Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analys...
Saved in:
| Published in | Computational and mathematical methods in medicine Vol. 2021; pp. 1 - 14 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1748-670X 1748-6718 1748-6718 |
| DOI | 10.1155/2021/5514220 |
Cover
| Abstract | A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data. |
|---|---|
| AbstractList | A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data. A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K -nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data. A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K-nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data. A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, -nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data. |
| Author | Qasim, Rukhma Ahmad, Zeeshan Bangyal, Waqas Haider Dar, Hafsa Aman, Zahra Ahmad, Jamil Rehman, Najeeb ur Rukhsar, Laiqa |
| AuthorAffiliation | 2 Department of Software Engineering, University of Gujrat, Pakistan 3 Professor Computer Science, Hazara University, Manshera, KPK, Pakistan 1 Department of Computer Science, University of Gujrat, Pakistan |
| AuthorAffiliation_xml | – name: 2 Department of Software Engineering, University of Gujrat, Pakistan – name: 3 Professor Computer Science, Hazara University, Manshera, KPK, Pakistan – name: 1 Department of Computer Science, University of Gujrat, Pakistan |
| Author_xml | – sequence: 1 givenname: Waqas Haider orcidid: 0000-0002-5797-4821 surname: Bangyal fullname: Bangyal, Waqas Haider organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk – sequence: 2 givenname: Rukhma surname: Qasim fullname: Qasim, Rukhma organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk – sequence: 3 givenname: Najeeb ur orcidid: 0000-0003-1662-2069 surname: Rehman fullname: Rehman, Najeeb ur organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk – sequence: 4 givenname: Zeeshan surname: Ahmad fullname: Ahmad, Zeeshan organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk – sequence: 5 givenname: Hafsa orcidid: 0000-0003-4538-6632 surname: Dar fullname: Dar, Hafsa organization: Department of Software EngineeringUniversity of GujratPakistanuog.edu.pk – sequence: 6 givenname: Laiqa orcidid: 0000-0003-0996-9419 surname: Rukhsar fullname: Rukhsar, Laiqa organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk – sequence: 7 givenname: Zahra orcidid: 0000-0001-9329-4519 surname: Aman fullname: Aman, Zahra organization: Department of Computer ScienceUniversity of GujratPakistanuog.edu.pk – sequence: 8 givenname: Jamil orcidid: 0000-0001-8058-5480 surname: Ahmad fullname: Ahmad, Jamil organization: Professor Computer ScienceHazara UniversityMansheraKPKPakistanhu.edu.pk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34819990$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtPGzEUha2KqoHQXdeVl0h0ij1-zMwGCSW8pKhsEsTOMp5rYpjYw3hC4N83YUKASoWVbd3vnHN1vIO2fPCA0A9KflMqxEFKUnogBOVpSr6gbZrxPJEZzbc2d3LVQzsx3hIiaCboN9RjPKdFUZBtNBlCC6Z1weNg8Ym-A_wHFhGP4bHFg0rH6KwzugM8Hlxcng8TWuBJdP4GDwFqPALd-NXrqK6boM0U4i76anUV4fv67KPJyfF4cJaMLk7PB0ejxDAmSEKtNZm0hhdaG56CkELmGZXMgpSMX2ea5FnJSMZKUkgjuJGCgZE2F7K0Zcn6KOl8577WTwtdVapu3Ew3T4oStapHrepR63qW_GHH1_PrGZQGfNvoV03QTr2feDdVN-FB5ZLkvBBLg721QRPu5xBbNXPRQFVpD2EeVSpJKjmhZIX-fJu1CXnpfgn86gDThBgbsJ_tnv6DG9c-f8xyU1f9T7TfiabOl3rhPo74C7nBr5k |
| CitedBy_id | crossref_primary_10_1007_s41870_024_01971_2 crossref_primary_10_3390_app13010283 crossref_primary_10_2196_37658 crossref_primary_10_1155_2022_7733860 crossref_primary_10_1109_ACCESS_2023_3253040 crossref_primary_10_32604_cmc_2023_046963 crossref_primary_10_1177_20552076241284773 crossref_primary_10_1016_j_jjimei_2022_100133 crossref_primary_10_1109_ACCESS_2024_3398582 crossref_primary_10_1016_j_heliyon_2024_e37760 crossref_primary_10_1007_s42979_024_02899_x crossref_primary_10_1080_10255842_2024_2302225 crossref_primary_10_1007_s11227_023_05179_2 crossref_primary_10_1007_s13278_024_01300_2 crossref_primary_10_1007_s13278_024_01204_1 crossref_primary_10_1155_2022_9047053 crossref_primary_10_1142_S021848852450017X crossref_primary_10_1155_2022_8918722 crossref_primary_10_1016_j_compag_2023_108454 crossref_primary_10_1016_j_jjimei_2022_100086 crossref_primary_10_4108_eetpht_10_6459 crossref_primary_10_1016_j_cie_2022_108452 crossref_primary_10_1051_itmconf_20235603005 crossref_primary_10_32604_cmc_2023_033753 crossref_primary_10_1016_j_cie_2024_110579 crossref_primary_10_3390_bdcc7010046 crossref_primary_10_1016_j_jobe_2024_111046 crossref_primary_10_32604_cmes_2023_026812 crossref_primary_10_3390_electronics12194125 crossref_primary_10_1177_20552076231193213 crossref_primary_10_1016_j_patter_2022_100659 crossref_primary_10_1142_S0218488524500272 crossref_primary_10_1142_S0218488524500119 crossref_primary_10_1016_j_nlp_2024_100053 crossref_primary_10_3390_fi17030129 crossref_primary_10_1016_j_compbiomed_2025_109880 crossref_primary_10_1142_S021962202250050X crossref_primary_10_1007_s11760_023_02731_8 crossref_primary_10_32604_csse_2023_027502 crossref_primary_10_3310_UDIR6682 crossref_primary_10_1007_s00521_023_09306_1 crossref_primary_10_32604_iasc_2023_040502 crossref_primary_10_1155_2022_4719266 crossref_primary_10_1371_journal_pone_0315407 crossref_primary_10_1109_ACCESS_2023_3298441 crossref_primary_10_3390_su151813847 crossref_primary_10_1007_s00521_024_10304_0 crossref_primary_10_1109_ACCESS_2024_3522992 crossref_primary_10_1142_S0218488525500035 crossref_primary_10_3390_info13110527 crossref_primary_10_62762_TIS_2024_461943 crossref_primary_10_1007_s11227_024_06216_4 |
| Cites_doi | 10.1155/2021/6628889 10.1166/jmihi.2019.2654 10.1016/j.future.2017.09.048 10.1007/11816102_11 10.7763/ijet.2013.v5.548 10.1016/j.neucom.2016.10.086 10.1002/cpe.4783 10.1007/s12559-017-9492-2 10.1016/j.knosys.2020.105949 10.3390/app11167591 10.1016/j.icte.2020.07.003 10.1155/2015/674296 10.1016/j.procs.2018.01.150 10.1109/FUZZ-IEEE.2017.8015577 10.1109/accthpa49271.2020.9213236 10.4018/IJACI.2019070106 10.1007/s41870-017-0080-1 10.1016/b978-0-12-819043-2.00003-4 10.1016/j.knosys.2019.02.008 10.1155/2021/5990999 10.1007/s12204-017-1818-4 10.1037/met0000111 10.14569/IJACSA.2018.090723 10.1109/INMIC50486.2020.9318127 10.1007/978-3-030-73696-5_17 10.7763/ijet.2013.v5.538 10.1109/ICWS.2017.46 10.18653/v1/p16-2096 10.1007/s10660-019-09354-7 10.3390/app9112347 10.18653/v1/p19-1052 10.1007/s40558-015-0047-7 10.1109/ICCCI.2017.8117734 10.1016/j.osnem.2021.100123 10.1109/ICISC.2017.8068607 10.1109/access.2020.3022867 10.1016/j.ijinfomgt.2016.06.003 10.1007/s00521-019-04248-z 10.1016/j.apm.2019.02.032 10.13140/RG.2.2.26509.56805 10.1504/IJBIC.2020.105861 10.1016/j.eij.2021.03.001 10.1007/978-3-030-30490-4_9 10.1109/ICCWAMTIP.2018.8632592 10.1109/MS.2019.2919573 10.1177/0047287517729757 10.1016/j.procs.2018.05.109 10.1016/j.future.2017.10.028 10.1080/0952813X.2011.639091 10.3390/ijerph15112537 10.1109/CSPC.2017.8305851 10.1109/3ICT.2018.8855772 10.18653/v1/w17-1101 10.1109/MIS.2016.31 10.3390/app11178190 10.32604/iasc.2022.015810 10.1109/ACCESS.2017.2776930 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Waqas Haider Bangyal et al. Copyright © 2021 Waqas Haider Bangyal et al. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Waqas Haider Bangyal et al. – notice: Copyright © 2021 Waqas Haider Bangyal et al. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/5514220 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1748-6718 |
| Editor | Korobeinikov, Andrei |
| Editor_xml | – sequence: 1 givenname: Andrei surname: Korobeinikov fullname: Korobeinikov, Andrei |
| EndPage | 14 |
| ExternalDocumentID | 10.1155/2021/5514220 PMC8608495 34819990 10_1155_2021_5514220 |
| Genre | Journal Article |
| GroupedDBID | --- 29F 2DF 3YN 4.4 53G 5GY 5VS 6J9 AAFWJ AAJEY ABDBF ACGFO ACIPV ACIWK ADBBV ADRAZ AENEX AFKVX AHMBA AIAGR AJWEG ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CAG CS3 DIK EAD EAP EAS EBC EBD EBS EMK EMOBN EPL EST ESX F5P GROUPED_DOAJ GX1 HYE IAO IEA IHR INH INR ITC J.P J9A KQ8 M48 M4Z ML~ O5R OK1 P2P REM RHU RHW RHX RNS RPM SV3 TFW TUS TWF 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 PGMZT 3V. 7X7 88E 8FE 8FG 8FI 8FJ ABJCF ABUWG AFKRA AWYRJ BENPR BGLVJ BPHCQ BVXVI CCPQU CGR COF CUY CVF ECM EIF EJD FYUFA HCIFZ HF~ HMCUK IPNFZ L6V M1P M7S NPM O5S PQQKQ PROAC PSQYO PTHSS RIG UKHRP 7X8 5PM ADTOC PHGZM PHGZT PJZUB PPXIY PQGLB UNPAY |
| ID | FETCH-LOGICAL-c3350-1ffc76fc49aac42e565687163fe6634b7a087d3073d096c54c653ec6f856dfdd3 |
| IEDL.DBID | M48 |
| ISSN | 1748-670X 1748-6718 |
| IngestDate | Sun Oct 26 03:45:53 EDT 2025 Tue Sep 30 16:54:54 EDT 2025 Wed Oct 01 13:59:06 EDT 2025 Wed Feb 19 02:10:53 EST 2025 Wed Oct 01 00:53:31 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Sun Jun 02 19:14:56 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Waqas Haider Bangyal et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3350-1ffc76fc49aac42e565687163fe6634b7a087d3073d096c54c653ec6f856dfdd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Andrei Korobeinikov |
| ORCID | 0000-0003-1662-2069 0000-0001-9329-4519 0000-0001-8058-5480 0000-0003-4538-6632 0000-0003-0996-9419 0000-0002-5797-4821 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/2021/5514220 |
| PMID | 34819990 |
| PQID | 2602640105 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_5514220 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608495 proquest_miscellaneous_2602640105 pubmed_primary_34819990 crossref_primary_10_1155_2021_5514220 crossref_citationtrail_10_1155_2021_5514220 hindawi_primary_10_1155_2021_5514220 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computational and mathematical methods in medicine |
| PublicationTitleAlternate | Comput Math Methods Med |
| PublicationYear | 2021 |
| Publisher | Hindawi |
| Publisher_xml | – name: Hindawi |
| References | 44 45 46 47 48 W. S. Paka (56) 2021 T. Raha (55) 2021 51 53 10 54 11 12 13 14 15 59 16 A. Wani (49) 2021 17 T. Felber (58) 2021 18 19 B. Koloski (52) 2021 1 2 3 4 5 6 7 8 9 60 61 63 20 64 21 65 22 23 24 26 27 28 29 K. Chatsiou (50) 2020 30 31 32 33 34 35 36 37 B. G. Priya (62) 2019; 7 38 39 A. Krishna (25) 2019 A. Yahya (57) 2020; 18 40 41 42 43 |
| References_xml | – volume-title: Sentiment Analysis of Restaurant Reviews Using Machine Learning Techniques, vol. 545 year: 2019 ident: 25 – ident: 4 doi: 10.1155/2021/6628889 – ident: 6 doi: 10.1166/jmihi.2019.2654 – ident: 32 doi: 10.1016/j.future.2017.09.048 – ident: 8 doi: 10.1007/11816102_11 – ident: 10 doi: 10.7763/ijet.2013.v5.548 – ident: 34 doi: 10.1016/j.neucom.2016.10.086 – ident: 48 doi: 10.1002/cpe.4783 – ident: 27 doi: 10.1007/s12559-017-9492-2 – ident: 43 doi: 10.1016/j.knosys.2020.105949 – year: 2021 ident: 55 article-title: Identifying COVID-19 fake news in social media – ident: 12 doi: 10.3390/app11167591 – year: 2020 ident: 50 article-title: Text classification of manifestos and COVID-19 press briefings using BERT and convolutional neural networks – ident: 42 doi: 10.1016/j.icte.2020.07.003 – year: 2021 ident: 58 article-title: Constraint 2021: Machine Learning Models for COVID-19 Fake News Detection Shared Task – ident: 19 doi: 10.1155/2015/674296 – year: 2021 ident: 49 article-title: Evaluating deep learning approaches for Covid19 fake news detection – ident: 64 doi: 10.1016/j.procs.2018.01.150 – ident: 29 doi: 10.1109/FUZZ-IEEE.2017.8015577 – ident: 40 doi: 10.1109/accthpa49271.2020.9213236 – ident: 36 doi: 10.4018/IJACI.2019070106 – ident: 59 doi: 10.1007/s41870-017-0080-1 – ident: 3 doi: 10.1016/b978-0-12-819043-2.00003-4 – ident: 37 doi: 10.1016/j.knosys.2019.02.008 – ident: 11 doi: 10.1155/2021/5990999 – year: 2021 ident: 56 article-title: Cross-SEAN: a cross-stitch semi-supervised neural attention model for COVID-19 fake news detection – volume: 7 start-page: 859 issue: 4 year: 2019 ident: 62 article-title: Emoji based sentiment analysis using KNN publication-title: International Journal of Scientific Research and Reviews – ident: 33 doi: 10.1007/s12204-017-1818-4 – ident: 18 doi: 10.1037/met0000111 – ident: 5 doi: 10.14569/IJACSA.2018.090723 – ident: 9 doi: 10.1109/INMIC50486.2020.9318127 – year: 2021 ident: 52 article-title: Identification of COVID-19 related fake news via neural stacking doi: 10.1007/978-3-030-73696-5_17 – ident: 13 doi: 10.7763/ijet.2013.v5.538 – volume: 18 issue: 12 year: 2020 ident: 57 article-title: Detection of COVID-19 fake news text data using random forest and decision tree classifiers abstract publication-title: International Journal of Computer Science and Information Security (IJCSIS) – ident: 1 doi: 10.1109/ICWS.2017.46 – ident: 17 doi: 10.18653/v1/p16-2096 – ident: 41 doi: 10.1007/s10660-019-09354-7 – ident: 38 doi: 10.3390/app9112347 – ident: 47 doi: 10.18653/v1/p19-1052 – ident: 23 doi: 10.1007/s40558-015-0047-7 – ident: 60 doi: 10.1109/ICCCI.2017.8117734 – ident: 54 doi: 10.1016/j.osnem.2021.100123 – ident: 61 doi: 10.1109/ICISC.2017.8068607 – ident: 53 doi: 10.1109/access.2020.3022867 – ident: 24 doi: 10.1016/j.ijinfomgt.2016.06.003 – ident: 45 doi: 10.1007/s00521-019-04248-z – ident: 39 doi: 10.1016/j.apm.2019.02.032 – ident: 51 doi: 10.13140/RG.2.2.26509.56805 – ident: 7 doi: 10.1504/IJBIC.2020.105861 – ident: 35 doi: 10.1016/j.eij.2021.03.001 – ident: 46 doi: 10.1007/978-3-030-30490-4_9 – ident: 2 doi: 10.1109/ICCWAMTIP.2018.8632592 – ident: 44 doi: 10.1109/MS.2019.2919573 – ident: 21 doi: 10.1177/0047287517729757 – ident: 65 doi: 10.1016/j.procs.2018.05.109 – ident: 31 doi: 10.1016/j.future.2017.10.028 – ident: 26 doi: 10.1080/0952813X.2011.639091 – ident: 30 doi: 10.3390/ijerph15112537 – ident: 63 doi: 10.1109/CSPC.2017.8305851 – ident: 20 doi: 10.1109/3ICT.2018.8855772 – ident: 16 doi: 10.18653/v1/w17-1101 – ident: 22 doi: 10.1109/MIS.2016.31 – ident: 14 doi: 10.3390/app11178190 – ident: 15 doi: 10.32604/iasc.2022.015810 – ident: 28 doi: 10.1109/ACCESS.2017.2776930 |
| SSID | ssj0051751 |
| Score | 2.526674 |
| Snippet | A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Bayes Theorem Computational Biology COVID-19 Databases, Factual Decision Trees Deep Learning Disinformation Humans Logistic Models Models, Statistical Natural Language Processing Neural Networks, Computer SARS-CoV-2 Social Media Social Networking Support Vector Machine |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA4qeLyIt_UigvoiwT2SbPpYWksVVBArfVuyOVQs22JbxH9vZjct1vtx2cmym0lm5tuZfIPQEQ2MwzgqJHFWlYTahBHBTUikdraPZ5QHtmD7vOatNr3ssI4nSRp8TeE7bwfwPDwDxx5FDpvPCg6VW7etztjgMucBw_LcoyA8CTrj-vZPY6c8z_wjQN7Xp-8Cy6_1kYujvC_fXmW3-8H5NFfQso8aca1U8yqaMfkaWrjyefF11G6YYVFTleOexU35bDBYL3znTC8u-l5CRZAsBXJcv7m_aJCwiouCAdwwpo890eoDrnmWcTPYQO3m-V29RXzDBKLimAUktFYl3CpalVLRyECwBoAotsYFFjRLZCASDbtaO-SiGFWcxUZxKxjXVut4E83lvdxsIxyqjCqmFTVKUOf0s0hHRuiAhpmtOoxTQafjyUyVZxOHphbdtEAVjKUw9amf-go6nkj3SxaNH-SOvF7-EDscKy11uwFSHDI3vdEgjaCjFoWunxW0VSpx8iQ4cuzCYTc6mVLvRACYtqfv5E-PBeO24IFwSLKCTiYL4dcX3Pnfd-yiJbgs_-jsobnhy8jsuxhnmB0UK_wdsaDvyg priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NRRu8sI2N0X3JSLCXyZAP23EfK7oKkAY80Kl7ihzHHogqraAVgr9-vtjNKGMfEm-Jcoli--58P_v8O4AtFhmHcXRM06KjKLMZp1KYmKrS-T5RMBHZmu3zSOwP2OGQD--chfH8EM2CG1pG7a_RwCel9X7emzrniNzjXZzzk8TB9iXBXTzegqXB0Un3uz8JKanIouGv61jOs9_vvb4wLz09Q0B8ff5Q2Pl79uTyrJqom2s1Gt2ZmvrPQc8b5TNSLnZm02JH397je3xcq1_AaohcSder2kt4Yqo1ePY17M2_gkHPTOu8roqMLemrC0PQg5JT5_5JXXsTs5KUF6jI3vG3gx6NO6ROWiA9YyYkkL3-IN3AdG6uXsOg_-V0b5-Gog1UpymPaGytzoTVrKOUZonBgBFBWWqNC25YkalIZiV6ltKhJ82ZFjw1WljJhWtpma5DqxpXZgNIrAumeamZ0ZK5wKNIysTIMmJxYTsOZ7Xh83zIch0YzbGwxiivkQ3nOfZUHnqqDduN9MQzefxBbiuM_j_ENueqkTuLxG0WVZnx7CpPsKoXw8qjbXjjVaX5Eh57diG5eztbUKJGANm-F59U52c167cUkXRotg2fGnX76w--_V_Bd7CCt35d6T20ppcz88FFWtPiYzCln_GvHqI priority: 102 providerName: Unpaywall |
| Title | Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches |
| URI | https://dx.doi.org/10.1155/2021/5514220 https://www.ncbi.nlm.nih.gov/pubmed/34819990 https://www.proquest.com/docview/2602640105 https://pubmed.ncbi.nlm.nih.gov/PMC8608495 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/2021/5514220 |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1748-6718 dateEnd: 20230629 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: ABDBF dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1748-6718 dateEnd: 20250531 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: M48 dateStart: 20060301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1748-6718 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0051751 issn: 1748-6718 databaseCode: 24P dateStart: 19970101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTcBeEN-Uj8pIgxdkiBPbSR4mVK2UgrSB0IKyp8jxB5uo0m5tNfbfz5ekEYXx8RIpyiVK7ny--8Xn-wHs8MB6jKMZjcpUUe5iQRNpGVXGz32y5DJwdbfPAznO-Mdc5BuwYhttFTi_Etohn1R2Nnn94_TirXf43drhhUD8zt5g5A9DD963fIxKkcRhn3frCcIHSdZsjUyojIN8VQL_y91rwen6MaLi85Orcs_fSyhvLquZujhXk8lP8Wl0G261iSUZNCPhDmzY6i7c2G-Xzu9BNrSLuuyqIlNHRuq7JTjBkUM_O5OaGhOLhlQjUJG9T18_DClLSV1TQIbWzkjbi_UbGbSNyO38PmSjd4d7Y9pyKlAdRSKgzDkdS6d5qpTmocV8DjFT5KzPPXgZqyCJDTq-8eBGC66liKyWLhHSOGOiB7BZTSv7CAjTJdfCaG51wn1eUIYmtIkJOCtd6mFQD16tlFnotuE48l5Mihp4CFGg6otW9T140UnPmkYbf5Dbae3yD7HnK6MV3mFwFURVdrqcFyGSbnEkBu3Bw8aI3ZNwV7LPmP3d8Zp5OwFsxr1-pTo5rptyJzJIPNjswctuIPz1BR__5_c-gW08bf76PIXNxdnSPvN50KLsw7X3OevXA90fv4zzPmxlB58HR5d_6wGA |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NRRu8sI2N0X3JSLCXyZAP23EfK7oKkAY80Kl7ihzHHogqraAVgr9-vtjNKGMfEm-Jcoli--58P_v8O4AtFhmHcXRM06KjKLMZp1KYmKrS-T5RMBHZmu3zSOwP2OGQD--chfH8EM2CG1pG7a_RwCel9X7emzrniNzjXZzzk8TB9iXBXTzegqXB0Un3uz8JKanIouGv61jOs9_vvb4wLz09Q0B8ff5Q2Pl79uTyrJqom2s1Gt2ZmvrPQc8b5TNSLnZm02JH397je3xcq1_AaohcSder2kt4Yqo1ePY17M2_gkHPTOu8roqMLemrC0PQg5JT5_5JXXsTs5KUF6jI3vG3gx6NO6ROWiA9YyYkkL3-IN3AdG6uXsOg_-V0b5-Gog1UpymPaGytzoTVrKOUZonBgBFBWWqNC25YkalIZiV6ltKhJ82ZFjw1WljJhWtpma5DqxpXZgNIrAumeamZ0ZK5wKNIysTIMmJxYTsOZ7Xh83zIch0YzbGwxiivkQ3nOfZUHnqqDduN9MQzefxBbiuM_j_ENueqkTuLxG0WVZnx7CpPsKoXw8qjbXjjVaX5Eh57diG5eztbUKJGANm-F59U52c167cUkXRotg2fGnX76w--_V_Bd7CCt35d6T20ppcz88FFWtPiYzCln_GvHqI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Fake+News+Text+Classification+on+COVID-19+Using+Deep+Learning+Approaches&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Bangyal%2C+Waqas+Haider&rft.au=Qasim%2C+Rukhma&rft.au=Rehman%2C+Najeeb+ur&rft.au=Ahmad%2C+Zeeshan&rft.date=2021&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2021&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1155%2F2021%2F5514220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5514220 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon |