An impact of Jacques Raynal on nuclear data evaluation

Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. A, Hadrons and nuclei Vol. 57; no. 6
Main Authors Capote, R., Quesada, J. M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1434-6001
1434-601X
DOI10.1140/epja/s10050-021-00486-9

Cover

Abstract Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on 238 U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend.
AbstractList Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on 238U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend.
Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on 238 U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend.
ArticleNumber 210
Author Quesada, J. M.
Capote, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Capote
  fullname: Capote, R.
  email: r.capotenoy@iaea.org
  organization: NAPC–Nuclear Data Section, International Atomic Energy Agency
– sequence: 2
  givenname: J. M.
  surname: Quesada
  fullname: Quesada, J. M.
  organization: Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla
BookMark eNqNkF9LwzAUR4NMcJt-BgM-1920ado--DCGfxkIouBbuE1upaNra9IK-_Z2qyj4ok_Jw-9cDmfGJnVTE2PnAi6FkLCgdoMLLwBiCCAUAYBMVZAdsamQkQwUiNfJ9x_ECZt5v4FhFWZqytSy5uW2RdPxpuAPaN578vwJdzVWvKl53ZuK0HGLHXL6wKrHrmzqU3ZcYOXp7Ouds5eb6-fVXbB-vL1fLdeBiSLZBVZREcvUUiiEoQITQLK5NVGekgUZCWMLIGkyNAgSTG6IZCaVkiGluY2jObsY77au2Zt1etP0bnDzOoylgiRJQhhWV-PKuMZ7R4U2ZXfw7ByWlRag96n0PpUeU-khlT6k0tnAJ7_41pVbdLt_kOlI-oGo38j9-P2FfgIa0IPb
CitedBy_id crossref_primary_10_1140_epja_s10050_021_00596_4
Cites_doi 10.1080/00223131.2002.10875054
10.1016/j.nds.2018.02.001
10.1103/PhysRevC.72.064610
10.1103/PhysRevC.102.059901
10.1016/0029-5582(62)90153-0
10.1103/PhysRevC.87.054611
10.1016/S0010-4655(03)00157-7
10.1016/j.nds.2014.07.065
10.1103/PhysRevC.65.034616
10.3938/jkps.59.1019
10.1051/epjconf/202023915003
10.1016/0375-9474(86)90009-6
10.1103/PhysRevC.8.859
10.1016/j.nds.2014.04.003
10.1103/PhysRevC.94.014612
10.1103/PhysRev.87.366
10.1016/j.nds.2012.11.002
10.1103/PhysRevC.67.067601
10.1088/0954-3899/27/8/402
10.1103/PhysRevC.72.024604
10.1103/PhysRevC.101.064618
10.1088/0954-3899/30/7/007
10.1103/RevModPhys.37.679
10.1103/PhysRevC.75.034616
10.1051/epjconf/20136900008
10.1016/j.nds.2007.11.003
10.1051/epjconf/202023903003
10.1103/PhysRevLett.8.171
10.1016/j.nds.2014.04.055
10.1103/PhysRevC.94.064605
10.1103/PhysRevC.76.057602
10.1103/PhysRevC.11.426
10.1103/PhysRevC.12.744
10.1051/epjconf/20134202005
10.1016/j.nds.2018.02.005
10.1103/PhysRevC.92.044617
10.1080/18811248.2008.9711442
10.1088/1361-6471/ab0010
10.1016/j.nds.2009.10.004
10.1103/PhysRevLett.57.3015
10.1016/j.nds.2018.02.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1140/epja/s10050-021-00486-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-601X
ExternalDocumentID 10_1140_epja_s10050_021_00486_9
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
199
1SB
203
29G
29Q
29~
2J2
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RIG
RNS
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7Y
ZMTXR
~8M
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
EBLON
ID FETCH-LOGICAL-c334t-d6ef548de211cefa70aedbdc3b8ed0431cdf0e4c9aca040cbcee4946642e8bd53
IEDL.DBID U2A
ISSN 1434-6001
IngestDate Thu Sep 25 00:50:53 EDT 2025
Wed Oct 01 02:16:59 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Fri Feb 21 02:48:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-d6ef548de211cefa70aedbdc3b8ed0431cdf0e4c9aca040cbcee4946642e8bd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2546077720
PQPubID 2043701
ParticipantIDs proquest_journals_2546077720
crossref_citationtrail_10_1140_epja_s10050_021_00486_9
crossref_primary_10_1140_epja_s10050_021_00486_9
springer_journals_10_1140_epja_s10050_021_00486_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Hadrons and Nuclei
PublicationTitle The European physical journal. A, Hadrons and nuclei
PublicationTitleAbbrev Eur. Phys. J. A
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References N. T. Okumusoglu, F. Korkmaz Gorur, J. Birchall, E.Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, “ Angular distributions of protons scattered by 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}$$\end{document}Ar nuclei with excitation of the 2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^+$$\end{document} (1.46 MeV) and 3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^-$$\end{document} (3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV,” Phys. Rev. C75, 034616 (2007)
SoukhovitskiĩEShCapoteRQuesadaJMChibaSMartyanovDSNucleon scattering on actinides using a dispersive optical model with extended couplingsPhys. Rev. C2016940646052016PhRvC..94f4605S10.1103/PhysRevC.94.064605
J. Raynal, H. Sherif, Proc. Sixth International Symp. on polarization phenomena in nuclear physics, Osaka, Japan, 1985, J. Phys. Soc. Jpn. Suppl. 55, 922 (1986)
J.M. Quesada, R. Capote, A. Molina, M. Lozano, J. Raynal, Analytical expressions for the dispersive contributions to the nucleon–nucleus optical potential. Phys. Rev. C 67, 067601 (2003). https://doi.org/10.1103/PhysRevC.67.067601
LeeJ-YSoukhovitskiĩEShKimYCapoteRChibaSQuesadaJMSelf-consistent analyses of nuclear level structures, and nucleon interaction data of even–even sn isotopesJ. Kor. Phys. Soc.2011592101910222011JKPS...59.1019L10.3938/jkps.59.1019
R. Capote, A. Molina, J. M. Quesada, “ A general numerical solution of dispersion relations for the nuclear optical model,” J. Phys.G: Nucl. Part. Phys. 27, B15 (2001)
ChadwickMBCapoteRTrkovACIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogenNucl. Data Sheets20181481892132018NDS...148..189C10.1016/j.nds.2018.02.003
A. Molina, R. Capote, A. Molina, M. Lozano, Dispersion relations in the nuclear optical model. Comp. Phys. Comm. 153, 97–105 (2003). https://doi.org/10.1016/S0010-4655(03)00157-7
HauserWFeshbachHPhys. Rev.1952873661952PhRv...87..366H10.1103/PhysRev.87.366
MoldauerPADirect reaction effects on compound cross sectionsPhys. Rev. C1975127441975PhRvC..12..744M10.1103/PhysRevC.12.744
N. Otuka, E. Dupont, V. Semkova, B. Pritychenko et al., “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC),” Nucl. Data Sheets 120, 272–276 (2014). Data available online (e.g., at https://www-nds.iaea.org/exfor/)
J. Raynal, “ Spin-orbit interaction in the inelastic nucleon scattering (IAEA-SMR-8/8),” in “ The structure of nuclei”, report STI/PUB/305, International Atomic Energy Agency, Vienna, Austria, 1972, pp.75–116. Lectures presented at an International Course on Nuclear Theory, Trieste, 13 January - 12 March 1971, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste
A. Hill, D. Edens, INCH code, Oxford (1967), unpublished
M. Fleming, M.B. Chadwick, D. Brown, R. Capote, Z. Ge, M.W. Herman, A. Ignatyuk, T. Ivanova, O. Iwamoto, A.J. Koning, A. Plompen, A. Trkov and all of the contributors to the CIELO project, “Results of the Collaborative International Evaluated Library Organization CIELO project,” EPJ Web of Conf. 239, 15003 (2020)
R. Capote, A. Trkov et al., IAEA CIELO evaluation of neutron-induced reactions on 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U and 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U targets for incident energies up to 30 MeV. Nucl. Data Sheets 148, 254–292 (2018). https://doi.org/10.1016/j.nds.2018.02.005
X. Zhao, W. Sun, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, R. Capote, Analysis of neutron bound states of 208\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}$$\end{document}Pb by a dispersive optical model potential. J. Phys. G. 46, 055103 (2019). https://doi.org/10.1088/1361-6471/ab0010
J. Raynal, “Optical-model and coupled-channel calculations in nuclear physics (IAEA-SMR-9/8),” in “Computing as a Language of Physics”, report STI/PUB/306, International Atomic Energy Agency, Vienna, Austria, 1972, pp. 281–322. Lectures presented at an International Seminar Course, Trieste, 2–20, Organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP) (Trieste, ECIS Code Distributed by the NEA DATA Bank (OECD, Paris), August 1971)
E. Sh. Soukhovitskii, S. Chiba, J.-Y. Lee, O. Iwamoto, and T. Fukahori, “ Global coupled-channel potential for nucleon-actinide interaction from 1 keV to 200 MeV”, J. Phys. G: Nucl. Part. Phys. 30, 905–920 (2004), RIPL 2601 potential
X. Zhao, W. Sun, R. Capote, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, Dispersive optical model description of nucleon scattering on Pb and Bi isotopes. Phys. Rev. C 101, 064618 (2020). https://doi.org/10.1103/PhysRevC.101.064618
R. Li, W. Sun, ESh Soukhovitskiĩ, J.M. Quesada, R. Capote, Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes. Phys. Rev. C 87, 054611 (2013). https://doi.org/10.1103/PhysRevC.87.054611
J. Raynal, “ Coupled channel calculations and computer code ECIS,” Lectures presented at the Workshop on applied nuclear theory and nuclear model calculations, 15 February - 18 March 1988, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste
T. Tamura, Oak Ridge Natioal Laboratory report ORNL-4152 (1967)
E. Sh. Soukhovitskiĩ, S. Chiba, O. Iwamoto, K. Shibata, T. Fukahori, G.B. Morogovskiĩ, “ Programs OPTMAN and SHEMMAN Version 8,” Technical report JAERI-Data/Code 2005-002, Japan Atomic Energy Research Institute (2005)
E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Phys. Atom. Nucl. 59, 228 (1996)
KawanoTTalouPWeidenmüllerHARandom-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo techniquePhys. Rev. C2015920446172015PhRvC..92d4617K10.1103/PhysRevC.92.044617
E. Sh. Soukhovitskiĩ, G.B. Morogovskiĩ, S. Chiba, O. Iwamoto, T. Fukahori. “ Physics and numerical methods of OPTMAN: a coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitation.” Technical report JAERI-Data/Code 2004-002, Japan Atomic Energy Research Institute (2004)
CapoteRTrkovAElastic and inelastic scattering of neutrons on 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U nucleusEPJ Web Conf.2014690000810.1051/epjconf/20136900008
BrownDENDF/B-VIII.0: The 8th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8^{th}$$\end{document} major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering dataNucl. Data Sheets201814811422018NDS...148....1B10.1016/j.nds.2018.02.001
CapoteRTrkovASinMHermanMDaskalakisADanonYPhysics of neutron interactions with 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U: new developments and challengesNucl. Data Sheets201411826312014NDS...118...26C10.1016/j.nds.2014.04.003
E.Sh. Soukhovitskiĩ, S. Chiba, R. Capote, J.M. Quesada, S. Kunieda, G.B. Morogovskiĩ, Technical Report JAERI-Data/Code 2008-025, Japan Atomic Energy Research Institute (2008)
T. Kawano, “ Program CoH”
ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, Dispersive coupled-channel analysis of nucleon scattering from 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}$$\end{document}Th up to 200 MeV. Phys. Rev. C 72, 024604 (2005). https://doi.org/10.1103/PhysRevC.72.024604
E. Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, D. S. Martyanov, “ Erratum: Nucleon scattering on actinides using a dispersive optical model with extended couplings, [Phys. Rev. C 94, 064605 (2016)],” Phys. Rev. C102, 059901(E) (2020)
EngelbrechtCAWeidenmüllerHAHauser–Feshbach theory and Ericson fluctuations in the presence of direct reactionsPhys. Rev. C197388591973PhRvC...8..859E10.1103/PhysRevC.8.859
R. Capote, ESh Soukhovitskiĩ, J.M. Quesada, S. Chiba, Is a global coupled-channel dispersive optical model potential for actinides feasible?”. Phys. Rev. C 72, 064610 (2005). https://doi.org/10.1103/PhysRevC.72
R Cabezas (486_CR11) 1988; 5
486_CR42
486_CR43
486_CR40
AM Lane (486_CR32) 1962; 8
486_CR46
486_CR44
PA Moldauer (486_CR5) 1975; 11
C Mahaux (486_CR14) 1986; 449
T Tamura (486_CR12) 1965; 37
486_CR39
486_CR38
486_CR53
CA Engelbrecht (486_CR47) 1973; 8
486_CR52
486_CR13
486_CR57
486_CR56
T Kawano (486_CR45) 2015; 92
486_CR50
W Hauser (486_CR51) 1952; 87
ESh Soukhovitskiĩ (486_CR35) 2016; 94
486_CR20
486_CR21
486_CR24
AJ Koning (486_CR10) 2012; 113
486_CR25
486_CR22
486_CR23
MW Herman (486_CR9) 2007; 108
PA Moldauer (486_CR6) 1975; 12
R Capote (486_CR48) 2014; 69
486_CR17
486_CR18
486_CR59
486_CR16
486_CR19
486_CR4
486_CR31
JM Quesada (486_CR54) 2014; 118
486_CR7
486_CR30
486_CR8
486_CR36
486_CR34
DS Martyanov (486_CR37) 2020; 239
J-Y Lee (486_CR41) 2011; 59
486_CR1
486_CR2
MB Chadwick (486_CR55) 2018; 148
486_CR3
AM Lane (486_CR33) 1962; 35
R Capote (486_CR49) 2014; 118
486_CR28
486_CR29
486_CR26
486_CR27
C Mahaux (486_CR15) 1986; 57
D Brown (486_CR58) 2018; 148
References_xml – reference: ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, Dispersive coupled-channel analysis of nucleon scattering from 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}$$\end{document}Th up to 200 MeV. Phys. Rev. C 72, 024604 (2005). https://doi.org/10.1103/PhysRevC.72.024604
– reference: N. T. Okumusoglu, F. Korkmaz Gorur, J. Birchall, E.Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, “ Angular distributions of protons scattered by 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}$$\end{document}Ar nuclei with excitation of the 2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^+$$\end{document} (1.46 MeV) and 3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^-$$\end{document} (3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV,” Phys. Rev. C75, 034616 (2007)
– reference: A. Molina, R. Capote, A. Molina, M. Lozano, Dispersion relations in the nuclear optical model. Comp. Phys. Comm. 153, 97–105 (2003). https://doi.org/10.1016/S0010-4655(03)00157-7
– reference: T. Kawano, R. Capote, S. Hilaire, P. Chau Huu-Tai, “ Statistical Hauser–Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies,” Phys. Rev. C94, 014612 (2016). https://doi.org/10.1103/PhysRevC.94.014612
– reference: KawanoTTalouPWeidenmüllerHARandom-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo techniquePhys. Rev. C2015920446172015PhRvC..92d4617K10.1103/PhysRevC.92.044617
– reference: N. Otuka, E. Dupont, V. Semkova, B. Pritychenko et al., “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC),” Nucl. Data Sheets 120, 272–276 (2014). Data available online (e.g., at https://www-nds.iaea.org/exfor/)
– reference: J.M. Quesada, R. Capote, E. Sh, Soukhovitskiĩ, S. Chiba, Approximate Lane consistency of the dispersive coupled-channels potential for actinides. Phys. Rev. C 76, 057602 (2007). https://doi.org/10.1103/PhysRevC.76.057602
– reference: CapoteRTrkovAElastic and inelastic scattering of neutrons on 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U nucleusEPJ Web Conf.2014690000810.1051/epjconf/20136900008
– reference: J.M. Quesada, R. Capote, A. Molina, M. Lozano, J. Raynal, Analytical expressions for the dispersive contributions to the nucleon–nucleus optical potential. Phys. Rev. C 67, 067601 (2003). https://doi.org/10.1103/PhysRevC.67.067601
– reference: R. Li, W. Sun, ESh Soukhovitskiĩ, J.M. Quesada, R. Capote, Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes. Phys. Rev. C 87, 054611 (2013). https://doi.org/10.1103/PhysRevC.87.054611
– reference: CapoteRTrkovASinMHermanMDaskalakisADanonYPhysics of neutron interactions with 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U: new developments and challengesNucl. Data Sheets201411826312014NDS...118...26C10.1016/j.nds.2014.04.003
– reference: J. Raynal, “Optical-model and coupled-channel calculations in nuclear physics (IAEA-SMR-9/8),” in “Computing as a Language of Physics”, report STI/PUB/306, International Atomic Energy Agency, Vienna, Austria, 1972, pp. 281–322. Lectures presented at an International Seminar Course, Trieste, 2–20, Organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP) (Trieste, ECIS Code Distributed by the NEA DATA Bank (OECD, Paris), August 1971)
– reference: MoldauerPAWhy the Hauser–Feshbach formula worksPhys. Rev. C1975114261975PhRvC..11..426M10.1103/PhysRevC.11.426
– reference: E. Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, D. S. Martyanov, “ Erratum: Nucleon scattering on actinides using a dispersive optical model with extended couplings, [Phys. Rev. C 94, 064605 (2016)],” Phys. Rev. C102, 059901(E) (2020)
– reference: MahauxCNgôHSatchlerGRCausality and the threshold anomaly of the nucleus–nucleus potentialNucl. Phys. A19864493541986NuPhA.449..354M10.1016/0375-9474(86)90009-6
– reference: T. Tamura, Oak Ridge Natioal Laboratory report ORNL-4152 (1967)
– reference: TamuraTAnalyses of the scattering of nuclear particles by collective nuclei in terms of the coupled-channel calculationRev. Mod. Phys.1965376797081965RvMP...37..679T18464310.1103/RevModPhys.37.679
– reference: A. Molina, R. Capote, J.M. Quesada, M. Lozano, Dispersive spherical optical model of neutron scattering from 27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{27}$$\end{document}Al up to 250 MeV. Phys. Rev. C 65, 034616 (2002). https://doi.org/10.1103/PhysRevC.65.034616
– reference: ChadwickMBCapoteRTrkovACIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogenNucl. Data Sheets20181481892132018NDS...148..189C10.1016/j.nds.2018.02.003
– reference: E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Phys. Atom. Nucl. 59, 228 (1996)
– reference: J. Raynal, “ Spin-orbit interaction in the inelastic nucleon scattering (IAEA-SMR-8/8),” in “ The structure of nuclei”, report STI/PUB/305, International Atomic Energy Agency, Vienna, Austria, 1972, pp.75–116. Lectures presented at an International Course on Nuclear Theory, Trieste, 13 January - 12 March 1971, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste
– reference: EngelbrechtCAWeidenmüllerHAHauser–Feshbach theory and Ericson fluctuations in the presence of direct reactionsPhys. Rev. C197388591973PhRvC...8..859E10.1103/PhysRevC.8.859
– reference: E. Sh. Soukhovitskii, S. Chiba, J.-Y. Lee, O. Iwamoto, and T. Fukahori, “ Global coupled-channel potential for nucleon-actinide interaction from 1 keV to 200 MeV”, J. Phys. G: Nucl. Part. Phys. 30, 905–920 (2004), RIPL 2601 potential
– reference: LaneAMPhys. Rev. Lett.196281711962PhRvL...8..171L10.1103/PhysRevLett.8.171
– reference: M. Salvatores et al., “ Uncertainty and target accuracy assesment for innovative systems using recent covariance data evaluations”, Int Evaluat Cooper., 26, NEA no. 6410, OECD, NEA, Paris, France (2008)
– reference: M. Fleming, M.B. Chadwick, D. Brown, R. Capote, Z. Ge, M.W. Herman, A. Ignatyuk, T. Ivanova, O. Iwamoto, A.J. Koning, A. Plompen, A. Trkov and all of the contributors to the CIELO project, “Results of the Collaborative International Evaluated Library Organization CIELO project,” EPJ Web of Conf. 239, 15003 (2020)
– reference: R. Capote, A. Molina, J. M. Quesada, “ A general numerical solution of dispersion relations for the nuclear optical model,” J. Phys.G: Nucl. Part. Phys. 27, B15 (2001)
– reference: I. Thompson, FRESCO – Coupled Reaction Channels Calculations. Code and documentation available at www.fresco.org.uk
– reference: E.Sh. Soukhovitskiĩ, S. Chiba, R. Capote, J.M. Quesada, S. Kunieda, G.B. Morogovskiĩ, Technical Report JAERI-Data/Code 2008-025, Japan Atomic Energy Research Institute (2008)
– reference: T. Kawano, “ Program CoH”
– reference: LeeJ-YSoukhovitskiĩEShKimYCapoteRChibaSQuesadaJMSelf-consistent analyses of nuclear level structures, and nucleon interaction data of even–even sn isotopesJ. Kor. Phys. Soc.2011592101910222011JKPS...59.1019L10.3938/jkps.59.1019
– reference: R. Capote, A. Trkov et al., IAEA CIELO evaluation of neutron-induced reactions on 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U and 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U targets for incident energies up to 30 MeV. Nucl. Data Sheets 148, 254–292 (2018). https://doi.org/10.1016/j.nds.2018.02.005
– reference: MartyanovDSSoukhovitskiĩEShCapoteRQuesadaJMChibaSMultiband coupling and nculear softness in optical model calculations for even–even and odd-A actinidesEPJ Web Conf.20202390300310.1051/epjconf/202023903003
– reference: E. Sh. Soukhovitskiĩ, G.B. Morogovskiĩ, S. Chiba, O. Iwamoto, T. Fukahori. “ Physics and numerical methods of OPTMAN: a coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitation.” Technical report JAERI-Data/Code 2004-002, Japan Atomic Energy Research Institute (2004)
– reference: CabezasRIvanovaSPInfluence of the nuclear potential deformation on the compound nuclesu cross sectionNucleus198853
– reference: E. Sh. Soukhovitskiĩ, S. Chiba, O. Iwamoto, K. Shibata, T. Fukahori, G.B. Morogovskiĩ, “ Programs OPTMAN and SHEMMAN Version 8,” Technical report JAERI-Data/Code 2005-002, Japan Atomic Energy Research Institute (2005)
– reference: HermanMWCapoteRCarlsonBVObložinskýPSinMTrkovAWienkeHZerkinVEMPIRE: nuclear reaction model code system for data evaluationNucl. Data Sheets2007108265527152007NDS...108.2655H10.1016/j.nds.2007.11.003
– reference: MahauxCSartorRCalculation of the shell-model potential from the optical-model potentialPhys. Rev. Lett.19865730151986PhRvL..57.3015M10.1103/PhysRevLett.57.3015
– reference: J. Raynal, “ ECIS96,” Specialist’ meeting on the nucleon nucleus optical model up to 200 MeV, Bruyéres-le-Châtel (France), 13–15 November 1996
– reference: MoldauerPADirect reaction effects on compound cross sectionsPhys. Rev. C1975127441975PhRvC..12..744M10.1103/PhysRevC.12.744
– reference: J. Raynal, H. Sherif, Proc. Sixth International Symp. on polarization phenomena in nuclear physics, Osaka, Japan, 1985, J. Phys. Soc. Jpn. Suppl. 55, 922 (1986)
– reference: J. Raynal, “ Coupled channel calculations and computer code ECIS,” Lectures presented at the Workshop on applied nuclear theory and nuclear model calculations, 15 February - 18 March 1988, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste
– reference: R. Capote, M.W. Herman, P. Obložinský et al., “ RIPL–Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluations,” Nucl. Data Sheets 110, 3107–3214 (2009) (see https://www-nds.iaea.org/RIPL-3)
– reference: P.A. Moldauer, in “ Nuclear Theory for Applications 1980,” report IAEA-SMR-68, Proceedings of the interregional Advanced Training Course on Applications of Nuclear Theory to Nuclear Data for Calculations for Reactor Design held at Trieste, 28 January-22 February 1980, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste
– reference: R. Capote, ESh Soukhovitskiĩ, J.M. Quesada, S. Chiba, Is a global coupled-channel dispersive optical model potential for actinides feasible?”. Phys. Rev. C 72, 064610 (2005). https://doi.org/10.1103/PhysRevC.72.064610
– reference: R. Capote, M. Sin, A. Trkov, M. W. Herman, D. Bernard, G. Noguere, A. Daskalakis, Y. Danon, “ Evaluation of neutron induced reactions on U-238 nucleus,” Proc. NEMEA-7 Workshop NEA/NSC/DOC(2014)13, NEA, OECD (2014)
– reference: R. Capote, S. Chiba, ESh Soukhovitskiĩ, J.M. Quesada, E. Bauge, A global dispersive coupled-channel optical model potential for actinides. J. Nucl. Sci. Tech. 45, 333–340 (2008). https://doi.org/10.1080/18811248.2008.9711442
– reference: J.M. Quesada, E.Sh. Soukhovitskiĩ, R. Capote, S. Chiba, “ A dispersive optical model potential for nucleon induced reactions on 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U and 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}$$\end{document}Th nuclei with full coupling,” EPJ Web of Conf. 42, 02005 (2013), WONDER2012 proceedings
– reference: A. Hill, D. Edens, INCH code, Oxford (1967), unpublished
– reference: LaneAMNucl. Phys.19623567610.1016/0029-5582(62)90153-0
– reference: X. Zhao, W. Sun, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, R. Capote, Analysis of neutron bound states of 208\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}$$\end{document}Pb by a dispersive optical model potential. J. Phys. G. 46, 055103 (2019). https://doi.org/10.1088/1361-6471/ab0010
– reference: QuesadaJMCapoteRSoukhovitskiĩEShChibaSRotational-vibrational description of nucleon scattering on actinide nuclei using a dispersive coupled-channel optical modelNucl. Data Sheets20141182702722014NDS...118..270Q10.1016/j.nds.2014.04.055
– reference: BrownDENDF/B-VIII.0: The 8th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8^{th}$$\end{document} major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering dataNucl. Data Sheets201814811422018NDS...148....1B10.1016/j.nds.2018.02.001
– reference: E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Sov. J. Nucl. Phys. 54, 570 (1991)
– reference: SoukhovitskiĩEShCapoteRQuesadaJMChibaSMartyanovDSNucleon scattering on actinides using a dispersive optical model with extended couplingsPhys. Rev. C2016940646052016PhRvC..94f4605S10.1103/PhysRevC.94.064605
– reference: X. Zhao, W. Sun, R. Capote, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, Dispersive optical model description of nucleon scattering on Pb and Bi isotopes. Phys. Rev. C 101, 064618 (2020). https://doi.org/10.1103/PhysRevC.101.064618
– reference: M. Herman, R. Capote Noy, P. Obložinský, A. Trkov, V. Zerkin, “ Recent development and validation of the nuclear reaction code EMPIRE,” J. Nucl. Sci. Techn.Suppl.2, pp.116–119 (2002)
– reference: KoningAJRochmanDModern nuclear data evaluation with the TALYS code systemNucl. Data Sheets2012113284129342012NDS...113.2841K10.1016/j.nds.2012.11.002
– reference: HauserWFeshbachHPhys. Rev.1952873661952PhRv...87..366H10.1103/PhysRev.87.366
– ident: 486_CR16
– ident: 486_CR17
  doi: 10.1080/00223131.2002.10875054
– volume: 148
  start-page: 1
  year: 2018
  ident: 486_CR58
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2018.02.001
– ident: 486_CR31
  doi: 10.1103/PhysRevC.72.064610
– ident: 486_CR36
  doi: 10.1103/PhysRevC.102.059901
– ident: 486_CR39
– volume: 35
  start-page: 676
  year: 1962
  ident: 486_CR33
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(62)90153-0
– ident: 486_CR42
  doi: 10.1103/PhysRevC.87.054611
– ident: 486_CR21
  doi: 10.1016/S0010-4655(03)00157-7
– ident: 486_CR52
  doi: 10.1016/j.nds.2014.07.065
– ident: 486_CR19
  doi: 10.1103/PhysRevC.65.034616
– volume: 59
  start-page: 1019
  issue: 2
  year: 2011
  ident: 486_CR41
  publication-title: J. Kor. Phys. Soc.
  doi: 10.3938/jkps.59.1019
– ident: 486_CR56
  doi: 10.1051/epjconf/202023915003
– volume: 449
  start-page: 354
  year: 1986
  ident: 486_CR14
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(86)90009-6
– volume: 8
  start-page: 859
  year: 1973
  ident: 486_CR47
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.8.859
– ident: 486_CR29
– volume: 118
  start-page: 26
  year: 2014
  ident: 486_CR49
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2014.04.003
– ident: 486_CR46
  doi: 10.1103/PhysRevC.94.014612
– volume: 87
  start-page: 366
  year: 1952
  ident: 486_CR51
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.366
– ident: 486_CR2
– ident: 486_CR25
– volume: 113
  start-page: 2841
  year: 2012
  ident: 486_CR10
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2012.11.002
– ident: 486_CR22
  doi: 10.1103/PhysRevC.67.067601
– ident: 486_CR18
  doi: 10.1088/0954-3899/27/8/402
– ident: 486_CR20
– ident: 486_CR30
  doi: 10.1103/PhysRevC.72.024604
– ident: 486_CR44
  doi: 10.1103/PhysRevC.101.064618
– ident: 486_CR26
  doi: 10.1088/0954-3899/30/7/007
– volume: 37
  start-page: 679
  year: 1965
  ident: 486_CR12
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.37.679
– ident: 486_CR38
  doi: 10.1103/PhysRevC.75.034616
– volume: 69
  start-page: 00008
  year: 2014
  ident: 486_CR48
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/20136900008
– volume: 108
  start-page: 2655
  year: 2007
  ident: 486_CR9
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2007.11.003
– ident: 486_CR7
– ident: 486_CR28
– ident: 486_CR3
– volume: 239
  start-page: 03003
  year: 2020
  ident: 486_CR37
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/202023903003
– volume: 8
  start-page: 171
  year: 1962
  ident: 486_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.8.171
– volume: 118
  start-page: 270
  year: 2014
  ident: 486_CR54
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2014.04.055
– volume: 5
  start-page: 3
  year: 1988
  ident: 486_CR11
  publication-title: Nucleus
– volume: 94
  start-page: 064605
  year: 2016
  ident: 486_CR35
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.94.064605
– ident: 486_CR40
– ident: 486_CR1
– ident: 486_CR24
  doi: 10.1103/PhysRevC.76.057602
– ident: 486_CR13
– ident: 486_CR50
– volume: 11
  start-page: 426
  year: 1975
  ident: 486_CR5
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.11.426
– volume: 12
  start-page: 744
  year: 1975
  ident: 486_CR6
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.12.744
– ident: 486_CR53
  doi: 10.1051/epjconf/20134202005
– ident: 486_CR59
– ident: 486_CR57
  doi: 10.1016/j.nds.2018.02.005
– ident: 486_CR8
– volume: 92
  start-page: 044617
  year: 2015
  ident: 486_CR45
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.92.044617
– ident: 486_CR4
– ident: 486_CR34
  doi: 10.1080/18811248.2008.9711442
– ident: 486_CR43
  doi: 10.1088/1361-6471/ab0010
– ident: 486_CR23
  doi: 10.1016/j.nds.2009.10.004
– ident: 486_CR27
– volume: 57
  start-page: 3015
  year: 1986
  ident: 486_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.3015
– volume: 148
  start-page: 189
  year: 2018
  ident: 486_CR55
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2018.02.003
SSID ssj0004296
Score 2.303794
Snippet Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Compound channels
Decay
Hadrons
Heavy Ions
Inelastic scattering
Nuclear fuels
Nuclear Fusion
Nuclear Physics
Nuclear power reactors
Nuclear Reaction Studies: a Tribute to Jacques Raynal
Nuclear reactor components
Nuclear reactors
Particle and Nuclear Physics
Physics
Physics and Astronomy
Power reactors
Regular Article - Theoretical Physics
Scattering cross sections
Title An impact of Jacques Raynal on nuclear data evaluation
URI https://link.springer.com/article/10.1140/epja/s10050-021-00486-9
https://www.proquest.com/docview/2546077720
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1434-601X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004296
  issn: 1434-6001
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1434-601X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004296
  issn: 1434-6001
  databaseCode: ADMLS
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-601X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004296
  issn: 1434-6001
  databaseCode: AFBBN
  dateStart: 19980101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1434-601X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004296
  issn: 1434-6001
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-601X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004296
  issn: 1434-6001
  databaseCode: U2A
  dateStart: 19980119
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagFRIL4ikKpfLAauHGzsNjBC1VoQxApTJZfmVAKK3aMvDv8eVBgIFKTBmiu-HL2XeXu_sOoctYU2OYcEQlNCHe41GiBZQLmVKGWuF4ALPDk4doNOXjWTj7vuoLut3rkmRxU5d8tvTKLV4VTLzRkBLoKyjI4ojYRu0QOL28KU-DtBmJDEQ5WMQ4AZ9etXb9oeinY2qizV8F0sLvDPfRXhUw4rT8wgdoy-WHaKdo3DSrIxSlOS4nHfE8w2NlQB9-VB8gNM9xDnzFaomhExQ31N7HaDocPF-PSLULgRjG-JrYyGU-ubDOJ2zGZSqmylltDdOJs0CQY2xGHTdCGeXPpdHe-fGCOz5wibYhO0GtfJ67U4SzKNBOMO1zpZjbvtUhc1FoueWKZ0b0OyiqgZCmIgqHfRVvshxiphIQlCWC0iMoCwSl6CD6JbgouTI2i3RrpGV1eFYSKPpp7MN-2kH9Gv3m9QaVZ_-QOUe7QWEK8Heli1rr5bu78MHGWvdQO72Z3D_B8_blbtArzOwTeQbN3A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BKwQLb0R5emB1cWMnrccKtZQ-GFCRgMXyKwOgtOpjgF-PnQeFDiB1js5y7uzcXe6-7wCu6opoTbnFskEa2Hk8ghX35UIqpSaGWxZ47PDgPuo8su5T-PRz1Jfvdi9KkumXOuOzJdd2_Co94o2EBPu-gpQsDvN1KDOXpQQlKDdvn3utBSgy4Bm0iDLsvXre3PXHUr9d0yLeXCqRpp6nvQMvxZ6zhpO36nymqvpzic5xpZfahe08HkXN7ADtwZpN9mEj7QvV0wOImgnKgJRoFKOu1H6z6EF-eKFRghJPhywnyDeaogVz-CE8tlvDmw7ORy1gTSmbYRPZ2OUuxrp8UNtY1om0RhlNVcMaz7-jTUws01xq6a69Vs63spSaPrANZUJ6BKVklNhjQHEUKMupcqlYnZmaUSG1UWiYYZLFmtcqEBVaFjrnIffjMN5FhpEmwitFZEoRTikiVYrgFSDfguOMiuN_kbPCjCK_m1PhJwCQussqSAVqhVUWj_9Z8mQFmUvY7AwHfdG_u--dwlaQWtr_yDmD0mwyt-curpmpi_wEfwEkcexe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qRfEiPrFaNQevoekm-8ixaEutWkQs9Bby2oPItrTrwX9vsg8XPVjwvMwcvp0wM5n5vgDcxIpoTbnFMiEJdhmPYMX9uJBKqYnhlgWeO_w0jcYzNpmH8xYMay5Mse1ejyRLToNXacry3tKklbYt6dnlm_TsNxIS7HcMCuE4zLdgm3m1BBfWs2DQ0CMDXpKMKMM-v1drXn84-pmkmsrz17C0yEGjA9ivikc0KP_2IbRsdgQ7xRKnXh9DNMhQyXpEixRNpPb-0Iv89EaLDGVeu1iukN8KRY3M9wnMRsPX2zGu3kXAmlKWYxPZ1DUaxrrmTdtUxkRao4ymKrHGi-VokxLLNJdaujOqlUuErNCRD2yiTEhPoZ0tMnsGKI0CZTlVrm-KmekbFVIbhYYZJlmqeb8DUQ2E0JVouH-74l2UhGYiPIKiRFA4BEWBoOAdIN-Gy1I3Y7NJt0ZaVAdpLbxcP4ldC0A60K_Rbz5vcHn-D5tr2H2-G4nH--nDBewFRVT4S5cutPPVh710NUiurooI-wJ12tHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+impact+of+Jacques+Raynal+on+nuclear+data+evaluation&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Capote%2C+R&rft.au=Quesada%2C+J+M&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6001&rft.eissn=1434-601X&rft.volume=57&rft.issue=6&rft_id=info:doi/10.1140%2Fepja%2Fs10050-021-00486-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6001&client=summon