A parallel computing approach to fast geostatistical areal interpolation

Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorpo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of geographical information science : IJGIS Vol. 25; no. 8; pp. 1241 - 1267
Main Authors Guan, Qingfeng, Kyriakidis, Phaedon C., Goodchild, Michael F.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.08.2011
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN1365-8816
1362-3087
1365-8824
DOI10.1080/13658816.2011.563744

Cover

Abstract Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpolation endeavor. When all the available source measurements are used for interpolation, that is, when a global search neighborhood is adopted, geostatistical areal interpolation is extremely computationally intensive. Interpolation in this case requires huge memory space and massive computing power, even with the dramatic improvement introduced by the spectral algorithms developed by Kyriakidis et al. ( 2005 . Improving spatial data interoperability using geostatistical support-to-support interpolation. In: Proceedings of geoComputation. Ann Arbor, MI: University of Michigan) and Liu et al. ( 2006 . Calculation of average covariance using fast Fourier transform (FFT). Menlo Park, CA: Stanford Center for Reservoir Forecasting, Petroleum Engineering Department, Stanford University) based on the fast Fourier transform (FFT). In this study, a parallel FFT-based geostatistical areal interpolation algorithm was developed to tackle the computational challenge of such problems. The algorithm includes three parallel processes: (1) the computation of source-to-source and source-to-target covariance matrices by means of FFT; (2) the QR factorization of the source-to-source covariance matrix; and (3) the computation of source-to-target weights via Kriging, and the subsequent computation of predicted attribute values for the target supports. Experiments with real-world datasets (i.e., predicting population densities of watersheds from population densities of counties in the Eastern Time Zone and in the continental United States) showed that the parallel algorithm drastically reduced the computing time to a practical length that is feasible for actual spatial analysis applications, and achieved fairly high speed-ups and efficiencies. Experiments also showed the algorithm scaled reasonably well as the number of processors increased and as the problem size increased.
AbstractList Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpolation endeavor. When all the available source measurements are used for interpolation, that is, when a global search neighborhood is adopted, geostatistical areal interpolation is extremely computationally intensive. Interpolation in this case requires huge memory space and massive computing power, even with the dramatic improvement introduced by the spectral algorithms developed by Kyriakidis et al. ( 2005 . Improving spatial data interoperability using geostatistical support-to-support interpolation. In: Proceedings of geoComputation. Ann Arbor, MI: University of Michigan) and Liu et al. ( 2006 . Calculation of average covariance using fast Fourier transform (FFT). Menlo Park, CA: Stanford Center for Reservoir Forecasting, Petroleum Engineering Department, Stanford University) based on the fast Fourier transform (FFT). In this study, a parallel FFT-based geostatistical areal interpolation algorithm was developed to tackle the computational challenge of such problems. The algorithm includes three parallel processes: (1) the computation of source-to-source and source-to-target covariance matrices by means of FFT; (2) the QR factorization of the source-to-source covariance matrix; and (3) the computation of source-to-target weights via Kriging, and the subsequent computation of predicted attribute values for the target supports. Experiments with real-world datasets (i.e., predicting population densities of watersheds from population densities of counties in the Eastern Time Zone and in the continental United States) showed that the parallel algorithm drastically reduced the computing time to a practical length that is feasible for actual spatial analysis applications, and achieved fairly high speed-ups and efficiencies. Experiments also showed the algorithm scaled reasonably well as the number of processors increased and as the problem size increased.
Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpolation endeavor. When all the available source measurements are used for interpolation, that is, when a global search neighborhood is adopted, geostatistical areal interpolation is extremely computationally intensive. Interpolation in this case requires huge memory space and massive computing power, even with the dramatic improvement introduced by the spectral algorithms developed by Kyriakidis et al. (2005. Improving spatial data interoperability using geostatistical support-to-support interpolation. In: Proceedings of geoComputation. Ann Arbor, MI: University of Michigan) and Liu et al. (2006. Calculation of average covariance using fast Fourier transform (FFT). Menlo Park, CA: Stanford Center for Reservoir Forecasting, Petroleum Engineering Department, Stanford University) based on the fast Fourier transform (FFT). In this study, a parallel FFT-based geostatistical areal interpolation algorithm was developed to tackle the computational challenge of such problems. The algorithm includes three parallel processes: (1) the computation of source-to-source and source-to-target covariance matrices by means of FFT; (2) the QR factorization of the source-to-source covariance matrix; and (3) the computation of source-to-target weights via Kriging, and the subsequent computation of predicted attribute values for the target supports. Experiments with real-world datasets (i.e., predicting population densities of watersheds from population densities of counties in the Eastern Time Zone and in the continental United States) showed that the parallel algorithm drastically reduced the computing time to a practical length that is feasible for actual spatial analysis applications, and achieved fairly high speed-ups and efficiencies. Experiments also showed the algorithm scaled reasonably well as the number of processors increased and as the problem size increased. [PUBLICATION ABSTRACT]
Author Goodchild, Michael F.
Guan, Qingfeng
Kyriakidis, Phaedon C.
Author_xml – sequence: 1
  givenname: Qingfeng
  surname: Guan
  fullname: Guan, Qingfeng
  email: qguan2@unl.edu
  organization: Center for Advanced Land Management Information Technologies, School of Natural Resource , University of Nebraska-Lincoln
– sequence: 2
  givenname: Phaedon C.
  surname: Kyriakidis
  fullname: Kyriakidis, Phaedon C.
  organization: Department of Geography , University of California Santa Barbara
– sequence: 3
  givenname: Michael F.
  surname: Goodchild
  fullname: Goodchild, Michael F.
  organization: Department of Geography , University of California Santa Barbara
BookMark eNqFUE1LAzEUDFLBWvsPPCzet-ZjN8l6kVLUCoIXPYfXbFIj6WZNUqT_3m2rFw96efMYZt4b5hyNutAZhC4JnhEs8TVhvJaS8BnFhMxqzkRVnaDxQNOSYSlGh70u95ozNE3JrTBlspFS1GO0nBc9RPDe-EKHTb_NrlsX0PcxgH4rcigspFysTUgZskvZafAFRDNM12UT--AHPnQX6NSCT2b6jRP0en_3sliWT88Pj4v5U6kZq3JpKy45ABZCc840bQ3jWPC2YbrhQBmhFV5h3bS2EQMSTKTFjaWYS0EEXbEJujreHRJ-bE3K6j1sYze8VLLhuOaUVYPo5ijSMaQUjVXa5UPMHMF5RbDad6d-ulP77tSxu8Fc_TL30W0g7v6z3R5trrMhbuAzRN-qDDsfoo3QaZcU-_PCF06thl4
CitedBy_id crossref_primary_10_1016_j_cageo_2012_11_013
crossref_primary_10_1016_j_cageo_2015_02_011
crossref_primary_10_1016_j_isprsjprs_2015_10_012
crossref_primary_10_1109_TGRS_2021_3080384
crossref_primary_10_1007_s11004_019_09835_3
crossref_primary_10_1080_13658816_2013_879151
crossref_primary_10_1080_13658816_2022_2147530
crossref_primary_10_3390_ijgi7070235
crossref_primary_10_1186_s40064_016_3035_2
crossref_primary_10_1080_13658816_2012_722636
crossref_primary_10_1111_tgis_12458
crossref_primary_10_1080_15481603_2014_1002379
crossref_primary_10_1080_13658816_2015_1032294
crossref_primary_10_1098_rsos_170436
crossref_primary_10_1080_13658816_2023_2244550
crossref_primary_10_1016_j_compenvurbsys_2012_10_002
crossref_primary_10_1371_journal_pone_0221075
crossref_primary_10_1016_j_rse_2013_08_007
crossref_primary_10_1117_1_JRS_10_026036
crossref_primary_10_1007_s12145_020_00452_x
crossref_primary_10_1007_s10586_019_02944_y
crossref_primary_10_3390_ijgi14030109
crossref_primary_10_1016_j_envsoft_2017_06_031
crossref_primary_10_1109_JSTARS_2019_2944952
crossref_primary_10_1111_tgis_12109
crossref_primary_10_1080_13658816_2013_871285
crossref_primary_10_3390_ijgi6100300
crossref_primary_10_1016_j_future_2019_11_036
crossref_primary_10_1016_j_cageo_2016_03_004
crossref_primary_10_1080_13658816_2012_741240
crossref_primary_10_1007_s11004_023_10092_8
crossref_primary_10_1080_13658816_2020_1732393
crossref_primary_10_1016_j_cageo_2014_02_009
Cites_doi 10.1007/BFb0037170
10.1111/j.1538-4632.2009.00783.x
10.1016/j.parco.2003.04.003
10.1137/0911057
10.1145/6490.214102
10.1007/BF01032690
10.1093/oso/9780195115383.001.0001
10.1007/s11004-007-9129-1
10.1006/jpdc.2000.1714
10.1002/9780470316993
10.1080/02693799508902032
10.1016/S0098-3004(97)00058-7
10.1145/301631.301661
10.1111/j.0016-7363.2008.00734.x
10.1016/j.parco.2003.04.001
10.1068/a250383
10.1017/CBO9780511754944
10.1198/106186007X178979
10.1007/BF01389871
10.7551/mitpress/4789.001.0001
10.1111/j.1538-4632.2004.tb01135.x
10.1080/02693799608902106
10.2172/544698
10.1017/CBO9780511812583
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
Copyright Taylor & Francis Group 2011
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: Copyright Taylor & Francis Group 2011
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/13658816.2011.563744
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1362-3087
1365-8824
EndPage 1267
ExternalDocumentID 2475182631
10_1080_13658816_2011_563744
563744
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -~X
..I
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACHQT
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADUMR
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRAH
AFRVT
AGBKS
AGDLA
AGMYJ
AHDZW
AIDBO
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBO
EBS
EDO
EJD
EMK
EPL
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
MM-
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZCA
ZGOLN
~02
~S~
1TA
6TJ
AAYXX
ACTTO
AFBWG
AFION
AGVKY
AGWUF
AI.
ALRRR
BWMZZ
CITATION
CYRSC
DAOYK
LJTGL
OPCYK
VH1
VOH
WHG
XOL
Y6R
ZY4
7SC
8FD
ADYSH
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-f4686aa077c663c2de36076d93c96a231240b0c9df97b0c1018f09f20687172b3
ISSN 1365-8816
IngestDate Sun Jul 13 04:32:27 EDT 2025
Wed Oct 01 04:32:55 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Mon Oct 20 23:38:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-f4686aa077c663c2de36076d93c96a231240b0c9df97b0c1018f09f20687172b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 896056234
PQPubID 53147
PageCount 27
ParticipantIDs proquest_journals_896056234
crossref_primary_10_1080_13658816_2011_563744
informaworld_taylorfrancis_310_1080_13658816_2011_563744
crossref_citationtrail_10_1080_13658816_2011_563744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-00
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-00
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of geographical information science : IJGIS
PublicationYear 2011
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Consnard M. (CIT0010) 1986; 33
CIT0030
Kyriakidis P.C. (CIT0027) 2005
CIT0032
Gajraj A. (CIT0014) 1997
CIT0033
Davis M.W. (CIT0012) 1984; 16
Grama A. (CIT0019) 2003
Frigo M. (CIT0013) 1999; 34
Goodchild M.F. (CIT0016) 1980; 1
Armstrong M.P. (CIT0002) 1994; 60
Yoo E.H. (CIT0034) 2008; 40
Armstrong M.P. (CIT0004) 1996; 10
Goovaerts P. (CIT0017) 1997
CIT0015
Rossini A.J. (CIT0031) 2007; 16
Karniadakis G. (CIT0023) 2003
CIT0021
Armstrong M.P. (CIT0001) 1993
Gropp W. (CIT0020) 1998; 2
Goovaerts P. (CIT0018) 2008; 40
Hawick K.A. (CIT0022) 2003; 29
Yoo E. (CIT0035) 2010; 42
Kyriakidis P.C. (CIT0026)
Liu Y. (CIT0028) 2006
CIT0003
CIT0025
Chu E. (CIT0008) 1990; 11
Cosnard M. (CIT0011) 1995
CIT0024
CIT0005
CIT0007
CIT0029
CIT0006
CIT0009
References_xml – start-page: 414
  volume-title: Proceedings of the eleventh international symposium on computer-assisted cartography (Auto-Carto 11)
  year: 1993
  ident: CIT0001
– ident: CIT0024
  doi: 10.1007/BFb0037170
– volume: 42
  start-page: 78
  year: 2010
  ident: CIT0035
  publication-title: Geographical Analysis
  doi: 10.1111/j.1538-4632.2009.00783.x
– volume-title: Parallel algorithms and architecture
  year: 1995
  ident: CIT0011
– ident: CIT0033
  doi: 10.1016/j.parco.2003.04.003
– volume: 11
  start-page: 990
  year: 1990
  ident: CIT0008
  publication-title: SIAM Journal on Scientific and Statistical Computing
  doi: 10.1137/0911057
– volume: 33
  start-page: 712
  year: 1986
  ident: CIT0010
  publication-title: Journal of ACM
  doi: 10.1145/6490.214102
– ident: CIT0029
– volume: 60
  start-page: 1098
  year: 1994
  ident: CIT0002
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 16
  start-page: 249
  year: 1984
  ident: CIT0012
  publication-title: Journal of the International Association for Mathematical Geology
  doi: 10.1007/BF01032690
– ident: CIT0026
  publication-title: International Journal of Geographical Information Science
– volume-title: Proceedings of geoComputation
  year: 2005
  ident: CIT0027
– volume-title: Geostatistics for natural resources evaluation
  year: 1997
  ident: CIT0017
  doi: 10.1093/oso/9780195115383.001.0001
– volume: 40
  start-page: 101
  year: 2008
  ident: CIT0018
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-007-9129-1
– volume: 1
  start-page: 297
  year: 1980
  ident: CIT0016
  publication-title: Geo-Processing
– ident: CIT0006
  doi: 10.1006/jpdc.2000.1714
– ident: CIT0007
  doi: 10.1002/9780470316993
– ident: CIT0003
  doi: 10.1080/02693799508902032
– ident: CIT0005
  doi: 10.1016/S0098-3004(97)00058-7
– volume: 34
  start-page: 169
  year: 1999
  ident: CIT0013
  publication-title: AGM SIGPLAN Notices
  doi: 10.1145/301631.301661
– volume: 40
  start-page: 355
  year: 2008
  ident: CIT0034
  publication-title: Geographical Analysis
  doi: 10.1111/j.0016-7363.2008.00734.x
– volume-title: Calculation of average covariance using fast Fourier transform (FFT)
  year: 2006
  ident: CIT0028
– volume: 29
  start-page: 1297
  year: 2003
  ident: CIT0022
  publication-title: Parallel Computing
  doi: 10.1016/j.parco.2003.04.001
– volume-title: Introduction to parallel computing
  year: 2003
  ident: CIT0019
– ident: CIT0015
  doi: 10.1068/a250383
– ident: CIT0032
– ident: CIT0021
  doi: 10.1017/CBO9780511754944
– ident: CIT0030
– volume: 16
  start-page: 399
  year: 2007
  ident: CIT0031
  publication-title: Journal of Computational & Graphical Statistics
  doi: 10.1198/106186007X178979
– ident: CIT0009
  doi: 10.1007/BF01389871
– volume: 2
  volume-title: MPI: the complete reference
  year: 1998
  ident: CIT0020
  doi: 10.7551/mitpress/4789.001.0001
– ident: CIT0025
  doi: 10.1111/j.1538-4632.2004.tb01135.x
– volume: 10
  start-page: 713
  year: 1996
  ident: CIT0004
  publication-title: International Journal of Geographical Information Systems
  doi: 10.1080/02693799608902106
– volume-title: A parallel implementation of kriging with a trend
  year: 1997
  ident: CIT0014
  doi: 10.2172/544698
– volume-title: Parallel scientific computing in C and MPI: a seamless approach to parallel algorithms and their implementation
  year: 2003
  ident: CIT0023
  doi: 10.1017/CBO9780511812583
SSID ssib023898875
ssj0001015
ssib000159086
Score 2.1982348
Snippet Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1241
SubjectTerms Algorithms
areal interpolation
fast Fourier transform
Fourier transforms
Geographic information science
geostatistics
Interoperability
Interpolation
Kriging
parallel computing
Parallel processing
Title A parallel computing approach to fast geostatistical areal interpolation
URI https://www.tandfonline.com/doi/abs/10.1080/13658816.2011.563744
https://www.proquest.com/docview/896056234
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1362-3087
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: ABDBF
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wAvaHyJsYH8wJ6mQBKnjvNYsbXdNAZIqah4sZzE2YCqHVv6MP45_jXubCdNtGp8vKSV07jR3S_nO-fud4S8DkKeZ5jUrmKReZFQwssUxDyFgmBEg3-dmeTx92d8Mo1OZoNZr_erlbW0qrI3-c-NdSX_o1UYA71ilew_aLaZFAbgO-gXjqBhOP6VjocHyNwNkf_cpIavTApzzRKOXmWprquDc73EsiHDyIzMAFfaEG2Y_lrztWK-rXPa11uELWKJc9su_cJM4vhWDXjqyiDcXDg-GR837iXAz9i0T3BbpXZLJBr3G5DN96-FpTf4eKF0AdM027Xj5bIwNeattH6XgFy091tb2xPprU4hTTdka3Axy06IwNFht8dsbXVtpW15tEOjaJlccFCCjWuBTZ7EyXB-y9Y64Cy2fJNd6u2zD3I0PT2V6dEs7Z41S30Y4dupkLNgn40uf3jYtAxf7u-zQ4uqe2QrhGXF75Ot4eTwy-fGGQCLN6hL__A26upN4b_ddGcd76jDnXvLVzAOULpNHrrIhQ4tDB-Rnl48JvfHDhU3T8hkSGs40gaOtIYjrZYU4Ui7cKQGjrQDx6dkOjpK300816jDyxmLKq-MuOBK-XGcgwObh4Vm3I95kbA84QoiCHAbMz9PijKJ4RNJ4ko_KUOfQ7gehxl7RvqL5UI_J5RFcVhiGDzAxgAlz4qcMw7_kscq0JnYIawWkMwdiz02U5nLwJHd1mKVKFZpxbpDvOaqS8vi8offi7bsZWVQXFoAS3b3pbu1nqR7Rq-lSLgJNKIXd57dJQ_Wj9Ae6VdXK_0SfN4qe-Vw9RsjTKf8
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwGLU4Bli4EaUcHlhTkjixnREhqgJtJ5DYLNuJARG1iKYD_Ho-x3G5BEgwZYlt-fzeZz2_h9BRFFOtLKldMq6ChEseKAk5Ty4hGSkAX6uaPD4Y0t51cnGTejbhpKFV2hzaOKGI-qy2m9teRntK3LGlZnEeUafAmVLCkmQeLaaA9a2JAQmH7xCMNfWeRVwIUBlsqzeEDCsy9U-zbJX-dd03rXyIXh-0Tb-c5XWA6q4i5bvmeCkPnWmlOvrlk-rjv_q-hlYa-IpP3HpbR3PFaAMtNU7qd8-bqHeCrZp4WRYl1rVjBMRG7JXLcTXGRk4qfFuM7VOmWiUa6pMAXUt87zy_HDtvC113z65Oe0Hj1hBoQpIqMAnlVMqQMQ0oRsd5QWjIaJ4RnVEJMBKwgwp1lpuMwdcqhZkwM3FIIWdjsSLbaGE0HhU7CJOExcbmQqlVhzdU5ZoSCq1oJqNC8RYifhaEbqTMraNGKaJG8dSPkrCjJNwotVAwK_XopDx--Z-_n2BR1VcoxvmdCPJz0bZfDKI5EyaCQ7Jo0Way-_eKD9FS72rQF_3z4WUbLfsL7jDaQwvV07TYB4RUqYN6D7wCtXv8vA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSIUL0ALiXR96zZLEWds5ImC1PLriABI3y3ZiWhHtrthwgF_PTBxvlyJAoqdcYlt-zjf2N98Q8jNJuTVIatdCmiiTWkZGg89TaHBGSsDXpiGP_xrw_nV2dtO9mYniR1ol-tDOC0U0ZzVu7nHhAiPuAJlZUibcC3B2ORNZ9oUscHwUwyCOeDADYDCn99Tggn3KYVf9BciwILshMgurDMF1b7Tywni9kDZ9dZQ39qm3QnTomael3HUeatOxT_-IPv5P11fJcgte6aFfbd_IXDn8ThbbPOq_H9dI_5CilnhVlRW1Tb4IsIw06JbTekSdntT0thxhIFOjEQ31aQCuFf3jM355bt46ue6dXB31ozZXQ2QZy-rIZVxyrWMhLGAYmxYl47HgRc5szjWASEAOJrZ54XIBX9QJc3Hu0piDxyZSwzbI_HA0LDcJZZlIHXpCXdSGd9wUljMOrVihk9LILcLCJCjbCpljPo1KJa3eaRglhaOk_ChtkWhaauyFPD74X87Or6qbCxTns50o9n7RnbAWVHsiTJQEVxGxZrb9-Yp_kK-Xxz11cTo43yFL4XY7TnbJfH3_UO4BPKrNfrMDngGJv_tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+computing+approach+to+fast+geostatistical+areal+interpolation&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Guan%2C+Qingfeng&rft.au=Kyriakidis%2C+Phaedon+C&rft.au=Goodchild%2C+Michael+F&rft.date=2011-08-01&rft.pub=Taylor+%26+Francis+LLC&rft.issn=1365-8816&rft.eissn=1365-8824&rft.volume=25&rft.issue=8&rft.spage=1241&rft_id=info:doi/10.1080%2F13658816.2011.563744&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2475182631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon