A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation

In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interes...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 254; p. 110545
Main Authors Surget, Charles, Dubreuil, Sylvain, Morio, Jérôme, Mattrand, Cécile, Bourinet, Jean-Marc, Gayton, Nicolas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2024.110545

Cover

Abstract In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples. •A nested estimator allows one to consider a bi-level epistemic uncertainty source.•Enrichment in leading source answers the trade-off between simulation and physical experiment.•New data enrichment is driven by a cost-free variance based sensitivity analysis.•Multiple importance sampling allows for data reuse and auxiliary density adaptation.•The number of calls to the black box function induced by the approach is minimized.
AbstractList In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples.
In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples. •A nested estimator allows one to consider a bi-level epistemic uncertainty source.•Enrichment in leading source answers the trade-off between simulation and physical experiment.•New data enrichment is driven by a cost-free variance based sensitivity analysis.•Multiple importance sampling allows for data reuse and auxiliary density adaptation.•The number of calls to the black box function induced by the approach is minimized.
ArticleNumber 110545
Author Surget, Charles
Mattrand, Cécile
Gayton, Nicolas
Morio, Jérôme
Bourinet, Jean-Marc
Dubreuil, Sylvain
Author_xml – sequence: 1
  givenname: Charles
  orcidid: 0009-0000-8057-0254
  surname: Surget
  fullname: Surget, Charles
  email: charles.surget@onera.fr
  organization: ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France
– sequence: 2
  givenname: Sylvain
  surname: Dubreuil
  fullname: Dubreuil, Sylvain
  organization: ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France
– sequence: 3
  givenname: Jérôme
  orcidid: 0000-0002-8811-8956
  surname: Morio
  fullname: Morio, Jérôme
  organization: ONERA/DTIS, Université de Toulouse, Toulouse, F-31055, France
– sequence: 4
  givenname: Cécile
  orcidid: 0000-0002-0623-9245
  surname: Mattrand
  fullname: Mattrand, Cécile
  organization: Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, F-63000, France
– sequence: 5
  givenname: Jean-Marc
  orcidid: 0000-0002-4707-3050
  surname: Bourinet
  fullname: Bourinet, Jean-Marc
  organization: Université Clermont Auvergne, CNRS, SIGMA Clermont, LIMOS, Clermont-Ferrand, F-63000, France
– sequence: 6
  givenname: Nicolas
  surname: Gayton
  fullname: Gayton, Nicolas
  organization: Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, F-63000, France
BackLink https://hal.science/hal-04808546$$DView record in HAL
BookMark eNp9kD9PwzAQxS0EEqXwBZi8MqScE6dxJJYK8U-qxAKz5dhncVWaINsq6rfHobAwdHqn8_vd-d4FOx3GARm7FrAQIJa3m0XAGBcllHIhBNSyPmEzoZq2AFUtT9kM2loUqirhnF3EuAEA2dbNjPUrHnGIlGhHac_NYPp9pMg7E9HxFIzDYvSed5i-EAf-GcbOdNRTTGT5dnTYc3I4JPJkTaJxyDMcjynXk8X0HLNuf54u2Zk3fcSrX52z98eHt_vnYv369HK_Whe2qmQqnFK1MABYluBcZ6TCKtc2S2t9BwpL2dStVKZx0Bn0yvolVCAb772Arpqzm8PcD9Prz5C3h70eDenn1VpPPZAKVC2XO5G96uC1YYwxoNeW0s9v8_HUawF6Slhv9JSwnhLWh4QzWv5D_3Ydhe4OEOYAdoRBR0s4WHQU0CbtRjqGfwM0cJm7
CitedBy_id crossref_primary_10_1016_j_ress_2025_111034
crossref_primary_10_1016_j_ress_2025_110993
Cites_doi 10.1016/j.compstruc.2004.11.015
10.1038/s41524-018-0081-z
10.1016/j.ress.2012.11.024
10.1016/j.strusafe.2021.102104
10.1016/j.dss.2017.10.013
10.1016/S0304-3800(00)00419-1
10.1080/00273171.2020.1746902
10.1016/j.jcp.2010.03.003
10.1080/01621459.2000.10473909
10.1080/02331888.2015.1105803
10.1109/TEVC.2020.2979740
10.1016/j.probengmech.2009.04.006
10.1007/s00158-019-02270-2
10.1016/j.ress.2021.107733
10.1016/j.ress.2005.11.014
10.1615/Int.J.UncertaintyQuantification.2022043692
10.1016/j.matdes.2018.11.060
10.1016/j.eswa.2013.12.031
10.1016/j.ress.2011.08.008
10.1016/0013-7944(86)90217-1
10.1016/j.probengmech.2023.103440
10.1016/j.strusafe.2021.102116
10.1002/nme.5725
10.1109/TIM.2009.2016386
10.1016/j.cja.2017.04.005
10.1016/j.ress.2017.05.038
10.1016/j.ress.2016.06.005
10.1115/1.3443666
10.1007/s10708-014-9601-7
10.1109/TEVC.2018.2869001
10.1198/106186008X320456
10.1007/s10182-013-0216-y
10.1088/1681-7575/abd372
10.1002/sim.7263
10.1016/j.ress.2018.06.008
10.1016/j.envsoft.2015.07.010
10.1103/PhysRevLett.121.160605
10.1016/j.crme.2019.11.009
10.1016/j.artmed.2016.12.003
10.1016/j.nucengdes.2016.04.013
10.1016/j.ymssp.2017.04.042
10.1086/677956
10.1016/S0951-8320(96)00067-1
10.1016/j.probengmech.2007.10.011
10.1137/15M1048070
10.1016/j.ress.2021.107968
10.1007/s11222-013-9440-2
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.ress.2024.110545
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0836
ExternalDocumentID oai:HAL:hal-04808546v1
10_1016_j_ress_2024_110545
S0951832024006173
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
ID FETCH-LOGICAL-c334t-d8851a00e220ddba48e3e22c8e39cfb08e2475948a7d0baef8cf603047fff10b3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Tue Oct 14 20:54:19 EDT 2025
Wed Oct 29 21:11:24 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Sat Dec 21 15:58:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Small data
Enrichment
Sensitivity analysis
Trade-off
Importance sampling
Trade-of
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-d8851a00e220ddba48e3e22c8e39cfb08e2475948a7d0baef8cf603047fff10b3
ORCID 0000-0002-8811-8956
0000-0002-4707-3050
0000-0002-0623-9245
0009-0000-8057-0254
ParticipantIDs hal_primary_oai_HAL_hal_04808546v1
crossref_citationtrail_10_1016_j_ress_2024_110545
crossref_primary_10_1016_j_ress_2024_110545
elsevier_sciencedirect_doi_10_1016_j_ress_2024_110545
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sankararaman, Mahadevan (b28) 2013; 112
Mara, Tarantola, Annoni (b51) 2015; 72
Pasupa, Sunhem (b12) 2016
Shu, Xu, Meng (b14) 2018
Li, Lin, Chen, Chen, Lin (b19) 2018; 105
Song, Nelson, Staum (b69) 2016; 4
Li, Rabitz (b52) 2017; 167
Owen, Zhou (b55) 2000; 95
Fortuna, Graziani, Xibilia (b24) 2009; 58
Ditlevsen, Olesen (b66) 1986; 25
Paté-Cornell (b6) 1996; 54
Botev, Ridder (b3) 2017
Ionides (b60) 2008; 17
Morio, Balesdent (b46) 2015
Lee, Kim, Oh, Youn, Kim (b9) 2019; 60
Lai (b45) 2021; 56
Lemieux (b2) 2009
Stoudt, Pintar, Possolo (b11) 2021; 58
Li, Zhang, Zhu, Yu, Ma (b63) 2017; 30
Sobol (b47) 1993; 1
Li, Wang, Hu, Su, Li, Yue (b36) 2023; 72
De Rocquigny (b8) 2009; 2
Rothermel (b67) 1972
Pasanisi, De Rocquigny, Bousquet, Parent (b7) 2009; vol. 102
Dwivedi, Mallawaarachchi, Alvarado (b25) 2017; 36
Ackerberg (b56) 2009; 7
Zhang, Ling (b13) 2018; 4
Virkler, Hillberry, Goel (b64) 1979; 101
Lateh, Muda, Yusof, Muda, Azmi (b22) 2017; 892
Alibrandi, Mosalam (b18) 2018; 113
Saltelli, Ratto, Tarantola, Campolongo (b48) 2006; 91
Lebrun, Dutfoy (b49) 2009; 24
Demange-Chryst, Bachoc, Morio (b54) 2023; 33
Salvador, Piñol, Tarantola, Pla (b68) 2001; 136
Montáns, Chinesta, Gómez-Bombarelli, Kutz (b33) 2019; 347
Sarazin, Morio, Lagnoux, Balesdent, c Brevault (b35) 2021; 215
Apostolakis (b5) 1995
Li, Zhan, Wang, Jin, Zhang (b23) 2020; 24
Jyrkama, Pandey (b26) 2016; 303
Veach (b62) 1998
Heidenreich, Scindler, Sperlich (b43) 2013; 97
Míguez (b61) 2017
Au (b30) 2005; 83
Bourinet (b65) 2018
Silverman (b42) 1986
Rodriguez, Brandenburger, Behnke (b39) 2019
Koblents, Míguez (b57) 2015; 25
Shaikhina, Khovanova (b16) 2017; 75
Jin, Wang, Chugh, Guo, Miettinen (b40) 2019; 23
Gao (b20) 2018
Parke (b41) 2014; 81
Feng, Zhou, Dong (b15) 2019; 162
Vehtari, Simpson, Gelman, Yao, Gabry (b59) 2015
Menz, Dubreuil, Morio, Gogu, Bartoli, Chiron (b37) 2021; 93
Li, Sun, Sattar, Corchado (b58) 2014; 41
Nannapaneni, Mahadevan (b29) 2016; 155
Marco, Berkenkamp, Hennig, Schoellig, Krause, Schaal, Trimpe (b38) 2017
Kitchin, Lauriault (b10) 2015; 80
Der Kiureghian (b27) 2008; 23
Rubinstein, Kroese (b1) 2016
Chen, Tareen, Kinney (b17) 2018; 121
Chabridon, Balesdent, Bourinet, Morio, Gayton (b31) 2018; 178
Demange-Chryst, Bachoc, Morio (b70) 2023; 13
Zhang, Shields (b34) 2018; 98
Jakeman, Eldred, Xiu (b4) 2010; 229
Scott (b44) 2012
Gamboa, Janon, Klein, Lagnoux, Prieur (b53) 2016; 50
Jung, Lee (b21) 2021; 216
Yuan, Liu, Valdebenito, Gu, Beer (b32) 2021; 92
Mara, Tarantola (b50) 2012; 107
Míguez (10.1016/j.ress.2024.110545_b61) 2017
Nannapaneni (10.1016/j.ress.2024.110545_b29) 2016; 155
Veach (10.1016/j.ress.2024.110545_b62) 1998
Morio (10.1016/j.ress.2024.110545_b46) 2015
Scott (10.1016/j.ress.2024.110545_b44) 2012
Li (10.1016/j.ress.2024.110545_b52) 2017; 167
Apostolakis (10.1016/j.ress.2024.110545_b5) 1995
Sankararaman (10.1016/j.ress.2024.110545_b28) 2013; 112
Shaikhina (10.1016/j.ress.2024.110545_b16) 2017; 75
Chabridon (10.1016/j.ress.2024.110545_b31) 2018; 178
Pasanisi (10.1016/j.ress.2024.110545_b7) 2009; vol. 102
Marco (10.1016/j.ress.2024.110545_b38) 2017
Saltelli (10.1016/j.ress.2024.110545_b48) 2006; 91
Chen (10.1016/j.ress.2024.110545_b17) 2018; 121
Vehtari (10.1016/j.ress.2024.110545_b59) 2015
Shu (10.1016/j.ress.2024.110545_b14) 2018
Alibrandi (10.1016/j.ress.2024.110545_b18) 2018; 113
Jakeman (10.1016/j.ress.2024.110545_b4) 2010; 229
Lai (10.1016/j.ress.2024.110545_b45) 2021; 56
Au (10.1016/j.ress.2024.110545_b30) 2005; 83
Ditlevsen (10.1016/j.ress.2024.110545_b66) 1986; 25
Lee (10.1016/j.ress.2024.110545_b9) 2019; 60
Sobol (10.1016/j.ress.2024.110545_b47) 1993; 1
Der Kiureghian (10.1016/j.ress.2024.110545_b27) 2008; 23
Montáns (10.1016/j.ress.2024.110545_b33) 2019; 347
Li (10.1016/j.ress.2024.110545_b58) 2014; 41
Feng (10.1016/j.ress.2024.110545_b15) 2019; 162
Silverman (10.1016/j.ress.2024.110545_b42) 1986
Gao (10.1016/j.ress.2024.110545_b20) 2018
Rodriguez (10.1016/j.ress.2024.110545_b39) 2019
Salvador (10.1016/j.ress.2024.110545_b68) 2001; 136
Li (10.1016/j.ress.2024.110545_b23) 2020; 24
Zhang (10.1016/j.ress.2024.110545_b34) 2018; 98
Parke (10.1016/j.ress.2024.110545_b41) 2014; 81
Li (10.1016/j.ress.2024.110545_b63) 2017; 30
Kitchin (10.1016/j.ress.2024.110545_b10) 2015; 80
Lebrun (10.1016/j.ress.2024.110545_b49) 2009; 24
Pasupa (10.1016/j.ress.2024.110545_b12) 2016
Jung (10.1016/j.ress.2024.110545_b21) 2021; 216
Zhang (10.1016/j.ress.2024.110545_b13) 2018; 4
Fortuna (10.1016/j.ress.2024.110545_b24) 2009; 58
Mara (10.1016/j.ress.2024.110545_b50) 2012; 107
Ionides (10.1016/j.ress.2024.110545_b60) 2008; 17
Botev (10.1016/j.ress.2024.110545_b3) 2017
Mara (10.1016/j.ress.2024.110545_b51) 2015; 72
Heidenreich (10.1016/j.ress.2024.110545_b43) 2013; 97
Demange-Chryst (10.1016/j.ress.2024.110545_b54) 2023; 33
Lemieux (10.1016/j.ress.2024.110545_b2) 2009
Song (10.1016/j.ress.2024.110545_b69) 2016; 4
Demange-Chryst (10.1016/j.ress.2024.110545_b70) 2023; 13
Virkler (10.1016/j.ress.2024.110545_b64) 1979; 101
Rubinstein (10.1016/j.ress.2024.110545_b1) 2016
Menz (10.1016/j.ress.2024.110545_b37) 2021; 93
Jin (10.1016/j.ress.2024.110545_b40) 2019; 23
Jyrkama (10.1016/j.ress.2024.110545_b26) 2016; 303
Koblents (10.1016/j.ress.2024.110545_b57) 2015; 25
Stoudt (10.1016/j.ress.2024.110545_b11) 2021; 58
Yuan (10.1016/j.ress.2024.110545_b32) 2021; 92
De Rocquigny (10.1016/j.ress.2024.110545_b8) 2009; 2
Li (10.1016/j.ress.2024.110545_b19) 2018; 105
Gamboa (10.1016/j.ress.2024.110545_b53) 2016; 50
Li (10.1016/j.ress.2024.110545_b36) 2023; 72
Paté-Cornell (10.1016/j.ress.2024.110545_b6) 1996; 54
Owen (10.1016/j.ress.2024.110545_b55) 2000; 95
Dwivedi (10.1016/j.ress.2024.110545_b25) 2017; 36
Lateh (10.1016/j.ress.2024.110545_b22) 2017; 892
Rothermel (10.1016/j.ress.2024.110545_b67) 1972
Sarazin (10.1016/j.ress.2024.110545_b35) 2021; 215
Ackerberg (10.1016/j.ress.2024.110545_b56) 2009; 7
Bourinet (10.1016/j.ress.2024.110545_b65) 2018
References_xml – year: 2015
  ident: b59
  article-title: Pareto smoothed importance sampling
– volume: 347
  start-page: 845
  year: 2019
  end-page: 855
  ident: b33
  article-title: Data-driven modeling and learning in science and engineering
  publication-title: C R Mécanique
– volume: 162
  start-page: 300
  year: 2019
  end-page: 310
  ident: b15
  article-title: Using deep neural network with small dataset to predict material defects
  publication-title: Mater Des
– volume: 112
  start-page: 187
  year: 2013
  end-page: 199
  ident: b28
  article-title: Separating the contributions of variability and parameter uncertainty in probability distributions
  publication-title: Reliab Eng Syst Saf
– volume: 17
  start-page: 295
  year: 2008
  end-page: 311
  ident: b60
  article-title: Truncated importance sampling
  publication-title: J Comput Graph Statist
– volume: 1
  start-page: 407
  year: 1993
  end-page: 414
  ident: b47
  article-title: Sensitivity analysis for non-linear mathematical models
  publication-title: Math Model Comput Exp
– volume: 72
  year: 2023
  ident: b36
  article-title: Data-driven reliability assessment with scarce samples considering multidimensional dependence
  publication-title: Probab Eng Mech
– volume: 178
  start-page: 164
  year: 2018
  end-page: 178
  ident: b31
  article-title: Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 13
  year: 2023
  ident: b70
  article-title: Shapley effect estimation in reliability-oriented sensitivity analysis with correlated inputs by importance sampling
  publication-title: Int J Uncertain Quantif
– volume: 72
  start-page: 173
  year: 2015
  end-page: 183
  ident: b51
  article-title: Non-parametric methods for global sensitivity analysis of model output with dependent inputs
  publication-title: Environ Model Softw
– volume: 24
  start-page: 923
  year: 2020
  end-page: 937
  ident: b23
  article-title: Boosting data-driven evolutionary algorithm with localized data generation
  publication-title: IEEE Trans Evol Comput
– volume: 60
  start-page: 1619
  year: 2019
  end-page: 1644
  ident: b9
  article-title: Review of statistical model calibration and validation—From the perspective of uncertainty structures
  publication-title: Struct Multidiscip Optim
– volume: 229
  start-page: 4648
  year: 2010
  end-page: 4663
  ident: b4
  article-title: Numerical approach for quantification of epistemic uncertainty
  publication-title: J Comput Phys
– volume: 56
  start-page: 558
  year: 2021
  end-page: 578
  ident: b45
  article-title: Bootstrap confidence intervals for multilevel standardized effect size
  publication-title: Multivar Behav Res
– volume: 58
  year: 2021
  ident: b11
  article-title: Uncertainty evaluations from small datasets
  publication-title: Metrologia
– volume: 4
  start-page: 1
  year: 2018
  end-page: 8
  ident: b13
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: Npj Comput Mater
– volume: 23
  start-page: 351
  year: 2008
  end-page: 358
  ident: b27
  article-title: Analysis of structural reliability under parameter uncertainties
  publication-title: Probab Eng Mech
– volume: 95
  start-page: 135
  year: 2000
  end-page: 143
  ident: b55
  article-title: Safe and effective importance sampling
  publication-title: J Amer Statist Assoc
– year: 2018
  ident: b65
  article-title: Reliability analysis and optimal design under uncertainty-focus on adaptive surrogate-based approaches
– volume: 41
  start-page: 3944
  year: 2014
  end-page: 3954
  ident: b58
  article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches
  publication-title: Expert Syst Appl
– volume: 92
  year: 2021
  ident: b32
  article-title: Efficient procedure for failure probability function estimation in augmented space
  publication-title: Struct Saf
– volume: 81
  start-page: 516
  year: 2014
  end-page: 536
  ident: b41
  article-title: Experiments, simulations, and epistemic privilege
  publication-title: Philos Sci
– volume: 25
  start-page: 407
  year: 2015
  end-page: 425
  ident: b57
  article-title: A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models
  publication-title: Stat Comput
– start-page: 70
  year: 2019
  end-page: 82
  ident: b39
  article-title: Combining simulations and real-robot experiments for Bayesian optimization of bipedal gait stabilization
  publication-title: RoboCup 2018: Robot world cup XXII
– start-page: 1
  year: 2017
  end-page: 5
  ident: b61
  article-title: On the performance of nonlinear importance samplers and population Monte Carlo schemes
  publication-title: 2017 22nd International conference on digital signal processing
– volume: 23
  start-page: 442
  year: 2019
  end-page: 458
  ident: b40
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Trans Evol Comput
– volume: 75
  start-page: 51
  year: 2017
  end-page: 63
  ident: b16
  article-title: Handling limited datasets with neural networks in medical applications: A small-data approach
  publication-title: Artif Intell Med
– volume: 136
  start-page: 175
  year: 2001
  end-page: 189
  ident: b68
  article-title: Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands
  publication-title: Ecol Model
– volume: 36
  start-page: 2187
  year: 2017
  end-page: 2205
  ident: b25
  article-title: Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method
  publication-title: Stat Med
– volume: 30
  start-page: 1021
  year: 2017
  end-page: 1030
  ident: b63
  article-title: Reliability analysis based on a novel density estimation method for structures with correlations
  publication-title: Chin J Aeronaut
– volume: 107
  start-page: 115
  year: 2012
  end-page: 121
  ident: b50
  article-title: Variance-based sensitivity indices for models with dependent inputs
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: b20
  article-title: A nonparametric-based approach on the propagation of imprecise probabilities due to small datasets
– volume: 167
  start-page: 136
  year: 2017
  end-page: 157
  ident: b52
  article-title: Relationship between sensitivity indices defined by variance- and covariance-based methods
  publication-title: Reliab Eng Syst Saf
– volume: 4
  start-page: 1060
  year: 2016
  end-page: 1083
  ident: b69
  article-title: Shapley effects for global sensitivity analysis: Theory and computation
  publication-title: SIAM/ASA J Uncertain Quantif
– start-page: 1557
  year: 2017
  end-page: 1563
  ident: b38
  article-title: Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
  publication-title: 2017 IEEE international conference on robotics and automation
– volume: 215
  year: 2021
  ident: b35
  article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 54
  start-page: 95
  year: 1996
  end-page: 111
  ident: b6
  article-title: Uncertainties in risk analysis: Six levels of treatment
  publication-title: Reliab Eng Syst Saf
– year: 1972
  ident: b67
  publication-title: A mathematical model for predicting fire spread in wildland fuels
– volume: 892
  year: 2017
  ident: b22
  article-title: Handling a small dataset problem in prediction model by employ artificial data generation approach: A review
  publication-title: J Phys Conf Ser
– volume: 155
  start-page: 9
  year: 2016
  end-page: 20
  ident: b29
  article-title: Reliability analysis under epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 93
  year: 2021
  ident: b37
  article-title: Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes
  publication-title: Struct Saf
– volume: 83
  start-page: 1048
  year: 2005
  end-page: 1061
  ident: b30
  article-title: Reliability-based design sensitivity by efficient simulation
  publication-title: Comput Struct
– volume: 91
  start-page: 1109
  year: 2006
  end-page: 1125
  ident: b48
  article-title: Sensitivity analysis practices: Strategies for model-based inference
  publication-title: Reliab Eng Syst Saf
– year: 2016
  ident: b1
  article-title: Simulation and the Monte Carlo method
– volume: 25
  start-page: 177
  year: 1986
  end-page: 195
  ident: b66
  article-title: Statistical analysis of the virkler data on fatigue crack growth
  publication-title: Eng Fract Mech
– year: 1998
  ident: b62
  article-title: Robust Monte Carlo methods for light transport simulation
– volume: 121
  year: 2018
  ident: b17
  article-title: Density estimation on small data sets
  publication-title: Phys Rev Lett
– volume: 216
  year: 2021
  ident: b21
  article-title: Optimal design of experiments for optimization-based model calibration using Fisher information matrix
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2009
  end-page: 61
  ident: b2
  article-title: Quasi–Monte Carlo constructions
  publication-title: Monte Carlo and quasi-Monte Carlo sampling
– year: 2015
  ident: b46
  article-title: Estimation of rare event probabilities in complex aerospace and other systems: A practical approach
– volume: vol. 102
  start-page: 169
  year: 2009
  ident: b7
  article-title: Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice
  publication-title: ESREL 2009 conference, prague (cech rep.)
– start-page: 549
  year: 2012
  end-page: 569
  ident: b44
  article-title: Multivariate density estimation and visualization
  publication-title: Handbook of computational statistics: Concepts and methods
– volume: 33
  year: 2023
  ident: b54
  article-title: Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
  publication-title: Stat Comput
– year: 1986
  ident: b42
  article-title: Density estimation for statistics and data analysis
– volume: 50
  start-page: 881
  year: 2016
  end-page: 902
  ident: b53
  article-title: Statistical inference for Sobol’ pick-freeze Monte Carlo method
  publication-title: Statistics
– start-page: 1
  year: 2016
  end-page: 6
  ident: b12
  article-title: A comparison between shallow and deep architecture classifiers on small dataset
  publication-title: 2016 8th International conference on information technology and electrical engineering
– volume: 58
  start-page: 2444
  year: 2009
  end-page: 2451
  ident: b24
  article-title: Comparison of soft-sensor design methods for industrial plants using small data sets
  publication-title: IEEE Trans Instrum Meas
– volume: 113
  start-page: 1904
  year: 2018
  end-page: 1928
  ident: b18
  article-title: Kernel density maximum entropy method with generalized moments for evaluating probability distributions, including tails, from a small sample of data
  publication-title: Internat J Numer Methods Engrg
– year: 1995
  ident: b5
  article-title: A commentary on model uncertainty
  publication-title: Proceedings of workshop on model uncertainty
– volume: 24
  start-page: 577
  year: 2009
  end-page: 584
  ident: b49
  article-title: Do rosenblatt and nataf isoprobabilistic transformations really differ?
  publication-title: Probab Eng Mech
– volume: 97
  start-page: 403
  year: 2013
  end-page: 433
  ident: b43
  article-title: Bandwidth selection for kernel density estimation: a review of fully automatic selectors
  publication-title: Adv Stat Anal
– volume: 303
  start-page: 68
  year: 2016
  end-page: 74
  ident: b26
  article-title: On the separation of aleatory and epistemic uncertainties in probabilistic assessments
  publication-title: Nucl Eng Des
– year: 2018
  ident: b14
  article-title: Small sample learning in big data era
– start-page: 1
  year: 2017
  end-page: 6
  ident: b3
  article-title: Variance reduction
  publication-title: Wiley StatsRef: Statistics reference online
– volume: 2
  year: 2009
  ident: b8
  article-title: Quantifying uncertainty in an industrial approach: an emerging consensus in an old epistemological debate
  publication-title: Surv Perspect Integr Environ Soc
– volume: 7
  start-page: 343
  year: 2009
  end-page: 376
  ident: b56
  article-title: A new use of importance sampling to reduce computational burden in simulation estimation
  publication-title: QME
– volume: 101
  start-page: 148
  year: 1979
  end-page: 153
  ident: b64
  article-title: The statistical nature of fatigue crack propagation
  publication-title: J Eng Mater Technol
– volume: 80
  start-page: 463
  year: 2015
  end-page: 475
  ident: b10
  article-title: Small data in the era of big data
  publication-title: GeoJournal
– volume: 105
  start-page: 66
  year: 2018
  end-page: 76
  ident: b19
  article-title: Rebuilding sample distributions for small dataset learning
  publication-title: Decis Support Syst
– volume: 98
  start-page: 465
  year: 2018
  end-page: 483
  ident: b34
  article-title: On the quantification and efficient propagation of imprecise probabilities resulting from small datasets
  publication-title: Mech Syst Signal Process
– volume: 83
  start-page: 1048
  issue: 14
  year: 2005
  ident: 10.1016/j.ress.2024.110545_b30
  article-title: Reliability-based design sensitivity by efficient simulation
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2004.11.015
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ress.2024.110545_b13
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-018-0081-z
– volume: 112
  start-page: 187
  year: 2013
  ident: 10.1016/j.ress.2024.110545_b28
  article-title: Separating the contributions of variability and parameter uncertainty in probability distributions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2012.11.024
– volume: 92
  year: 2021
  ident: 10.1016/j.ress.2024.110545_b32
  article-title: Efficient procedure for failure probability function estimation in augmented space
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2021.102104
– volume: 105
  start-page: 66
  year: 2018
  ident: 10.1016/j.ress.2024.110545_b19
  article-title: Rebuilding sample distributions for small dataset learning
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2017.10.013
– volume: 136
  start-page: 175
  issue: 2
  year: 2001
  ident: 10.1016/j.ress.2024.110545_b68
  article-title: Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(00)00419-1
– start-page: 549
  year: 2012
  ident: 10.1016/j.ress.2024.110545_b44
  article-title: Multivariate density estimation and visualization
– year: 2018
  ident: 10.1016/j.ress.2024.110545_b14
– volume: 56
  start-page: 558
  issue: 4
  year: 2021
  ident: 10.1016/j.ress.2024.110545_b45
  article-title: Bootstrap confidence intervals for multilevel standardized effect size
  publication-title: Multivar Behav Res
  doi: 10.1080/00273171.2020.1746902
– volume: 229
  start-page: 4648
  issue: 12
  year: 2010
  ident: 10.1016/j.ress.2024.110545_b4
  article-title: Numerical approach for quantification of epistemic uncertainty
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.03.003
– volume: 95
  start-page: 135
  issue: 449
  year: 2000
  ident: 10.1016/j.ress.2024.110545_b55
  article-title: Safe and effective importance sampling
  publication-title: J Amer Statist Assoc
  doi: 10.1080/01621459.2000.10473909
– volume: 50
  start-page: 881
  issue: 4
  year: 2016
  ident: 10.1016/j.ress.2024.110545_b53
  article-title: Statistical inference for Sobol’ pick-freeze Monte Carlo method
  publication-title: Statistics
  doi: 10.1080/02331888.2015.1105803
– volume: 24
  start-page: 923
  issue: 5
  year: 2020
  ident: 10.1016/j.ress.2024.110545_b23
  article-title: Boosting data-driven evolutionary algorithm with localized data generation
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2020.2979740
– volume: 24
  start-page: 577
  issue: 4
  year: 2009
  ident: 10.1016/j.ress.2024.110545_b49
  article-title: Do rosenblatt and nataf isoprobabilistic transformations really differ?
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2009.04.006
– volume: 60
  start-page: 1619
  year: 2019
  ident: 10.1016/j.ress.2024.110545_b9
  article-title: Review of statistical model calibration and validation—From the perspective of uncertainty structures
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02270-2
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2024.110545_b35
  article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107733
– volume: 91
  start-page: 1109
  issue: 10
  year: 2006
  ident: 10.1016/j.ress.2024.110545_b48
  article-title: Sensitivity analysis practices: Strategies for model-based inference
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.014
– volume: vol. 102
  start-page: 169
  year: 2009
  ident: 10.1016/j.ress.2024.110545_b7
  article-title: Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice
– volume: 13
  issue: 3
  year: 2023
  ident: 10.1016/j.ress.2024.110545_b70
  article-title: Shapley effect estimation in reliability-oriented sensitivity analysis with correlated inputs by importance sampling
  publication-title: Int J Uncertain Quantif
  doi: 10.1615/Int.J.UncertaintyQuantification.2022043692
– volume: 162
  start-page: 300
  year: 2019
  ident: 10.1016/j.ress.2024.110545_b15
  article-title: Using deep neural network with small dataset to predict material defects
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.11.060
– volume: 41
  start-page: 3944
  issue: 8
  year: 2014
  ident: 10.1016/j.ress.2024.110545_b58
  article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.031
– volume: 107
  start-page: 115
  year: 2012
  ident: 10.1016/j.ress.2024.110545_b50
  article-title: Variance-based sensitivity indices for models with dependent inputs
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.08.008
– volume: 25
  start-page: 177
  issue: 2
  year: 1986
  ident: 10.1016/j.ress.2024.110545_b66
  article-title: Statistical analysis of the virkler data on fatigue crack growth
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(86)90217-1
– volume: 892
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b22
  article-title: Handling a small dataset problem in prediction model by employ artificial data generation approach: A review
  publication-title: J Phys Conf Ser
– volume: 72
  year: 2023
  ident: 10.1016/j.ress.2024.110545_b36
  article-title: Data-driven reliability assessment with scarce samples considering multidimensional dependence
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2023.103440
– volume: 93
  year: 2021
  ident: 10.1016/j.ress.2024.110545_b37
  article-title: Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2021.102116
– volume: 113
  start-page: 1904
  issue: 13
  year: 2018
  ident: 10.1016/j.ress.2024.110545_b18
  article-title: Kernel density maximum entropy method with generalized moments for evaluating probability distributions, including tails, from a small sample of data
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5725
– volume: 58
  start-page: 2444
  issue: 8
  year: 2009
  ident: 10.1016/j.ress.2024.110545_b24
  article-title: Comparison of soft-sensor design methods for industrial plants using small data sets
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2009.2016386
– volume: 30
  start-page: 1021
  issue: 3
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b63
  article-title: Reliability analysis based on a novel density estimation method for structures with correlations
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2017.04.005
– volume: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.ress.2024.110545_b8
  article-title: Quantifying uncertainty in an industrial approach: an emerging consensus in an old epistemological debate
  publication-title: Surv Perspect Integr Environ Soc
– year: 1986
  ident: 10.1016/j.ress.2024.110545_b42
– volume: 167
  start-page: 136
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b52
  article-title: Relationship between sensitivity indices defined by variance- and covariance-based methods
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.05.038
– volume: 155
  start-page: 9
  year: 2016
  ident: 10.1016/j.ress.2024.110545_b29
  article-title: Reliability analysis under epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.06.005
– year: 2015
  ident: 10.1016/j.ress.2024.110545_b46
– start-page: 1
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b61
  article-title: On the performance of nonlinear importance samplers and population Monte Carlo schemes
– year: 1995
  ident: 10.1016/j.ress.2024.110545_b5
  article-title: A commentary on model uncertainty
– start-page: 70
  year: 2019
  ident: 10.1016/j.ress.2024.110545_b39
  article-title: Combining simulations and real-robot experiments for Bayesian optimization of bipedal gait stabilization
– volume: 33
  issue: 103
  year: 2023
  ident: 10.1016/j.ress.2024.110545_b54
  article-title: Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
  publication-title: Stat Comput
– volume: 101
  start-page: 148
  issue: 2
  year: 1979
  ident: 10.1016/j.ress.2024.110545_b64
  article-title: The statistical nature of fatigue crack propagation
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.3443666
– volume: 80
  start-page: 463
  issue: 4
  year: 2015
  ident: 10.1016/j.ress.2024.110545_b10
  article-title: Small data in the era of big data
  publication-title: GeoJournal
  doi: 10.1007/s10708-014-9601-7
– volume: 23
  start-page: 442
  issue: 3
  year: 2019
  ident: 10.1016/j.ress.2024.110545_b40
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2869001
– volume: 17
  start-page: 295
  issue: 2
  year: 2008
  ident: 10.1016/j.ress.2024.110545_b60
  article-title: Truncated importance sampling
  publication-title: J Comput Graph Statist
  doi: 10.1198/106186008X320456
– year: 2016
  ident: 10.1016/j.ress.2024.110545_b1
– year: 2018
  ident: 10.1016/j.ress.2024.110545_b20
– volume: 97
  start-page: 403
  issue: 4
  year: 2013
  ident: 10.1016/j.ress.2024.110545_b43
  article-title: Bandwidth selection for kernel density estimation: a review of fully automatic selectors
  publication-title: Adv Stat Anal
  doi: 10.1007/s10182-013-0216-y
– volume: 58
  issue: 1
  year: 2021
  ident: 10.1016/j.ress.2024.110545_b11
  article-title: Uncertainty evaluations from small datasets
  publication-title: Metrologia
  doi: 10.1088/1681-7575/abd372
– volume: 36
  start-page: 2187
  issue: 14
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b25
  article-title: Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method
  publication-title: Stat Med
  doi: 10.1002/sim.7263
– volume: 178
  start-page: 164
  year: 2018
  ident: 10.1016/j.ress.2024.110545_b31
  article-title: Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.06.008
– start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2024.110545_b12
  article-title: A comparison between shallow and deep architecture classifiers on small dataset
– volume: 7
  start-page: 343
  issue: 4
  year: 2009
  ident: 10.1016/j.ress.2024.110545_b56
  article-title: A new use of importance sampling to reduce computational burden in simulation estimation
  publication-title: QME
– volume: 72
  start-page: 173
  year: 2015
  ident: 10.1016/j.ress.2024.110545_b51
  article-title: Non-parametric methods for global sensitivity analysis of model output with dependent inputs
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2015.07.010
– start-page: 1557
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b38
  article-title: Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
– volume: 121
  year: 2018
  ident: 10.1016/j.ress.2024.110545_b17
  article-title: Density estimation on small data sets
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.160605
– volume: 1
  start-page: 407
  year: 1993
  ident: 10.1016/j.ress.2024.110545_b47
  article-title: Sensitivity analysis for non-linear mathematical models
  publication-title: Math Model Comput Exp
– volume: 347
  start-page: 845
  issue: 11
  year: 2019
  ident: 10.1016/j.ress.2024.110545_b33
  article-title: Data-driven modeling and learning in science and engineering
  publication-title: C R Mécanique
  doi: 10.1016/j.crme.2019.11.009
– volume: 75
  start-page: 51
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b16
  article-title: Handling limited datasets with neural networks in medical applications: A small-data approach
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2016.12.003
– volume: 303
  start-page: 68
  year: 2016
  ident: 10.1016/j.ress.2024.110545_b26
  article-title: On the separation of aleatory and epistemic uncertainties in probabilistic assessments
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2016.04.013
– volume: 98
  start-page: 465
  year: 2018
  ident: 10.1016/j.ress.2024.110545_b34
  article-title: On the quantification and efficient propagation of imprecise probabilities resulting from small datasets
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.04.042
– year: 1998
  ident: 10.1016/j.ress.2024.110545_b62
– volume: 81
  start-page: 516
  issue: 4
  year: 2014
  ident: 10.1016/j.ress.2024.110545_b41
  article-title: Experiments, simulations, and epistemic privilege
  publication-title: Philos Sci
  doi: 10.1086/677956
– year: 2015
  ident: 10.1016/j.ress.2024.110545_b59
– start-page: 1
  year: 2009
  ident: 10.1016/j.ress.2024.110545_b2
  article-title: Quasi–Monte Carlo constructions
– year: 1972
  ident: 10.1016/j.ress.2024.110545_b67
– volume: 54
  start-page: 95
  issue: 2
  year: 1996
  ident: 10.1016/j.ress.2024.110545_b6
  article-title: Uncertainties in risk analysis: Six levels of treatment
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(96)00067-1
– volume: 23
  start-page: 351
  issue: 4
  year: 2008
  ident: 10.1016/j.ress.2024.110545_b27
  article-title: Analysis of structural reliability under parameter uncertainties
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2007.10.011
– start-page: 1
  year: 2017
  ident: 10.1016/j.ress.2024.110545_b3
  article-title: Variance reduction
– volume: 4
  start-page: 1060
  issue: 1
  year: 2016
  ident: 10.1016/j.ress.2024.110545_b69
  article-title: Shapley effects for global sensitivity analysis: Theory and computation
  publication-title: SIAM/ASA J Uncertain Quantif
  doi: 10.1137/15M1048070
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2024.110545_b21
  article-title: Optimal design of experiments for optimization-based model calibration using Fisher information matrix
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107968
– volume: 25
  start-page: 407
  issue: 2
  year: 2015
  ident: 10.1016/j.ress.2024.110545_b57
  article-title: A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models
  publication-title: Stat Comput
  doi: 10.1007/s11222-013-9440-2
– year: 2018
  ident: 10.1016/j.ress.2024.110545_b65
SSID ssj0004957
Score 2.466187
Snippet In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110545
SubjectTerms Engineering Sciences
Enrichment
Importance sampling
Physics
Sensitivity analysis
Small data
Trade-off
Title A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation
URI https://dx.doi.org/10.1016/j.ress.2024.110545
https://hal.science/hal-04808546
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9zXvQgPnE-RhBv0i1t0zY7luGYr110sFtImgQnYxuzevRvN1-aTgXx4KmlJGn5EvJ9bX8PhC5jqoDgGAeikDqguqcCYQvhQGlqQhUxmThu1cMoHY7p7SSZNFC_5sIArNLv_dWe7nZrf6Xro9ldTqfdRygOGNh_U5eHQfGT0gxcDDofXzAP-wKQ1Xby0NoTZyqMF7zRdmAEQMMnQGn6PTltPNefWV3aGeyiHV8v4rx6pD3U0PN9tP1NRfAAzXL8CjD0ygcCCy8zgiFBKVyuhNLBwhjsIVkYPGScri5INGNnhYOnyqOG3ETZMRQGqpFrYm8PUhwVx_EQjQfXT_1h4E0UgiKOaRkoZmsqQYiOIqKUFJTp2J4X9tArjCRMRyD5R5nIFJFCG1aYFP6XZsaYkMj4CDXni7k-RjjVhRFEhUrbKio2kUwZSQ1jqkikUCJqobCOHi-8wjgYXcx4DSV74RBxDhHnVcRb6GrdZ1npa_zZOqknhf9YJdwmgD_7XdgZXN8AJLWH-T2Ha8CpZwlN38OTfw5-irYiMAV2UO4z1CxXb_rcViqlbLul2Eab-c3dcPQJ0PjqLg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8IwGG8AD-rB-Iz4bIw3M9ij28qREAkqcBESbk27thFDgOD06N9uv65DTQwHT1uWrlu-Nv2-br8HQrcRkUBwjDyeCeUR1ZIeN4WwJxXRgQypiC23ajBMemPyOIknFdQpuTAAq3Rrf7Gm29XaXWm6aDaX02nzGYoDCvbfxObhqIq2SBymsANrfH7jPMwOIC395KG5Y84UIC_Y0jagC4DDx8Bp-js7VV_K76w273T30Z4rGHG7eKcDVFHzQ7T7Q0bwCM3a-A1w6IURBOZOZwRDhpI4X3GpvIXW2GGyMJjIWGFd0GjG1gsHT6WDDdmRMn1IDFwj28Q8HrQ4CpLjMRp370ednudcFLwsikjuSWqKKu77Kgx9KQUnVEXmPDOHVqaFT1UImn-E8lT6gitNM53AD9NUax34IjpBtflirk4RTlSmuS8DqUwZFelQJNRPNKUyiwWXPKyjoIwey5zEODhdzFiJJXtlEHEGEWdFxOvobn3PshDY2Ng6LgeF_ZomzGSAjffdmBFcPwA0tXvtPoNrQKqnMUk-grN_dn6NtnujQZ_1H4ZP52gnBIdgi-u-QLV89a4uTdmSiys7Lb8ASN3rww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sensitivity+analysis+based+trade-off+between+probabilistic+model+identification+and+statistical+estimation&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Surget%2C+Charles&rft.au=Dubreuil%2C+Sylvain&rft.au=Morio%2C+J%C3%A9r%C3%B4me&rft.au=Mattrand%2C+C%C3%A9cile&rft.date=2025-02-01&rft.pub=Elsevier&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=254&rft_id=info:doi/10.1016%2Fj.ress.2024.110545&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04808546v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon