A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation
In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interes...
Saved in:
| Published in | Reliability engineering & system safety Vol. 254; p. 110545 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-8320 1879-0836 |
| DOI | 10.1016/j.ress.2024.110545 |
Cover
| Abstract | In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples.
•A nested estimator allows one to consider a bi-level epistemic uncertainty source.•Enrichment in leading source answers the trade-off between simulation and physical experiment.•New data enrichment is driven by a cost-free variance based sensitivity analysis.•Multiple importance sampling allows for data reuse and auxiliary density adaptation.•The number of calls to the black box function induced by the approach is minimized. |
|---|---|
| AbstractList | In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples. In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples. •A nested estimator allows one to consider a bi-level epistemic uncertainty source.•Enrichment in leading source answers the trade-off between simulation and physical experiment.•New data enrichment is driven by a cost-free variance based sensitivity analysis.•Multiple importance sampling allows for data reuse and auxiliary density adaptation.•The number of calls to the black box function induced by the approach is minimized. |
| ArticleNumber | 110545 |
| Author | Surget, Charles Mattrand, Cécile Gayton, Nicolas Morio, Jérôme Bourinet, Jean-Marc Dubreuil, Sylvain |
| Author_xml | – sequence: 1 givenname: Charles orcidid: 0009-0000-8057-0254 surname: Surget fullname: Surget, Charles email: charles.surget@onera.fr organization: ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France – sequence: 2 givenname: Sylvain surname: Dubreuil fullname: Dubreuil, Sylvain organization: ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France – sequence: 3 givenname: Jérôme orcidid: 0000-0002-8811-8956 surname: Morio fullname: Morio, Jérôme organization: ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France – sequence: 4 givenname: Cécile orcidid: 0000-0002-0623-9245 surname: Mattrand fullname: Mattrand, Cécile organization: Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, F-63000, France – sequence: 5 givenname: Jean-Marc orcidid: 0000-0002-4707-3050 surname: Bourinet fullname: Bourinet, Jean-Marc organization: Université Clermont Auvergne, CNRS, SIGMA Clermont, LIMOS, Clermont-Ferrand, F-63000, France – sequence: 6 givenname: Nicolas surname: Gayton fullname: Gayton, Nicolas organization: Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, F-63000, France |
| BackLink | https://hal.science/hal-04808546$$DView record in HAL |
| BookMark | eNp9kD9PwzAQxS0EEqXwBZi8MqScE6dxJJYK8U-qxAKz5dhncVWaINsq6rfHobAwdHqn8_vd-d4FOx3GARm7FrAQIJa3m0XAGBcllHIhBNSyPmEzoZq2AFUtT9kM2loUqirhnF3EuAEA2dbNjPUrHnGIlGhHac_NYPp9pMg7E9HxFIzDYvSed5i-EAf-GcbOdNRTTGT5dnTYc3I4JPJkTaJxyDMcjynXk8X0HLNuf54u2Zk3fcSrX52z98eHt_vnYv369HK_Whe2qmQqnFK1MABYluBcZ6TCKtc2S2t9BwpL2dStVKZx0Bn0yvolVCAb772Arpqzm8PcD9Prz5C3h70eDenn1VpPPZAKVC2XO5G96uC1YYwxoNeW0s9v8_HUawF6Slhv9JSwnhLWh4QzWv5D_3Ydhe4OEOYAdoRBR0s4WHQU0CbtRjqGfwM0cJm7 |
| CitedBy_id | crossref_primary_10_1016_j_ress_2025_111034 crossref_primary_10_1016_j_ress_2025_110993 |
| Cites_doi | 10.1016/j.compstruc.2004.11.015 10.1038/s41524-018-0081-z 10.1016/j.ress.2012.11.024 10.1016/j.strusafe.2021.102104 10.1016/j.dss.2017.10.013 10.1016/S0304-3800(00)00419-1 10.1080/00273171.2020.1746902 10.1016/j.jcp.2010.03.003 10.1080/01621459.2000.10473909 10.1080/02331888.2015.1105803 10.1109/TEVC.2020.2979740 10.1016/j.probengmech.2009.04.006 10.1007/s00158-019-02270-2 10.1016/j.ress.2021.107733 10.1016/j.ress.2005.11.014 10.1615/Int.J.UncertaintyQuantification.2022043692 10.1016/j.matdes.2018.11.060 10.1016/j.eswa.2013.12.031 10.1016/j.ress.2011.08.008 10.1016/0013-7944(86)90217-1 10.1016/j.probengmech.2023.103440 10.1016/j.strusafe.2021.102116 10.1002/nme.5725 10.1109/TIM.2009.2016386 10.1016/j.cja.2017.04.005 10.1016/j.ress.2017.05.038 10.1016/j.ress.2016.06.005 10.1115/1.3443666 10.1007/s10708-014-9601-7 10.1109/TEVC.2018.2869001 10.1198/106186008X320456 10.1007/s10182-013-0216-y 10.1088/1681-7575/abd372 10.1002/sim.7263 10.1016/j.ress.2018.06.008 10.1016/j.envsoft.2015.07.010 10.1103/PhysRevLett.121.160605 10.1016/j.crme.2019.11.009 10.1016/j.artmed.2016.12.003 10.1016/j.nucengdes.2016.04.013 10.1016/j.ymssp.2017.04.042 10.1086/677956 10.1016/S0951-8320(96)00067-1 10.1016/j.probengmech.2007.10.011 10.1137/15M1048070 10.1016/j.ress.2021.107968 10.1007/s11222-013-9440-2 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.ress.2024.110545 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-0836 |
| ExternalDocumentID | oai:HAL:hal-04808546v1 10_1016_j_ress_2024_110545 S0951832024006173 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 1XC |
| ID | FETCH-LOGICAL-c334t-d8851a00e220ddba48e3e22c8e39cfb08e2475948a7d0baef8cf603047fff10b3 |
| IEDL.DBID | .~1 |
| ISSN | 0951-8320 |
| IngestDate | Tue Oct 14 20:54:19 EDT 2025 Wed Oct 29 21:11:24 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Sat Dec 21 15:58:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Small data Enrichment Sensitivity analysis Trade-off Importance sampling Trade-of |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-d8851a00e220ddba48e3e22c8e39cfb08e2475948a7d0baef8cf603047fff10b3 |
| ORCID | 0000-0002-8811-8956 0000-0002-4707-3050 0000-0002-0623-9245 0009-0000-8057-0254 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04808546v1 crossref_citationtrail_10_1016_j_ress_2024_110545 crossref_primary_10_1016_j_ress_2024_110545 elsevier_sciencedirect_doi_10_1016_j_ress_2024_110545 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Sankararaman, Mahadevan (b28) 2013; 112 Mara, Tarantola, Annoni (b51) 2015; 72 Pasupa, Sunhem (b12) 2016 Shu, Xu, Meng (b14) 2018 Li, Lin, Chen, Chen, Lin (b19) 2018; 105 Song, Nelson, Staum (b69) 2016; 4 Li, Rabitz (b52) 2017; 167 Owen, Zhou (b55) 2000; 95 Fortuna, Graziani, Xibilia (b24) 2009; 58 Ditlevsen, Olesen (b66) 1986; 25 Paté-Cornell (b6) 1996; 54 Botev, Ridder (b3) 2017 Ionides (b60) 2008; 17 Morio, Balesdent (b46) 2015 Lee, Kim, Oh, Youn, Kim (b9) 2019; 60 Lai (b45) 2021; 56 Lemieux (b2) 2009 Stoudt, Pintar, Possolo (b11) 2021; 58 Li, Zhang, Zhu, Yu, Ma (b63) 2017; 30 Sobol (b47) 1993; 1 Li, Wang, Hu, Su, Li, Yue (b36) 2023; 72 De Rocquigny (b8) 2009; 2 Rothermel (b67) 1972 Pasanisi, De Rocquigny, Bousquet, Parent (b7) 2009; vol. 102 Dwivedi, Mallawaarachchi, Alvarado (b25) 2017; 36 Ackerberg (b56) 2009; 7 Zhang, Ling (b13) 2018; 4 Virkler, Hillberry, Goel (b64) 1979; 101 Lateh, Muda, Yusof, Muda, Azmi (b22) 2017; 892 Alibrandi, Mosalam (b18) 2018; 113 Saltelli, Ratto, Tarantola, Campolongo (b48) 2006; 91 Lebrun, Dutfoy (b49) 2009; 24 Demange-Chryst, Bachoc, Morio (b54) 2023; 33 Salvador, Piñol, Tarantola, Pla (b68) 2001; 136 Montáns, Chinesta, Gómez-Bombarelli, Kutz (b33) 2019; 347 Sarazin, Morio, Lagnoux, Balesdent, c Brevault (b35) 2021; 215 Apostolakis (b5) 1995 Li, Zhan, Wang, Jin, Zhang (b23) 2020; 24 Jyrkama, Pandey (b26) 2016; 303 Veach (b62) 1998 Heidenreich, Scindler, Sperlich (b43) 2013; 97 Míguez (b61) 2017 Au (b30) 2005; 83 Bourinet (b65) 2018 Silverman (b42) 1986 Rodriguez, Brandenburger, Behnke (b39) 2019 Koblents, Míguez (b57) 2015; 25 Shaikhina, Khovanova (b16) 2017; 75 Jin, Wang, Chugh, Guo, Miettinen (b40) 2019; 23 Gao (b20) 2018 Parke (b41) 2014; 81 Feng, Zhou, Dong (b15) 2019; 162 Vehtari, Simpson, Gelman, Yao, Gabry (b59) 2015 Menz, Dubreuil, Morio, Gogu, Bartoli, Chiron (b37) 2021; 93 Li, Sun, Sattar, Corchado (b58) 2014; 41 Nannapaneni, Mahadevan (b29) 2016; 155 Marco, Berkenkamp, Hennig, Schoellig, Krause, Schaal, Trimpe (b38) 2017 Kitchin, Lauriault (b10) 2015; 80 Der Kiureghian (b27) 2008; 23 Rubinstein, Kroese (b1) 2016 Chen, Tareen, Kinney (b17) 2018; 121 Chabridon, Balesdent, Bourinet, Morio, Gayton (b31) 2018; 178 Demange-Chryst, Bachoc, Morio (b70) 2023; 13 Zhang, Shields (b34) 2018; 98 Jakeman, Eldred, Xiu (b4) 2010; 229 Scott (b44) 2012 Gamboa, Janon, Klein, Lagnoux, Prieur (b53) 2016; 50 Jung, Lee (b21) 2021; 216 Yuan, Liu, Valdebenito, Gu, Beer (b32) 2021; 92 Mara, Tarantola (b50) 2012; 107 Míguez (10.1016/j.ress.2024.110545_b61) 2017 Nannapaneni (10.1016/j.ress.2024.110545_b29) 2016; 155 Veach (10.1016/j.ress.2024.110545_b62) 1998 Morio (10.1016/j.ress.2024.110545_b46) 2015 Scott (10.1016/j.ress.2024.110545_b44) 2012 Li (10.1016/j.ress.2024.110545_b52) 2017; 167 Apostolakis (10.1016/j.ress.2024.110545_b5) 1995 Sankararaman (10.1016/j.ress.2024.110545_b28) 2013; 112 Shaikhina (10.1016/j.ress.2024.110545_b16) 2017; 75 Chabridon (10.1016/j.ress.2024.110545_b31) 2018; 178 Pasanisi (10.1016/j.ress.2024.110545_b7) 2009; vol. 102 Marco (10.1016/j.ress.2024.110545_b38) 2017 Saltelli (10.1016/j.ress.2024.110545_b48) 2006; 91 Chen (10.1016/j.ress.2024.110545_b17) 2018; 121 Vehtari (10.1016/j.ress.2024.110545_b59) 2015 Shu (10.1016/j.ress.2024.110545_b14) 2018 Alibrandi (10.1016/j.ress.2024.110545_b18) 2018; 113 Jakeman (10.1016/j.ress.2024.110545_b4) 2010; 229 Lai (10.1016/j.ress.2024.110545_b45) 2021; 56 Au (10.1016/j.ress.2024.110545_b30) 2005; 83 Ditlevsen (10.1016/j.ress.2024.110545_b66) 1986; 25 Lee (10.1016/j.ress.2024.110545_b9) 2019; 60 Sobol (10.1016/j.ress.2024.110545_b47) 1993; 1 Der Kiureghian (10.1016/j.ress.2024.110545_b27) 2008; 23 Montáns (10.1016/j.ress.2024.110545_b33) 2019; 347 Li (10.1016/j.ress.2024.110545_b58) 2014; 41 Feng (10.1016/j.ress.2024.110545_b15) 2019; 162 Silverman (10.1016/j.ress.2024.110545_b42) 1986 Gao (10.1016/j.ress.2024.110545_b20) 2018 Rodriguez (10.1016/j.ress.2024.110545_b39) 2019 Salvador (10.1016/j.ress.2024.110545_b68) 2001; 136 Li (10.1016/j.ress.2024.110545_b23) 2020; 24 Zhang (10.1016/j.ress.2024.110545_b34) 2018; 98 Parke (10.1016/j.ress.2024.110545_b41) 2014; 81 Li (10.1016/j.ress.2024.110545_b63) 2017; 30 Kitchin (10.1016/j.ress.2024.110545_b10) 2015; 80 Lebrun (10.1016/j.ress.2024.110545_b49) 2009; 24 Pasupa (10.1016/j.ress.2024.110545_b12) 2016 Jung (10.1016/j.ress.2024.110545_b21) 2021; 216 Zhang (10.1016/j.ress.2024.110545_b13) 2018; 4 Fortuna (10.1016/j.ress.2024.110545_b24) 2009; 58 Mara (10.1016/j.ress.2024.110545_b50) 2012; 107 Ionides (10.1016/j.ress.2024.110545_b60) 2008; 17 Botev (10.1016/j.ress.2024.110545_b3) 2017 Mara (10.1016/j.ress.2024.110545_b51) 2015; 72 Heidenreich (10.1016/j.ress.2024.110545_b43) 2013; 97 Demange-Chryst (10.1016/j.ress.2024.110545_b54) 2023; 33 Lemieux (10.1016/j.ress.2024.110545_b2) 2009 Song (10.1016/j.ress.2024.110545_b69) 2016; 4 Demange-Chryst (10.1016/j.ress.2024.110545_b70) 2023; 13 Virkler (10.1016/j.ress.2024.110545_b64) 1979; 101 Rubinstein (10.1016/j.ress.2024.110545_b1) 2016 Menz (10.1016/j.ress.2024.110545_b37) 2021; 93 Jin (10.1016/j.ress.2024.110545_b40) 2019; 23 Jyrkama (10.1016/j.ress.2024.110545_b26) 2016; 303 Koblents (10.1016/j.ress.2024.110545_b57) 2015; 25 Stoudt (10.1016/j.ress.2024.110545_b11) 2021; 58 Yuan (10.1016/j.ress.2024.110545_b32) 2021; 92 De Rocquigny (10.1016/j.ress.2024.110545_b8) 2009; 2 Li (10.1016/j.ress.2024.110545_b19) 2018; 105 Gamboa (10.1016/j.ress.2024.110545_b53) 2016; 50 Li (10.1016/j.ress.2024.110545_b36) 2023; 72 Paté-Cornell (10.1016/j.ress.2024.110545_b6) 1996; 54 Owen (10.1016/j.ress.2024.110545_b55) 2000; 95 Dwivedi (10.1016/j.ress.2024.110545_b25) 2017; 36 Lateh (10.1016/j.ress.2024.110545_b22) 2017; 892 Rothermel (10.1016/j.ress.2024.110545_b67) 1972 Sarazin (10.1016/j.ress.2024.110545_b35) 2021; 215 Ackerberg (10.1016/j.ress.2024.110545_b56) 2009; 7 Bourinet (10.1016/j.ress.2024.110545_b65) 2018 |
| References_xml | – year: 2015 ident: b59 article-title: Pareto smoothed importance sampling – volume: 347 start-page: 845 year: 2019 end-page: 855 ident: b33 article-title: Data-driven modeling and learning in science and engineering publication-title: C R Mécanique – volume: 162 start-page: 300 year: 2019 end-page: 310 ident: b15 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater Des – volume: 112 start-page: 187 year: 2013 end-page: 199 ident: b28 article-title: Separating the contributions of variability and parameter uncertainty in probability distributions publication-title: Reliab Eng Syst Saf – volume: 17 start-page: 295 year: 2008 end-page: 311 ident: b60 article-title: Truncated importance sampling publication-title: J Comput Graph Statist – volume: 1 start-page: 407 year: 1993 end-page: 414 ident: b47 article-title: Sensitivity analysis for non-linear mathematical models publication-title: Math Model Comput Exp – volume: 72 year: 2023 ident: b36 article-title: Data-driven reliability assessment with scarce samples considering multidimensional dependence publication-title: Probab Eng Mech – volume: 178 start-page: 164 year: 2018 end-page: 178 ident: b31 article-title: Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty publication-title: Reliab Eng Syst Saf – volume: 13 year: 2023 ident: b70 article-title: Shapley effect estimation in reliability-oriented sensitivity analysis with correlated inputs by importance sampling publication-title: Int J Uncertain Quantif – volume: 72 start-page: 173 year: 2015 end-page: 183 ident: b51 article-title: Non-parametric methods for global sensitivity analysis of model output with dependent inputs publication-title: Environ Model Softw – volume: 24 start-page: 923 year: 2020 end-page: 937 ident: b23 article-title: Boosting data-driven evolutionary algorithm with localized data generation publication-title: IEEE Trans Evol Comput – volume: 60 start-page: 1619 year: 2019 end-page: 1644 ident: b9 article-title: Review of statistical model calibration and validation—From the perspective of uncertainty structures publication-title: Struct Multidiscip Optim – volume: 229 start-page: 4648 year: 2010 end-page: 4663 ident: b4 article-title: Numerical approach for quantification of epistemic uncertainty publication-title: J Comput Phys – volume: 56 start-page: 558 year: 2021 end-page: 578 ident: b45 article-title: Bootstrap confidence intervals for multilevel standardized effect size publication-title: Multivar Behav Res – volume: 58 year: 2021 ident: b11 article-title: Uncertainty evaluations from small datasets publication-title: Metrologia – volume: 4 start-page: 1 year: 2018 end-page: 8 ident: b13 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: Npj Comput Mater – volume: 23 start-page: 351 year: 2008 end-page: 358 ident: b27 article-title: Analysis of structural reliability under parameter uncertainties publication-title: Probab Eng Mech – volume: 95 start-page: 135 year: 2000 end-page: 143 ident: b55 article-title: Safe and effective importance sampling publication-title: J Amer Statist Assoc – year: 2018 ident: b65 article-title: Reliability analysis and optimal design under uncertainty-focus on adaptive surrogate-based approaches – volume: 41 start-page: 3944 year: 2014 end-page: 3954 ident: b58 article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches publication-title: Expert Syst Appl – volume: 92 year: 2021 ident: b32 article-title: Efficient procedure for failure probability function estimation in augmented space publication-title: Struct Saf – volume: 81 start-page: 516 year: 2014 end-page: 536 ident: b41 article-title: Experiments, simulations, and epistemic privilege publication-title: Philos Sci – volume: 25 start-page: 407 year: 2015 end-page: 425 ident: b57 article-title: A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models publication-title: Stat Comput – start-page: 70 year: 2019 end-page: 82 ident: b39 article-title: Combining simulations and real-robot experiments for Bayesian optimization of bipedal gait stabilization publication-title: RoboCup 2018: Robot world cup XXII – start-page: 1 year: 2017 end-page: 5 ident: b61 article-title: On the performance of nonlinear importance samplers and population Monte Carlo schemes publication-title: 2017 22nd International conference on digital signal processing – volume: 23 start-page: 442 year: 2019 end-page: 458 ident: b40 article-title: Data-driven evolutionary optimization: An overview and case studies publication-title: IEEE Trans Evol Comput – volume: 75 start-page: 51 year: 2017 end-page: 63 ident: b16 article-title: Handling limited datasets with neural networks in medical applications: A small-data approach publication-title: Artif Intell Med – volume: 136 start-page: 175 year: 2001 end-page: 189 ident: b68 article-title: Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands publication-title: Ecol Model – volume: 36 start-page: 2187 year: 2017 end-page: 2205 ident: b25 article-title: Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method publication-title: Stat Med – volume: 30 start-page: 1021 year: 2017 end-page: 1030 ident: b63 article-title: Reliability analysis based on a novel density estimation method for structures with correlations publication-title: Chin J Aeronaut – volume: 107 start-page: 115 year: 2012 end-page: 121 ident: b50 article-title: Variance-based sensitivity indices for models with dependent inputs publication-title: Reliab Eng Syst Saf – year: 2018 ident: b20 article-title: A nonparametric-based approach on the propagation of imprecise probabilities due to small datasets – volume: 167 start-page: 136 year: 2017 end-page: 157 ident: b52 article-title: Relationship between sensitivity indices defined by variance- and covariance-based methods publication-title: Reliab Eng Syst Saf – volume: 4 start-page: 1060 year: 2016 end-page: 1083 ident: b69 article-title: Shapley effects for global sensitivity analysis: Theory and computation publication-title: SIAM/ASA J Uncertain Quantif – start-page: 1557 year: 2017 end-page: 1563 ident: b38 article-title: Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization publication-title: 2017 IEEE international conference on robotics and automation – volume: 215 year: 2021 ident: b35 article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty publication-title: Reliab Eng Syst Saf – volume: 54 start-page: 95 year: 1996 end-page: 111 ident: b6 article-title: Uncertainties in risk analysis: Six levels of treatment publication-title: Reliab Eng Syst Saf – year: 1972 ident: b67 publication-title: A mathematical model for predicting fire spread in wildland fuels – volume: 892 year: 2017 ident: b22 article-title: Handling a small dataset problem in prediction model by employ artificial data generation approach: A review publication-title: J Phys Conf Ser – volume: 155 start-page: 9 year: 2016 end-page: 20 ident: b29 article-title: Reliability analysis under epistemic uncertainty publication-title: Reliab Eng Syst Saf – volume: 93 year: 2021 ident: b37 article-title: Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes publication-title: Struct Saf – volume: 83 start-page: 1048 year: 2005 end-page: 1061 ident: b30 article-title: Reliability-based design sensitivity by efficient simulation publication-title: Comput Struct – volume: 91 start-page: 1109 year: 2006 end-page: 1125 ident: b48 article-title: Sensitivity analysis practices: Strategies for model-based inference publication-title: Reliab Eng Syst Saf – year: 2016 ident: b1 article-title: Simulation and the Monte Carlo method – volume: 25 start-page: 177 year: 1986 end-page: 195 ident: b66 article-title: Statistical analysis of the virkler data on fatigue crack growth publication-title: Eng Fract Mech – year: 1998 ident: b62 article-title: Robust Monte Carlo methods for light transport simulation – volume: 121 year: 2018 ident: b17 article-title: Density estimation on small data sets publication-title: Phys Rev Lett – volume: 216 year: 2021 ident: b21 article-title: Optimal design of experiments for optimization-based model calibration using Fisher information matrix publication-title: Reliab Eng Syst Saf – start-page: 1 year: 2009 end-page: 61 ident: b2 article-title: Quasi–Monte Carlo constructions publication-title: Monte Carlo and quasi-Monte Carlo sampling – year: 2015 ident: b46 article-title: Estimation of rare event probabilities in complex aerospace and other systems: A practical approach – volume: vol. 102 start-page: 169 year: 2009 ident: b7 article-title: Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice publication-title: ESREL 2009 conference, prague (cech rep.) – start-page: 549 year: 2012 end-page: 569 ident: b44 article-title: Multivariate density estimation and visualization publication-title: Handbook of computational statistics: Concepts and methods – volume: 33 year: 2023 ident: b54 article-title: Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates publication-title: Stat Comput – year: 1986 ident: b42 article-title: Density estimation for statistics and data analysis – volume: 50 start-page: 881 year: 2016 end-page: 902 ident: b53 article-title: Statistical inference for Sobol’ pick-freeze Monte Carlo method publication-title: Statistics – start-page: 1 year: 2016 end-page: 6 ident: b12 article-title: A comparison between shallow and deep architecture classifiers on small dataset publication-title: 2016 8th International conference on information technology and electrical engineering – volume: 58 start-page: 2444 year: 2009 end-page: 2451 ident: b24 article-title: Comparison of soft-sensor design methods for industrial plants using small data sets publication-title: IEEE Trans Instrum Meas – volume: 113 start-page: 1904 year: 2018 end-page: 1928 ident: b18 article-title: Kernel density maximum entropy method with generalized moments for evaluating probability distributions, including tails, from a small sample of data publication-title: Internat J Numer Methods Engrg – year: 1995 ident: b5 article-title: A commentary on model uncertainty publication-title: Proceedings of workshop on model uncertainty – volume: 24 start-page: 577 year: 2009 end-page: 584 ident: b49 article-title: Do rosenblatt and nataf isoprobabilistic transformations really differ? publication-title: Probab Eng Mech – volume: 97 start-page: 403 year: 2013 end-page: 433 ident: b43 article-title: Bandwidth selection for kernel density estimation: a review of fully automatic selectors publication-title: Adv Stat Anal – volume: 303 start-page: 68 year: 2016 end-page: 74 ident: b26 article-title: On the separation of aleatory and epistemic uncertainties in probabilistic assessments publication-title: Nucl Eng Des – year: 2018 ident: b14 article-title: Small sample learning in big data era – start-page: 1 year: 2017 end-page: 6 ident: b3 article-title: Variance reduction publication-title: Wiley StatsRef: Statistics reference online – volume: 2 year: 2009 ident: b8 article-title: Quantifying uncertainty in an industrial approach: an emerging consensus in an old epistemological debate publication-title: Surv Perspect Integr Environ Soc – volume: 7 start-page: 343 year: 2009 end-page: 376 ident: b56 article-title: A new use of importance sampling to reduce computational burden in simulation estimation publication-title: QME – volume: 101 start-page: 148 year: 1979 end-page: 153 ident: b64 article-title: The statistical nature of fatigue crack propagation publication-title: J Eng Mater Technol – volume: 80 start-page: 463 year: 2015 end-page: 475 ident: b10 article-title: Small data in the era of big data publication-title: GeoJournal – volume: 105 start-page: 66 year: 2018 end-page: 76 ident: b19 article-title: Rebuilding sample distributions for small dataset learning publication-title: Decis Support Syst – volume: 98 start-page: 465 year: 2018 end-page: 483 ident: b34 article-title: On the quantification and efficient propagation of imprecise probabilities resulting from small datasets publication-title: Mech Syst Signal Process – volume: 83 start-page: 1048 issue: 14 year: 2005 ident: 10.1016/j.ress.2024.110545_b30 article-title: Reliability-based design sensitivity by efficient simulation publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.11.015 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ress.2024.110545_b13 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: Npj Comput Mater doi: 10.1038/s41524-018-0081-z – volume: 112 start-page: 187 year: 2013 ident: 10.1016/j.ress.2024.110545_b28 article-title: Separating the contributions of variability and parameter uncertainty in probability distributions publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2012.11.024 – volume: 92 year: 2021 ident: 10.1016/j.ress.2024.110545_b32 article-title: Efficient procedure for failure probability function estimation in augmented space publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102104 – volume: 105 start-page: 66 year: 2018 ident: 10.1016/j.ress.2024.110545_b19 article-title: Rebuilding sample distributions for small dataset learning publication-title: Decis Support Syst doi: 10.1016/j.dss.2017.10.013 – volume: 136 start-page: 175 issue: 2 year: 2001 ident: 10.1016/j.ress.2024.110545_b68 article-title: Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands publication-title: Ecol Model doi: 10.1016/S0304-3800(00)00419-1 – start-page: 549 year: 2012 ident: 10.1016/j.ress.2024.110545_b44 article-title: Multivariate density estimation and visualization – year: 2018 ident: 10.1016/j.ress.2024.110545_b14 – volume: 56 start-page: 558 issue: 4 year: 2021 ident: 10.1016/j.ress.2024.110545_b45 article-title: Bootstrap confidence intervals for multilevel standardized effect size publication-title: Multivar Behav Res doi: 10.1080/00273171.2020.1746902 – volume: 229 start-page: 4648 issue: 12 year: 2010 ident: 10.1016/j.ress.2024.110545_b4 article-title: Numerical approach for quantification of epistemic uncertainty publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.03.003 – volume: 95 start-page: 135 issue: 449 year: 2000 ident: 10.1016/j.ress.2024.110545_b55 article-title: Safe and effective importance sampling publication-title: J Amer Statist Assoc doi: 10.1080/01621459.2000.10473909 – volume: 50 start-page: 881 issue: 4 year: 2016 ident: 10.1016/j.ress.2024.110545_b53 article-title: Statistical inference for Sobol’ pick-freeze Monte Carlo method publication-title: Statistics doi: 10.1080/02331888.2015.1105803 – volume: 24 start-page: 923 issue: 5 year: 2020 ident: 10.1016/j.ress.2024.110545_b23 article-title: Boosting data-driven evolutionary algorithm with localized data generation publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.2979740 – volume: 24 start-page: 577 issue: 4 year: 2009 ident: 10.1016/j.ress.2024.110545_b49 article-title: Do rosenblatt and nataf isoprobabilistic transformations really differ? publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2009.04.006 – volume: 60 start-page: 1619 year: 2019 ident: 10.1016/j.ress.2024.110545_b9 article-title: Review of statistical model calibration and validation—From the perspective of uncertainty structures publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02270-2 – volume: 215 year: 2021 ident: 10.1016/j.ress.2024.110545_b35 article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107733 – volume: 91 start-page: 1109 issue: 10 year: 2006 ident: 10.1016/j.ress.2024.110545_b48 article-title: Sensitivity analysis practices: Strategies for model-based inference publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.014 – volume: vol. 102 start-page: 169 year: 2009 ident: 10.1016/j.ress.2024.110545_b7 article-title: Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice – volume: 13 issue: 3 year: 2023 ident: 10.1016/j.ress.2024.110545_b70 article-title: Shapley effect estimation in reliability-oriented sensitivity analysis with correlated inputs by importance sampling publication-title: Int J Uncertain Quantif doi: 10.1615/Int.J.UncertaintyQuantification.2022043692 – volume: 162 start-page: 300 year: 2019 ident: 10.1016/j.ress.2024.110545_b15 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater Des doi: 10.1016/j.matdes.2018.11.060 – volume: 41 start-page: 3944 issue: 8 year: 2014 ident: 10.1016/j.ress.2024.110545_b58 article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.031 – volume: 107 start-page: 115 year: 2012 ident: 10.1016/j.ress.2024.110545_b50 article-title: Variance-based sensitivity indices for models with dependent inputs publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.08.008 – volume: 25 start-page: 177 issue: 2 year: 1986 ident: 10.1016/j.ress.2024.110545_b66 article-title: Statistical analysis of the virkler data on fatigue crack growth publication-title: Eng Fract Mech doi: 10.1016/0013-7944(86)90217-1 – volume: 892 issue: 1 year: 2017 ident: 10.1016/j.ress.2024.110545_b22 article-title: Handling a small dataset problem in prediction model by employ artificial data generation approach: A review publication-title: J Phys Conf Ser – volume: 72 year: 2023 ident: 10.1016/j.ress.2024.110545_b36 article-title: Data-driven reliability assessment with scarce samples considering multidimensional dependence publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2023.103440 – volume: 93 year: 2021 ident: 10.1016/j.ress.2024.110545_b37 article-title: Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102116 – volume: 113 start-page: 1904 issue: 13 year: 2018 ident: 10.1016/j.ress.2024.110545_b18 article-title: Kernel density maximum entropy method with generalized moments for evaluating probability distributions, including tails, from a small sample of data publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5725 – volume: 58 start-page: 2444 issue: 8 year: 2009 ident: 10.1016/j.ress.2024.110545_b24 article-title: Comparison of soft-sensor design methods for industrial plants using small data sets publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2009.2016386 – volume: 30 start-page: 1021 issue: 3 year: 2017 ident: 10.1016/j.ress.2024.110545_b63 article-title: Reliability analysis based on a novel density estimation method for structures with correlations publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2017.04.005 – volume: 2 issue: 1 year: 2009 ident: 10.1016/j.ress.2024.110545_b8 article-title: Quantifying uncertainty in an industrial approach: an emerging consensus in an old epistemological debate publication-title: Surv Perspect Integr Environ Soc – year: 1986 ident: 10.1016/j.ress.2024.110545_b42 – volume: 167 start-page: 136 year: 2017 ident: 10.1016/j.ress.2024.110545_b52 article-title: Relationship between sensitivity indices defined by variance- and covariance-based methods publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.05.038 – volume: 155 start-page: 9 year: 2016 ident: 10.1016/j.ress.2024.110545_b29 article-title: Reliability analysis under epistemic uncertainty publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.06.005 – year: 2015 ident: 10.1016/j.ress.2024.110545_b46 – start-page: 1 year: 2017 ident: 10.1016/j.ress.2024.110545_b61 article-title: On the performance of nonlinear importance samplers and population Monte Carlo schemes – year: 1995 ident: 10.1016/j.ress.2024.110545_b5 article-title: A commentary on model uncertainty – start-page: 70 year: 2019 ident: 10.1016/j.ress.2024.110545_b39 article-title: Combining simulations and real-robot experiments for Bayesian optimization of bipedal gait stabilization – volume: 33 issue: 103 year: 2023 ident: 10.1016/j.ress.2024.110545_b54 article-title: Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates publication-title: Stat Comput – volume: 101 start-page: 148 issue: 2 year: 1979 ident: 10.1016/j.ress.2024.110545_b64 article-title: The statistical nature of fatigue crack propagation publication-title: J Eng Mater Technol doi: 10.1115/1.3443666 – volume: 80 start-page: 463 issue: 4 year: 2015 ident: 10.1016/j.ress.2024.110545_b10 article-title: Small data in the era of big data publication-title: GeoJournal doi: 10.1007/s10708-014-9601-7 – volume: 23 start-page: 442 issue: 3 year: 2019 ident: 10.1016/j.ress.2024.110545_b40 article-title: Data-driven evolutionary optimization: An overview and case studies publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2869001 – volume: 17 start-page: 295 issue: 2 year: 2008 ident: 10.1016/j.ress.2024.110545_b60 article-title: Truncated importance sampling publication-title: J Comput Graph Statist doi: 10.1198/106186008X320456 – year: 2016 ident: 10.1016/j.ress.2024.110545_b1 – year: 2018 ident: 10.1016/j.ress.2024.110545_b20 – volume: 97 start-page: 403 issue: 4 year: 2013 ident: 10.1016/j.ress.2024.110545_b43 article-title: Bandwidth selection for kernel density estimation: a review of fully automatic selectors publication-title: Adv Stat Anal doi: 10.1007/s10182-013-0216-y – volume: 58 issue: 1 year: 2021 ident: 10.1016/j.ress.2024.110545_b11 article-title: Uncertainty evaluations from small datasets publication-title: Metrologia doi: 10.1088/1681-7575/abd372 – volume: 36 start-page: 2187 issue: 14 year: 2017 ident: 10.1016/j.ress.2024.110545_b25 article-title: Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method publication-title: Stat Med doi: 10.1002/sim.7263 – volume: 178 start-page: 164 year: 2018 ident: 10.1016/j.ress.2024.110545_b31 article-title: Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.06.008 – start-page: 1 year: 2016 ident: 10.1016/j.ress.2024.110545_b12 article-title: A comparison between shallow and deep architecture classifiers on small dataset – volume: 7 start-page: 343 issue: 4 year: 2009 ident: 10.1016/j.ress.2024.110545_b56 article-title: A new use of importance sampling to reduce computational burden in simulation estimation publication-title: QME – volume: 72 start-page: 173 year: 2015 ident: 10.1016/j.ress.2024.110545_b51 article-title: Non-parametric methods for global sensitivity analysis of model output with dependent inputs publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2015.07.010 – start-page: 1557 year: 2017 ident: 10.1016/j.ress.2024.110545_b38 article-title: Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization – volume: 121 year: 2018 ident: 10.1016/j.ress.2024.110545_b17 article-title: Density estimation on small data sets publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.160605 – volume: 1 start-page: 407 year: 1993 ident: 10.1016/j.ress.2024.110545_b47 article-title: Sensitivity analysis for non-linear mathematical models publication-title: Math Model Comput Exp – volume: 347 start-page: 845 issue: 11 year: 2019 ident: 10.1016/j.ress.2024.110545_b33 article-title: Data-driven modeling and learning in science and engineering publication-title: C R Mécanique doi: 10.1016/j.crme.2019.11.009 – volume: 75 start-page: 51 year: 2017 ident: 10.1016/j.ress.2024.110545_b16 article-title: Handling limited datasets with neural networks in medical applications: A small-data approach publication-title: Artif Intell Med doi: 10.1016/j.artmed.2016.12.003 – volume: 303 start-page: 68 year: 2016 ident: 10.1016/j.ress.2024.110545_b26 article-title: On the separation of aleatory and epistemic uncertainties in probabilistic assessments publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2016.04.013 – volume: 98 start-page: 465 year: 2018 ident: 10.1016/j.ress.2024.110545_b34 article-title: On the quantification and efficient propagation of imprecise probabilities resulting from small datasets publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.04.042 – year: 1998 ident: 10.1016/j.ress.2024.110545_b62 – volume: 81 start-page: 516 issue: 4 year: 2014 ident: 10.1016/j.ress.2024.110545_b41 article-title: Experiments, simulations, and epistemic privilege publication-title: Philos Sci doi: 10.1086/677956 – year: 2015 ident: 10.1016/j.ress.2024.110545_b59 – start-page: 1 year: 2009 ident: 10.1016/j.ress.2024.110545_b2 article-title: Quasi–Monte Carlo constructions – year: 1972 ident: 10.1016/j.ress.2024.110545_b67 – volume: 54 start-page: 95 issue: 2 year: 1996 ident: 10.1016/j.ress.2024.110545_b6 article-title: Uncertainties in risk analysis: Six levels of treatment publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(96)00067-1 – volume: 23 start-page: 351 issue: 4 year: 2008 ident: 10.1016/j.ress.2024.110545_b27 article-title: Analysis of structural reliability under parameter uncertainties publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2007.10.011 – start-page: 1 year: 2017 ident: 10.1016/j.ress.2024.110545_b3 article-title: Variance reduction – volume: 4 start-page: 1060 issue: 1 year: 2016 ident: 10.1016/j.ress.2024.110545_b69 article-title: Shapley effects for global sensitivity analysis: Theory and computation publication-title: SIAM/ASA J Uncertain Quantif doi: 10.1137/15M1048070 – volume: 216 year: 2021 ident: 10.1016/j.ress.2024.110545_b21 article-title: Optimal design of experiments for optimization-based model calibration using Fisher information matrix publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107968 – volume: 25 start-page: 407 issue: 2 year: 2015 ident: 10.1016/j.ress.2024.110545_b57 article-title: A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models publication-title: Stat Comput doi: 10.1007/s11222-013-9440-2 – year: 2018 ident: 10.1016/j.ress.2024.110545_b65 |
| SSID | ssj0004957 |
| Score | 2.466187 |
| Snippet | In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 110545 |
| SubjectTerms | Engineering Sciences Enrichment Importance sampling Physics Sensitivity analysis Small data Trade-off |
| Title | A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation |
| URI | https://dx.doi.org/10.1016/j.ress.2024.110545 https://hal.science/hal-04808546 |
| Volume | 254 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9zXvQgPnE-RhBv0i1t0zY7luGYr110sFtImgQnYxuzevRvN1-aTgXx4KmlJGn5EvJ9bX8PhC5jqoDgGAeikDqguqcCYQvhQGlqQhUxmThu1cMoHY7p7SSZNFC_5sIArNLv_dWe7nZrf6Xro9ldTqfdRygOGNh_U5eHQfGT0gxcDDofXzAP-wKQ1Xby0NoTZyqMF7zRdmAEQMMnQGn6PTltPNefWV3aGeyiHV8v4rx6pD3U0PN9tP1NRfAAzXL8CjD0ygcCCy8zgiFBKVyuhNLBwhjsIVkYPGScri5INGNnhYOnyqOG3ETZMRQGqpFrYm8PUhwVx_EQjQfXT_1h4E0UgiKOaRkoZmsqQYiOIqKUFJTp2J4X9tArjCRMRyD5R5nIFJFCG1aYFP6XZsaYkMj4CDXni7k-RjjVhRFEhUrbKio2kUwZSQ1jqkikUCJqobCOHi-8wjgYXcx4DSV74RBxDhHnVcRb6GrdZ1npa_zZOqknhf9YJdwmgD_7XdgZXN8AJLWH-T2Ha8CpZwlN38OTfw5-irYiMAV2UO4z1CxXb_rcViqlbLul2Eab-c3dcPQJ0PjqLg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8IwGG8AD-rB-Iz4bIw3M9ij28qREAkqcBESbk27thFDgOD06N9uv65DTQwHT1uWrlu-Nv2-br8HQrcRkUBwjDyeCeUR1ZIeN4WwJxXRgQypiC23ajBMemPyOIknFdQpuTAAq3Rrf7Gm29XaXWm6aDaX02nzGYoDCvbfxObhqIq2SBymsANrfH7jPMwOIC395KG5Y84UIC_Y0jagC4DDx8Bp-js7VV_K76w273T30Z4rGHG7eKcDVFHzQ7T7Q0bwCM3a-A1w6IURBOZOZwRDhpI4X3GpvIXW2GGyMJjIWGFd0GjG1gsHT6WDDdmRMn1IDFwj28Q8HrQ4CpLjMRp370ednudcFLwsikjuSWqKKu77Kgx9KQUnVEXmPDOHVqaFT1UImn-E8lT6gitNM53AD9NUax34IjpBtflirk4RTlSmuS8DqUwZFelQJNRPNKUyiwWXPKyjoIwey5zEODhdzFiJJXtlEHEGEWdFxOvobn3PshDY2Ng6LgeF_ZomzGSAjffdmBFcPwA0tXvtPoNrQKqnMUk-grN_dn6NtnujQZ_1H4ZP52gnBIdgi-u-QLV89a4uTdmSiys7Lb8ASN3rww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sensitivity+analysis+based+trade-off+between+probabilistic+model+identification+and+statistical+estimation&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Surget%2C+Charles&rft.au=Dubreuil%2C+Sylvain&rft.au=Morio%2C+J%C3%A9r%C3%B4me&rft.au=Mattrand%2C+C%C3%A9cile&rft.date=2025-02-01&rft.pub=Elsevier&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=254&rft_id=info:doi/10.1016%2Fj.ress.2024.110545&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04808546v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |