An impact of Jacques Raynal on nuclear data evaluation
Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties...
Saved in:
| Published in | The European physical journal. A, Hadrons and nuclei Vol. 57; no. 6 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1434-6001 1434-601X |
| DOI | 10.1140/epja/s10050-021-00486-9 |
Cover
| Abstract | Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on
238
U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend. |
|---|---|
| AbstractList | Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on 238U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend. Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on 238 U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend. |
| ArticleNumber | 210 |
| Author | Quesada, J. M. Capote, R. |
| Author_xml | – sequence: 1 givenname: R. surname: Capote fullname: Capote, R. email: r.capotenoy@iaea.org organization: NAPC–Nuclear Data Section, International Atomic Energy Agency – sequence: 2 givenname: J. M. surname: Quesada fullname: Quesada, J. M. organization: Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla |
| BookMark | eNqNkF9LwzAUR4NMcJt-BgM-1920ado--DCGfxkIouBbuE1upaNra9IK-_Z2qyj4ok_Jw-9cDmfGJnVTE2PnAi6FkLCgdoMLLwBiCCAUAYBMVZAdsamQkQwUiNfJ9x_ECZt5v4FhFWZqytSy5uW2RdPxpuAPaN578vwJdzVWvKl53ZuK0HGLHXL6wKrHrmzqU3ZcYOXp7Ouds5eb6-fVXbB-vL1fLdeBiSLZBVZREcvUUiiEoQITQLK5NVGekgUZCWMLIGkyNAgSTG6IZCaVkiGluY2jObsY77au2Zt1etP0bnDzOoylgiRJQhhWV-PKuMZ7R4U2ZXfw7ByWlRag96n0PpUeU-khlT6k0tnAJ7_41pVbdLt_kOlI-oGo38j9-P2FfgIa0IPb |
| CitedBy_id | crossref_primary_10_1140_epja_s10050_021_00596_4 |
| Cites_doi | 10.1080/00223131.2002.10875054 10.1016/j.nds.2018.02.001 10.1103/PhysRevC.72.064610 10.1103/PhysRevC.102.059901 10.1016/0029-5582(62)90153-0 10.1103/PhysRevC.87.054611 10.1016/S0010-4655(03)00157-7 10.1016/j.nds.2014.07.065 10.1103/PhysRevC.65.034616 10.3938/jkps.59.1019 10.1051/epjconf/202023915003 10.1016/0375-9474(86)90009-6 10.1103/PhysRevC.8.859 10.1016/j.nds.2014.04.003 10.1103/PhysRevC.94.014612 10.1103/PhysRev.87.366 10.1016/j.nds.2012.11.002 10.1103/PhysRevC.67.067601 10.1088/0954-3899/27/8/402 10.1103/PhysRevC.72.024604 10.1103/PhysRevC.101.064618 10.1088/0954-3899/30/7/007 10.1103/RevModPhys.37.679 10.1103/PhysRevC.75.034616 10.1051/epjconf/20136900008 10.1016/j.nds.2007.11.003 10.1051/epjconf/202023903003 10.1103/PhysRevLett.8.171 10.1016/j.nds.2014.04.055 10.1103/PhysRevC.94.064605 10.1103/PhysRevC.76.057602 10.1103/PhysRevC.11.426 10.1103/PhysRevC.12.744 10.1051/epjconf/20134202005 10.1016/j.nds.2018.02.005 10.1103/PhysRevC.92.044617 10.1080/18811248.2008.9711442 10.1088/1361-6471/ab0010 10.1016/j.nds.2009.10.004 10.1103/PhysRevLett.57.3015 10.1016/j.nds.2018.02.003 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION |
| DOI | 10.1140/epja/s10050-021-00486-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1434-601X |
| ExternalDocumentID | 10_1140_epja_s10050_021_00486_9 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 199 1SB 203 29G 29Q 29~ 2J2 2JY 2KG 2KM 2LR 2P1 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AI. AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF- PT5 QOS R89 R9I RED RID RIG RNS ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7Y ZMTXR ~8M 2JN AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION EBLON |
| ID | FETCH-LOGICAL-c334t-d6ef548de211cefa70aedbdc3b8ed0431cdf0e4c9aca040cbcee4946642e8bd53 |
| IEDL.DBID | U2A |
| ISSN | 1434-6001 |
| IngestDate | Thu Sep 25 00:50:53 EDT 2025 Wed Oct 01 02:16:59 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Fri Feb 21 02:48:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-d6ef548de211cefa70aedbdc3b8ed0431cdf0e4c9aca040cbcee4946642e8bd53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2546077720 |
| PQPubID | 2043701 |
| ParticipantIDs | proquest_journals_2546077720 crossref_citationtrail_10_1140_epja_s10050_021_00486_9 crossref_primary_10_1140_epja_s10050_021_00486_9 springer_journals_10_1140_epja_s10050_021_00486_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Hadrons and Nuclei |
| PublicationTitle | The European physical journal. A, Hadrons and nuclei |
| PublicationTitleAbbrev | Eur. Phys. J. A |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | N. T. Okumusoglu, F. Korkmaz Gorur, J. Birchall, E.Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, “ Angular distributions of protons scattered by 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}$$\end{document}Ar nuclei with excitation of the 2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^+$$\end{document} (1.46 MeV) and 3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^-$$\end{document} (3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV,” Phys. Rev. C75, 034616 (2007) SoukhovitskiĩEShCapoteRQuesadaJMChibaSMartyanovDSNucleon scattering on actinides using a dispersive optical model with extended couplingsPhys. Rev. C2016940646052016PhRvC..94f4605S10.1103/PhysRevC.94.064605 J. Raynal, H. Sherif, Proc. Sixth International Symp. on polarization phenomena in nuclear physics, Osaka, Japan, 1985, J. Phys. Soc. Jpn. Suppl. 55, 922 (1986) J.M. Quesada, R. Capote, A. Molina, M. Lozano, J. Raynal, Analytical expressions for the dispersive contributions to the nucleon–nucleus optical potential. Phys. Rev. C 67, 067601 (2003). https://doi.org/10.1103/PhysRevC.67.067601 LeeJ-YSoukhovitskiĩEShKimYCapoteRChibaSQuesadaJMSelf-consistent analyses of nuclear level structures, and nucleon interaction data of even–even sn isotopesJ. Kor. Phys. Soc.2011592101910222011JKPS...59.1019L10.3938/jkps.59.1019 R. Capote, A. Molina, J. M. Quesada, “ A general numerical solution of dispersion relations for the nuclear optical model,” J. Phys.G: Nucl. Part. Phys. 27, B15 (2001) ChadwickMBCapoteRTrkovACIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogenNucl. Data Sheets20181481892132018NDS...148..189C10.1016/j.nds.2018.02.003 A. Molina, R. Capote, A. Molina, M. Lozano, Dispersion relations in the nuclear optical model. Comp. Phys. Comm. 153, 97–105 (2003). https://doi.org/10.1016/S0010-4655(03)00157-7 HauserWFeshbachHPhys. Rev.1952873661952PhRv...87..366H10.1103/PhysRev.87.366 MoldauerPADirect reaction effects on compound cross sectionsPhys. Rev. C1975127441975PhRvC..12..744M10.1103/PhysRevC.12.744 N. Otuka, E. Dupont, V. Semkova, B. Pritychenko et al., “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC),” Nucl. Data Sheets 120, 272–276 (2014). Data available online (e.g., at https://www-nds.iaea.org/exfor/) J. Raynal, “ Spin-orbit interaction in the inelastic nucleon scattering (IAEA-SMR-8/8),” in “ The structure of nuclei”, report STI/PUB/305, International Atomic Energy Agency, Vienna, Austria, 1972, pp.75–116. Lectures presented at an International Course on Nuclear Theory, Trieste, 13 January - 12 March 1971, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste A. Hill, D. Edens, INCH code, Oxford (1967), unpublished M. Fleming, M.B. Chadwick, D. Brown, R. Capote, Z. Ge, M.W. Herman, A. Ignatyuk, T. Ivanova, O. Iwamoto, A.J. Koning, A. Plompen, A. Trkov and all of the contributors to the CIELO project, “Results of the Collaborative International Evaluated Library Organization CIELO project,” EPJ Web of Conf. 239, 15003 (2020) R. Capote, A. Trkov et al., IAEA CIELO evaluation of neutron-induced reactions on 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U and 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U targets for incident energies up to 30 MeV. Nucl. Data Sheets 148, 254–292 (2018). https://doi.org/10.1016/j.nds.2018.02.005 X. Zhao, W. Sun, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, R. Capote, Analysis of neutron bound states of 208\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}$$\end{document}Pb by a dispersive optical model potential. J. Phys. G. 46, 055103 (2019). https://doi.org/10.1088/1361-6471/ab0010 J. Raynal, “Optical-model and coupled-channel calculations in nuclear physics (IAEA-SMR-9/8),” in “Computing as a Language of Physics”, report STI/PUB/306, International Atomic Energy Agency, Vienna, Austria, 1972, pp. 281–322. Lectures presented at an International Seminar Course, Trieste, 2–20, Organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP) (Trieste, ECIS Code Distributed by the NEA DATA Bank (OECD, Paris), August 1971) E. Sh. Soukhovitskii, S. Chiba, J.-Y. Lee, O. Iwamoto, and T. Fukahori, “ Global coupled-channel potential for nucleon-actinide interaction from 1 keV to 200 MeV”, J. Phys. G: Nucl. Part. Phys. 30, 905–920 (2004), RIPL 2601 potential X. Zhao, W. Sun, R. Capote, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, Dispersive optical model description of nucleon scattering on Pb and Bi isotopes. Phys. Rev. C 101, 064618 (2020). https://doi.org/10.1103/PhysRevC.101.064618 R. Li, W. Sun, ESh Soukhovitskiĩ, J.M. Quesada, R. Capote, Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes. Phys. Rev. C 87, 054611 (2013). https://doi.org/10.1103/PhysRevC.87.054611 J. Raynal, “ Coupled channel calculations and computer code ECIS,” Lectures presented at the Workshop on applied nuclear theory and nuclear model calculations, 15 February - 18 March 1988, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste T. Tamura, Oak Ridge Natioal Laboratory report ORNL-4152 (1967) E. Sh. Soukhovitskiĩ, S. Chiba, O. Iwamoto, K. Shibata, T. Fukahori, G.B. Morogovskiĩ, “ Programs OPTMAN and SHEMMAN Version 8,” Technical report JAERI-Data/Code 2005-002, Japan Atomic Energy Research Institute (2005) E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Phys. Atom. Nucl. 59, 228 (1996) KawanoTTalouPWeidenmüllerHARandom-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo techniquePhys. Rev. C2015920446172015PhRvC..92d4617K10.1103/PhysRevC.92.044617 E. Sh. Soukhovitskiĩ, G.B. Morogovskiĩ, S. Chiba, O. Iwamoto, T. Fukahori. “ Physics and numerical methods of OPTMAN: a coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitation.” Technical report JAERI-Data/Code 2004-002, Japan Atomic Energy Research Institute (2004) CapoteRTrkovAElastic and inelastic scattering of neutrons on 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U nucleusEPJ Web Conf.2014690000810.1051/epjconf/20136900008 BrownDENDF/B-VIII.0: The 8th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8^{th}$$\end{document} major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering dataNucl. Data Sheets201814811422018NDS...148....1B10.1016/j.nds.2018.02.001 CapoteRTrkovASinMHermanMDaskalakisADanonYPhysics of neutron interactions with 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U: new developments and challengesNucl. Data Sheets201411826312014NDS...118...26C10.1016/j.nds.2014.04.003 E.Sh. Soukhovitskiĩ, S. Chiba, R. Capote, J.M. Quesada, S. Kunieda, G.B. Morogovskiĩ, Technical Report JAERI-Data/Code 2008-025, Japan Atomic Energy Research Institute (2008) T. Kawano, “ Program CoH” ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, Dispersive coupled-channel analysis of nucleon scattering from 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}$$\end{document}Th up to 200 MeV. Phys. Rev. C 72, 024604 (2005). https://doi.org/10.1103/PhysRevC.72.024604 E. Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, D. S. Martyanov, “ Erratum: Nucleon scattering on actinides using a dispersive optical model with extended couplings, [Phys. Rev. C 94, 064605 (2016)],” Phys. Rev. C102, 059901(E) (2020) EngelbrechtCAWeidenmüllerHAHauser–Feshbach theory and Ericson fluctuations in the presence of direct reactionsPhys. Rev. C197388591973PhRvC...8..859E10.1103/PhysRevC.8.859 R. Capote, ESh Soukhovitskiĩ, J.M. Quesada, S. Chiba, Is a global coupled-channel dispersive optical model potential for actinides feasible?”. Phys. Rev. C 72, 064610 (2005). https://doi.org/10.1103/PhysRevC.72 R Cabezas (486_CR11) 1988; 5 486_CR42 486_CR43 486_CR40 AM Lane (486_CR32) 1962; 8 486_CR46 486_CR44 PA Moldauer (486_CR5) 1975; 11 C Mahaux (486_CR14) 1986; 449 T Tamura (486_CR12) 1965; 37 486_CR39 486_CR38 486_CR53 CA Engelbrecht (486_CR47) 1973; 8 486_CR52 486_CR13 486_CR57 486_CR56 T Kawano (486_CR45) 2015; 92 486_CR50 W Hauser (486_CR51) 1952; 87 ESh Soukhovitskiĩ (486_CR35) 2016; 94 486_CR20 486_CR21 486_CR24 AJ Koning (486_CR10) 2012; 113 486_CR25 486_CR22 486_CR23 MW Herman (486_CR9) 2007; 108 PA Moldauer (486_CR6) 1975; 12 R Capote (486_CR48) 2014; 69 486_CR17 486_CR18 486_CR59 486_CR16 486_CR19 486_CR4 486_CR31 JM Quesada (486_CR54) 2014; 118 486_CR7 486_CR30 486_CR8 486_CR36 486_CR34 DS Martyanov (486_CR37) 2020; 239 J-Y Lee (486_CR41) 2011; 59 486_CR1 486_CR2 MB Chadwick (486_CR55) 2018; 148 486_CR3 AM Lane (486_CR33) 1962; 35 R Capote (486_CR49) 2014; 118 486_CR28 486_CR29 486_CR26 486_CR27 C Mahaux (486_CR15) 1986; 57 D Brown (486_CR58) 2018; 148 |
| References_xml | – reference: ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, Dispersive coupled-channel analysis of nucleon scattering from 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}$$\end{document}Th up to 200 MeV. Phys. Rev. C 72, 024604 (2005). https://doi.org/10.1103/PhysRevC.72.024604 – reference: N. T. Okumusoglu, F. Korkmaz Gorur, J. Birchall, E.Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, “ Angular distributions of protons scattered by 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}$$\end{document}Ar nuclei with excitation of the 2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^+$$\end{document} (1.46 MeV) and 3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^-$$\end{document} (3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV,” Phys. Rev. C75, 034616 (2007) – reference: A. Molina, R. Capote, A. Molina, M. Lozano, Dispersion relations in the nuclear optical model. Comp. Phys. Comm. 153, 97–105 (2003). https://doi.org/10.1016/S0010-4655(03)00157-7 – reference: T. Kawano, R. Capote, S. Hilaire, P. Chau Huu-Tai, “ Statistical Hauser–Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies,” Phys. Rev. C94, 014612 (2016). https://doi.org/10.1103/PhysRevC.94.014612 – reference: KawanoTTalouPWeidenmüllerHARandom-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo techniquePhys. Rev. C2015920446172015PhRvC..92d4617K10.1103/PhysRevC.92.044617 – reference: N. Otuka, E. Dupont, V. Semkova, B. Pritychenko et al., “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC),” Nucl. Data Sheets 120, 272–276 (2014). Data available online (e.g., at https://www-nds.iaea.org/exfor/) – reference: J.M. Quesada, R. Capote, E. Sh, Soukhovitskiĩ, S. Chiba, Approximate Lane consistency of the dispersive coupled-channels potential for actinides. Phys. Rev. C 76, 057602 (2007). https://doi.org/10.1103/PhysRevC.76.057602 – reference: CapoteRTrkovAElastic and inelastic scattering of neutrons on 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U nucleusEPJ Web Conf.2014690000810.1051/epjconf/20136900008 – reference: J.M. Quesada, R. Capote, A. Molina, M. Lozano, J. Raynal, Analytical expressions for the dispersive contributions to the nucleon–nucleus optical potential. Phys. Rev. C 67, 067601 (2003). https://doi.org/10.1103/PhysRevC.67.067601 – reference: R. Li, W. Sun, ESh Soukhovitskiĩ, J.M. Quesada, R. Capote, Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes. Phys. Rev. C 87, 054611 (2013). https://doi.org/10.1103/PhysRevC.87.054611 – reference: CapoteRTrkovASinMHermanMDaskalakisADanonYPhysics of neutron interactions with 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U: new developments and challengesNucl. Data Sheets201411826312014NDS...118...26C10.1016/j.nds.2014.04.003 – reference: J. Raynal, “Optical-model and coupled-channel calculations in nuclear physics (IAEA-SMR-9/8),” in “Computing as a Language of Physics”, report STI/PUB/306, International Atomic Energy Agency, Vienna, Austria, 1972, pp. 281–322. Lectures presented at an International Seminar Course, Trieste, 2–20, Organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP) (Trieste, ECIS Code Distributed by the NEA DATA Bank (OECD, Paris), August 1971) – reference: MoldauerPAWhy the Hauser–Feshbach formula worksPhys. Rev. C1975114261975PhRvC..11..426M10.1103/PhysRevC.11.426 – reference: E. Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, D. S. Martyanov, “ Erratum: Nucleon scattering on actinides using a dispersive optical model with extended couplings, [Phys. Rev. C 94, 064605 (2016)],” Phys. Rev. C102, 059901(E) (2020) – reference: MahauxCNgôHSatchlerGRCausality and the threshold anomaly of the nucleus–nucleus potentialNucl. Phys. A19864493541986NuPhA.449..354M10.1016/0375-9474(86)90009-6 – reference: T. Tamura, Oak Ridge Natioal Laboratory report ORNL-4152 (1967) – reference: TamuraTAnalyses of the scattering of nuclear particles by collective nuclei in terms of the coupled-channel calculationRev. Mod. Phys.1965376797081965RvMP...37..679T18464310.1103/RevModPhys.37.679 – reference: A. Molina, R. Capote, J.M. Quesada, M. Lozano, Dispersive spherical optical model of neutron scattering from 27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{27}$$\end{document}Al up to 250 MeV. Phys. Rev. C 65, 034616 (2002). https://doi.org/10.1103/PhysRevC.65.034616 – reference: ChadwickMBCapoteRTrkovACIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogenNucl. Data Sheets20181481892132018NDS...148..189C10.1016/j.nds.2018.02.003 – reference: E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Phys. Atom. Nucl. 59, 228 (1996) – reference: J. Raynal, “ Spin-orbit interaction in the inelastic nucleon scattering (IAEA-SMR-8/8),” in “ The structure of nuclei”, report STI/PUB/305, International Atomic Energy Agency, Vienna, Austria, 1972, pp.75–116. Lectures presented at an International Course on Nuclear Theory, Trieste, 13 January - 12 March 1971, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste – reference: EngelbrechtCAWeidenmüllerHAHauser–Feshbach theory and Ericson fluctuations in the presence of direct reactionsPhys. Rev. C197388591973PhRvC...8..859E10.1103/PhysRevC.8.859 – reference: E. Sh. Soukhovitskii, S. Chiba, J.-Y. Lee, O. Iwamoto, and T. Fukahori, “ Global coupled-channel potential for nucleon-actinide interaction from 1 keV to 200 MeV”, J. Phys. G: Nucl. Part. Phys. 30, 905–920 (2004), RIPL 2601 potential – reference: LaneAMPhys. Rev. Lett.196281711962PhRvL...8..171L10.1103/PhysRevLett.8.171 – reference: M. Salvatores et al., “ Uncertainty and target accuracy assesment for innovative systems using recent covariance data evaluations”, Int Evaluat Cooper., 26, NEA no. 6410, OECD, NEA, Paris, France (2008) – reference: M. Fleming, M.B. Chadwick, D. Brown, R. Capote, Z. Ge, M.W. Herman, A. Ignatyuk, T. Ivanova, O. Iwamoto, A.J. Koning, A. Plompen, A. Trkov and all of the contributors to the CIELO project, “Results of the Collaborative International Evaluated Library Organization CIELO project,” EPJ Web of Conf. 239, 15003 (2020) – reference: R. Capote, A. Molina, J. M. Quesada, “ A general numerical solution of dispersion relations for the nuclear optical model,” J. Phys.G: Nucl. Part. Phys. 27, B15 (2001) – reference: I. Thompson, FRESCO – Coupled Reaction Channels Calculations. Code and documentation available at www.fresco.org.uk – reference: E.Sh. Soukhovitskiĩ, S. Chiba, R. Capote, J.M. Quesada, S. Kunieda, G.B. Morogovskiĩ, Technical Report JAERI-Data/Code 2008-025, Japan Atomic Energy Research Institute (2008) – reference: T. Kawano, “ Program CoH” – reference: LeeJ-YSoukhovitskiĩEShKimYCapoteRChibaSQuesadaJMSelf-consistent analyses of nuclear level structures, and nucleon interaction data of even–even sn isotopesJ. Kor. Phys. Soc.2011592101910222011JKPS...59.1019L10.3938/jkps.59.1019 – reference: R. Capote, A. Trkov et al., IAEA CIELO evaluation of neutron-induced reactions on 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U and 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U targets for incident energies up to 30 MeV. Nucl. Data Sheets 148, 254–292 (2018). https://doi.org/10.1016/j.nds.2018.02.005 – reference: MartyanovDSSoukhovitskiĩEShCapoteRQuesadaJMChibaSMultiband coupling and nculear softness in optical model calculations for even–even and odd-A actinidesEPJ Web Conf.20202390300310.1051/epjconf/202023903003 – reference: E. Sh. Soukhovitskiĩ, G.B. Morogovskiĩ, S. Chiba, O. Iwamoto, T. Fukahori. “ Physics and numerical methods of OPTMAN: a coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitation.” Technical report JAERI-Data/Code 2004-002, Japan Atomic Energy Research Institute (2004) – reference: CabezasRIvanovaSPInfluence of the nuclear potential deformation on the compound nuclesu cross sectionNucleus198853 – reference: E. Sh. Soukhovitskiĩ, S. Chiba, O. Iwamoto, K. Shibata, T. Fukahori, G.B. Morogovskiĩ, “ Programs OPTMAN and SHEMMAN Version 8,” Technical report JAERI-Data/Code 2005-002, Japan Atomic Energy Research Institute (2005) – reference: HermanMWCapoteRCarlsonBVObložinskýPSinMTrkovAWienkeHZerkinVEMPIRE: nuclear reaction model code system for data evaluationNucl. Data Sheets2007108265527152007NDS...108.2655H10.1016/j.nds.2007.11.003 – reference: MahauxCSartorRCalculation of the shell-model potential from the optical-model potentialPhys. Rev. Lett.19865730151986PhRvL..57.3015M10.1103/PhysRevLett.57.3015 – reference: J. Raynal, “ ECIS96,” Specialist’ meeting on the nucleon nucleus optical model up to 200 MeV, Bruyéres-le-Châtel (France), 13–15 November 1996 – reference: MoldauerPADirect reaction effects on compound cross sectionsPhys. Rev. C1975127441975PhRvC..12..744M10.1103/PhysRevC.12.744 – reference: J. Raynal, H. Sherif, Proc. Sixth International Symp. on polarization phenomena in nuclear physics, Osaka, Japan, 1985, J. Phys. Soc. Jpn. Suppl. 55, 922 (1986) – reference: J. Raynal, “ Coupled channel calculations and computer code ECIS,” Lectures presented at the Workshop on applied nuclear theory and nuclear model calculations, 15 February - 18 March 1988, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste – reference: R. Capote, M.W. Herman, P. Obložinský et al., “ RIPL–Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluations,” Nucl. Data Sheets 110, 3107–3214 (2009) (see https://www-nds.iaea.org/RIPL-3) – reference: P.A. Moldauer, in “ Nuclear Theory for Applications 1980,” report IAEA-SMR-68, Proceedings of the interregional Advanced Training Course on Applications of Nuclear Theory to Nuclear Data for Calculations for Reactor Design held at Trieste, 28 January-22 February 1980, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste – reference: R. Capote, ESh Soukhovitskiĩ, J.M. Quesada, S. Chiba, Is a global coupled-channel dispersive optical model potential for actinides feasible?”. Phys. Rev. C 72, 064610 (2005). https://doi.org/10.1103/PhysRevC.72.064610 – reference: R. Capote, M. Sin, A. Trkov, M. W. Herman, D. Bernard, G. Noguere, A. Daskalakis, Y. Danon, “ Evaluation of neutron induced reactions on U-238 nucleus,” Proc. NEMEA-7 Workshop NEA/NSC/DOC(2014)13, NEA, OECD (2014) – reference: R. Capote, S. Chiba, ESh Soukhovitskiĩ, J.M. Quesada, E. Bauge, A global dispersive coupled-channel optical model potential for actinides. J. Nucl. Sci. Tech. 45, 333–340 (2008). https://doi.org/10.1080/18811248.2008.9711442 – reference: J.M. Quesada, E.Sh. Soukhovitskiĩ, R. Capote, S. Chiba, “ A dispersive optical model potential for nucleon induced reactions on 238\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{238}$$\end{document}U and 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}$$\end{document}Th nuclei with full coupling,” EPJ Web of Conf. 42, 02005 (2013), WONDER2012 proceedings – reference: A. Hill, D. Edens, INCH code, Oxford (1967), unpublished – reference: LaneAMNucl. Phys.19623567610.1016/0029-5582(62)90153-0 – reference: X. Zhao, W. Sun, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, R. Capote, Analysis of neutron bound states of 208\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{208}$$\end{document}Pb by a dispersive optical model potential. J. Phys. G. 46, 055103 (2019). https://doi.org/10.1088/1361-6471/ab0010 – reference: QuesadaJMCapoteRSoukhovitskiĩEShChibaSRotational-vibrational description of nucleon scattering on actinide nuclei using a dispersive coupled-channel optical modelNucl. Data Sheets20141182702722014NDS...118..270Q10.1016/j.nds.2014.04.055 – reference: BrownDENDF/B-VIII.0: The 8th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8^{th}$$\end{document} major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering dataNucl. Data Sheets201814811422018NDS...148....1B10.1016/j.nds.2018.02.001 – reference: E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Sov. J. Nucl. Phys. 54, 570 (1991) – reference: SoukhovitskiĩEShCapoteRQuesadaJMChibaSMartyanovDSNucleon scattering on actinides using a dispersive optical model with extended couplingsPhys. Rev. C2016940646052016PhRvC..94f4605S10.1103/PhysRevC.94.064605 – reference: X. Zhao, W. Sun, R. Capote, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, Dispersive optical model description of nucleon scattering on Pb and Bi isotopes. Phys. Rev. C 101, 064618 (2020). https://doi.org/10.1103/PhysRevC.101.064618 – reference: M. Herman, R. Capote Noy, P. Obložinský, A. Trkov, V. Zerkin, “ Recent development and validation of the nuclear reaction code EMPIRE,” J. Nucl. Sci. Techn.Suppl.2, pp.116–119 (2002) – reference: KoningAJRochmanDModern nuclear data evaluation with the TALYS code systemNucl. Data Sheets2012113284129342012NDS...113.2841K10.1016/j.nds.2012.11.002 – reference: HauserWFeshbachHPhys. Rev.1952873661952PhRv...87..366H10.1103/PhysRev.87.366 – ident: 486_CR16 – ident: 486_CR17 doi: 10.1080/00223131.2002.10875054 – volume: 148 start-page: 1 year: 2018 ident: 486_CR58 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2018.02.001 – ident: 486_CR31 doi: 10.1103/PhysRevC.72.064610 – ident: 486_CR36 doi: 10.1103/PhysRevC.102.059901 – ident: 486_CR39 – volume: 35 start-page: 676 year: 1962 ident: 486_CR33 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(62)90153-0 – ident: 486_CR42 doi: 10.1103/PhysRevC.87.054611 – ident: 486_CR21 doi: 10.1016/S0010-4655(03)00157-7 – ident: 486_CR52 doi: 10.1016/j.nds.2014.07.065 – ident: 486_CR19 doi: 10.1103/PhysRevC.65.034616 – volume: 59 start-page: 1019 issue: 2 year: 2011 ident: 486_CR41 publication-title: J. Kor. Phys. Soc. doi: 10.3938/jkps.59.1019 – ident: 486_CR56 doi: 10.1051/epjconf/202023915003 – volume: 449 start-page: 354 year: 1986 ident: 486_CR14 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(86)90009-6 – volume: 8 start-page: 859 year: 1973 ident: 486_CR47 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.8.859 – ident: 486_CR29 – volume: 118 start-page: 26 year: 2014 ident: 486_CR49 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2014.04.003 – ident: 486_CR46 doi: 10.1103/PhysRevC.94.014612 – volume: 87 start-page: 366 year: 1952 ident: 486_CR51 publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.366 – ident: 486_CR2 – ident: 486_CR25 – volume: 113 start-page: 2841 year: 2012 ident: 486_CR10 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2012.11.002 – ident: 486_CR22 doi: 10.1103/PhysRevC.67.067601 – ident: 486_CR18 doi: 10.1088/0954-3899/27/8/402 – ident: 486_CR20 – ident: 486_CR30 doi: 10.1103/PhysRevC.72.024604 – ident: 486_CR44 doi: 10.1103/PhysRevC.101.064618 – ident: 486_CR26 doi: 10.1088/0954-3899/30/7/007 – volume: 37 start-page: 679 year: 1965 ident: 486_CR12 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.37.679 – ident: 486_CR38 doi: 10.1103/PhysRevC.75.034616 – volume: 69 start-page: 00008 year: 2014 ident: 486_CR48 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/20136900008 – volume: 108 start-page: 2655 year: 2007 ident: 486_CR9 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2007.11.003 – ident: 486_CR7 – ident: 486_CR28 – ident: 486_CR3 – volume: 239 start-page: 03003 year: 2020 ident: 486_CR37 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/202023903003 – volume: 8 start-page: 171 year: 1962 ident: 486_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.8.171 – volume: 118 start-page: 270 year: 2014 ident: 486_CR54 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2014.04.055 – volume: 5 start-page: 3 year: 1988 ident: 486_CR11 publication-title: Nucleus – volume: 94 start-page: 064605 year: 2016 ident: 486_CR35 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.94.064605 – ident: 486_CR40 – ident: 486_CR1 – ident: 486_CR24 doi: 10.1103/PhysRevC.76.057602 – ident: 486_CR13 – ident: 486_CR50 – volume: 11 start-page: 426 year: 1975 ident: 486_CR5 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.11.426 – volume: 12 start-page: 744 year: 1975 ident: 486_CR6 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.12.744 – ident: 486_CR53 doi: 10.1051/epjconf/20134202005 – ident: 486_CR59 – ident: 486_CR57 doi: 10.1016/j.nds.2018.02.005 – ident: 486_CR8 – volume: 92 start-page: 044617 year: 2015 ident: 486_CR45 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.92.044617 – ident: 486_CR4 – ident: 486_CR34 doi: 10.1080/18811248.2008.9711442 – ident: 486_CR43 doi: 10.1088/1361-6471/ab0010 – ident: 486_CR23 doi: 10.1016/j.nds.2009.10.004 – ident: 486_CR27 – volume: 57 start-page: 3015 year: 1986 ident: 486_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.3015 – volume: 148 start-page: 189 year: 2018 ident: 486_CR55 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2018.02.003 |
| SSID | ssj0004296 |
| Score | 2.303794 |
| Snippet | Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Compound channels Decay Hadrons Heavy Ions Inelastic scattering Nuclear fuels Nuclear Fusion Nuclear Physics Nuclear power reactors Nuclear Reaction Studies: a Tribute to Jacques Raynal Nuclear reactor components Nuclear reactors Particle and Nuclear Physics Physics Physics and Astronomy Power reactors Regular Article - Theoretical Physics Scattering cross sections |
| Title | An impact of Jacques Raynal on nuclear data evaluation |
| URI | https://link.springer.com/article/10.1140/epja/s10050-021-00486-9 https://www.proquest.com/docview/2546077720 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1434-601X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004296 issn: 1434-6001 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1434-601X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004296 issn: 1434-6001 databaseCode: ADMLS dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-601X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004296 issn: 1434-6001 databaseCode: AFBBN dateStart: 19980101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1434-601X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004296 issn: 1434-6001 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-601X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004296 issn: 1434-6001 databaseCode: U2A dateStart: 19980119 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagFRIL4ikKpfLAauHGzsNjBC1VoQxApTJZfmVAKK3aMvDv8eVBgIFKTBmiu-HL2XeXu_sOoctYU2OYcEQlNCHe41GiBZQLmVKGWuF4ALPDk4doNOXjWTj7vuoLut3rkmRxU5d8tvTKLV4VTLzRkBLoKyjI4ojYRu0QOL28KU-DtBmJDEQ5WMQ4AZ9etXb9oeinY2qizV8F0sLvDPfRXhUw4rT8wgdoy-WHaKdo3DSrIxSlOS4nHfE8w2NlQB9-VB8gNM9xDnzFaomhExQ31N7HaDocPF-PSLULgRjG-JrYyGU-ubDOJ2zGZSqmylltDdOJs0CQY2xGHTdCGeXPpdHe-fGCOz5wibYhO0GtfJ67U4SzKNBOMO1zpZjbvtUhc1FoueWKZ0b0OyiqgZCmIgqHfRVvshxiphIQlCWC0iMoCwSl6CD6JbgouTI2i3RrpGV1eFYSKPpp7MN-2kH9Gv3m9QaVZ_-QOUe7QWEK8Heli1rr5bu78MHGWvdQO72Z3D_B8_blbtArzOwTeQbN3A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BKwQLb0R5emB1cWMnrccKtZQ-GFCRgMXyKwOgtOpjgF-PnQeFDiB1js5y7uzcXe6-7wCu6opoTbnFskEa2Hk8ghX35UIqpSaGWxZ47PDgPuo8su5T-PRz1Jfvdi9KkumXOuOzJdd2_Co94o2EBPu-gpQsDvN1KDOXpQQlKDdvn3utBSgy4Bm0iDLsvXre3PXHUr9d0yLeXCqRpp6nvQMvxZ6zhpO36nymqvpzic5xpZfahe08HkXN7ADtwZpN9mEj7QvV0wOImgnKgJRoFKOu1H6z6EF-eKFRghJPhywnyDeaogVz-CE8tlvDmw7ORy1gTSmbYRPZ2OUuxrp8UNtY1om0RhlNVcMaz7-jTUws01xq6a69Vs63spSaPrANZUJ6BKVklNhjQHEUKMupcqlYnZmaUSG1UWiYYZLFmtcqEBVaFjrnIffjMN5FhpEmwitFZEoRTikiVYrgFSDfguOMiuN_kbPCjCK_m1PhJwCQussqSAVqhVUWj_9Z8mQFmUvY7AwHfdG_u--dwlaQWtr_yDmD0mwyt-curpmpi_wEfwEkcexe |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qRfEiPrFaNQevoekm-8ixaEutWkQs9Bby2oPItrTrwX9vsg8XPVjwvMwcvp0wM5n5vgDcxIpoTbnFMiEJdhmPYMX9uJBKqYnhlgWeO_w0jcYzNpmH8xYMay5Mse1ejyRLToNXacry3tKklbYt6dnlm_TsNxIS7HcMCuE4zLdgm3m1BBfWs2DQ0CMDXpKMKMM-v1drXn84-pmkmsrz17C0yEGjA9ivikc0KP_2IbRsdgQ7xRKnXh9DNMhQyXpEixRNpPb-0Iv89EaLDGVeu1iukN8KRY3M9wnMRsPX2zGu3kXAmlKWYxPZ1DUaxrrmTdtUxkRao4ymKrHGi-VokxLLNJdaujOqlUuErNCRD2yiTEhPoZ0tMnsGKI0CZTlVrm-KmekbFVIbhYYZJlmqeb8DUQ2E0JVouH-74l2UhGYiPIKiRFA4BEWBoOAdIN-Gy1I3Y7NJt0ZaVAdpLbxcP4ldC0A60K_Rbz5vcHn-D5tr2H2-G4nH--nDBewFRVT4S5cutPPVh710NUiurooI-wJ12tHc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+impact+of+Jacques+Raynal+on+nuclear+data+evaluation&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Capote%2C+R&rft.au=Quesada%2C+J+M&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6001&rft.eissn=1434-601X&rft.volume=57&rft.issue=6&rft_id=info:doi/10.1140%2Fepja%2Fs10050-021-00486-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6001&client=summon |