvoiwT2SbPpYWksVVBArfVuyOVQs22JbxH9vZjct1vtx2cmym0lm5tuZfIPQEQ2MwzgqJHFWlYTahBHBTUikdraPZ5QHtmD7vOatNr3ssI4nSRp8TeE7bwfwPDwDxx5FDpvPCg6VW7etztjgMucBw_LcoyA8CTrj-vZPY6c8z_wjQN7Xp-8Cy6_1kYujvC_fXmW3-8H5NFfQso8aca1U8yqaMfkaWrjyefF11G6YYVFTleOexU35bDBYL3znTC8u-l5CRZAsBXJcv7m_aJCwiouCAdwwpo890eoDrnmWcTPYQO3m-V29RXzDBKLimAUktFYl3CpalVLRyECwBoAotsYFFjRLZCASDbtaO-SiGFWcxUZxKxjXVut4E83lvdxsIxyqjCqmFTVKUOf0s0hHRuiAhpmtOoxTQafjyUyVZxOHphbdtEAVjKUw9amf-go6nkj3SxaNH-SOvF7-EDscKy11uwFSHDI3vdEgjaCjFoWunxW0VSpx8iQ4cuzCYTc6mVLvRACYtqfv5E-PBeO24IFwSLKCTiYL4dcX3Pnfd-yiJbgs_-jsobnhy8jsuxhnmB0UK_wdsaDvyg
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NRRu8sI2N0X3JSLCXyZAP23EfK7oKkAY80Kl7ihzHHogqraAVgr9-vtjNKGMfEm-Jcoli--58P_v8O4AtFhmHcXRM06KjKLMZp1KYmKrS-T5RMBHZmu3zSOwP2OGQD--chfH8EM2CG1pG7a_RwCel9X7emzrniNzjXZzzk8TB9iXBXTzegqXB0Un3uz8JKanIouGv61jOs9_vvb4wLz09Q0B8ff5Q2Pl79uTyrJqom2s1Gt2ZmvrPQc8b5TNSLnZm02JH397je3xcq1_AaohcSder2kt4Yqo1ePY17M2_gkHPTOu8roqMLemrC0PQg5JT5_5JXXsTs5KUF6jI3vG3gx6NO6ROWiA9YyYkkL3-IN3AdG6uXsOg_-V0b5-Gog1UpymPaGytzoTVrKOUZonBgBFBWWqNC25YkalIZiV6ltKhJ82ZFjw1WljJhWtpma5DqxpXZgNIrAumeamZ0ZK5wKNIysTIMmJxYTsOZ7Xh83zIch0YzbGwxiivkQ3nOfZUHnqqDduN9MQzefxBbiuM_j_ENueqkTuLxG0WVZnx7CpPsKoXw8qjbXjjVaX5Eh57diG5eztbUKJGANm-F59U52c167cUkXRotg2fGnX76w--_V_Bd7CCt35d6T20ppcz88FFWtPiYzCln_GvHqI
  priority: 102
  providerName: Unpaywall
Title Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
URI https://dx.doi.org/10.1155/2021/5514220
https://www.ncbi.nlm.nih.gov/pubmed/34819990
https://www.proquest.com/docview/2602640105
https://pubmed.ncbi.nlm.nih.gov/PMC8608495
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/2021/5514220
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1748-6718
  dateEnd: 20230629
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: ABDBF
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 20250531
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: M48
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTcBeEN-Uj8pIgxdkiBPbSR4mVK2UgrSB0IKyp8jxB5uo0m5tNfbfz5ekEYXx8RIpyiVK7ny--8Xn-wHs8MB6jKMZjcpUUe5iQRNpGVXGz32y5DJwdbfPAznO-Mdc5BuwYhttFTi_Etohn1R2Nnn94_TirXf43drhhUD8zt5g5A9DD963fIxKkcRhn3frCcIHSdZsjUyojIN8VQL_y91rwen6MaLi85Orcs_fSyhvLquZujhXk8lP8Wl0G261iSUZNCPhDmzY6i7c2G-Xzu9BNrSLuuyqIlNHRuq7JTjBkUM_O5OaGhOLhlQjUJG9T18_DClLSV1TQIbWzkjbi_UbGbSNyO38PmSjd4d7Y9pyKlAdRSKgzDkdS6d5qpTmocV8DjFT5KzPPXgZqyCJDTq-8eBGC66liKyWLhHSOGOiB7BZTSv7CAjTJdfCaG51wn1eUIYmtIkJOCtd6mFQD16tlFnotuE48l5Mihp4CFGg6otW9T140UnPmkYbf5Dbae3yD7HnK6MV3mFwFURVdrqcFyGSbnEkBu3Bw8aI3ZNwV7LPmP3d8Zp5OwFsxr1-pTo5rptyJzJIPNjswctuIPz1BR__5_c-gW08bf76PIXNxdnSPvN50KLsw7X3OevXA90fv4zzPmxlB58HR5d_6wGA
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NRRu8sI2N0X3JSLCXyZAP23EfK7oKkAY80Kl7ihzHHogqraAVgr9-vtjNKGMfEm-Jcoli--58P_v8O4AtFhmHcXRM06KjKLMZp1KYmKrS-T5RMBHZmu3zSOwP2OGQD--chfH8EM2CG1pG7a_RwCel9X7emzrniNzjXZzzk8TB9iXBXTzegqXB0Un3uz8JKanIouGv61jOs9_vvb4wLz09Q0B8ff5Q2Pl79uTyrJqom2s1Gt2ZmvrPQc8b5TNSLnZm02JH397je3xcq1_AaohcSder2kt4Yqo1ePY17M2_gkHPTOu8roqMLemrC0PQg5JT5_5JXXsTs5KUF6jI3vG3gx6NO6ROWiA9YyYkkL3-IN3AdG6uXsOg_-V0b5-Gog1UpymPaGytzoTVrKOUZonBgBFBWWqNC25YkalIZiV6ltKhJ82ZFjw1WljJhWtpma5DqxpXZgNIrAumeamZ0ZK5wKNIysTIMmJxYTsOZ7Xh83zIch0YzbGwxiivkQ3nOfZUHnqqDduN9MQzefxBbiuM_j_ENueqkTuLxG0WVZnx7CpPsKoXw8qjbXjjVaX5Eh57diG5eztbUKJGANm-F59U52c167cUkXRotg2fGnX76w--_V_Bd7CCt35d6T20ppcz88FFWtPiYzCln_GvHqI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Fake+News+Text+Classification+on+COVID-19+Using+Deep+Learning+Approaches&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Bangyal%2C+Waqas+Haider&rft.au=Qasim%2C+Rukhma&rft.au=Rehman%2C+Najeeb+ur&rft.au=Ahmad%2C+Zeeshan&rft.date=2021&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2021&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1155%2F2021%2F5514220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5514220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon