Organic electrolyte hybridized ZnO as the electron transport layer for inverted polymer solar cells

[Display omitted] •Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted from the Jsc improvement. Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped Z...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 65; pp. 175 - 179
Main Authors Kim, Dong Geun, Kim, Youn Hwan, Maduwu, Ratna Dewi, Jin, Ho Cheol, Moon, Doo Kyung, Kim, Joo Hyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.09.2018
한국공업화학회
Subjects
Online AccessGet full text
ISSN1226-086X
1876-794X
DOI10.1016/j.jiec.2018.04.026

Cover

Abstract [Display omitted] •Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted from the Jsc improvement. Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process and used as the for an electron transport layer in inverted polymer solar cells (PSCs). The electron mobility of the doped ZnO is comparable to that of pristine ZnO because the crystallinity of the ZnO layer is not significantly affected by the doping process. The Kelvin probe microscopy measurements employ that the work function of doped ZnO are −4.0eV, which is higher than that of pristine ZnO (−4.5eV). This is due to that the formation of interface dipole at the interface between the ZnO layer and the active layer by unreacted hydroxyl groups and quaternary ammonium bromide. As a result, inverted PSC based on C4 doped ZnO exhibit the power conversion efficiency (PCE) up to 8.87%, which is a significant improvement over the device based on pristine ZnO (PCE=7.4%). Note that the main contribution to the enhancement of the PCE is from the improvement of the Jsc.
AbstractList Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process and used as the for an electron transport layer in inverted polymer solar cells (PSCs). The electron mobility of the doped ZnO is comparable to that of pristine ZnO because the crystallinity of the ZnO layer is not significantly affected by the doping process. The Kelvin probe microscopy measurements employ that the work function of doped ZnO are −4.0 eV, which is higher than that of pristine ZnO (−4.5 eV). This is due to that the formation of interface dipole at the interface between the ZnO layer and the active layer by unreacted hydroxyl groups and quaternary ammonium bromide. As a result, inverted PSC based on C4 doped ZnO exhibit the power conversion efficiency (PCE) up to 8.87%, which is a significant improvement over the device based on pristine ZnO (PCE = 7.4%). Note that the main contribution to the enhancement of the PCE is from the improvement of the Jsc. KCI Citation Count: 8
[Display omitted] •Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted from the Jsc improvement. Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process and used as the for an electron transport layer in inverted polymer solar cells (PSCs). The electron mobility of the doped ZnO is comparable to that of pristine ZnO because the crystallinity of the ZnO layer is not significantly affected by the doping process. The Kelvin probe microscopy measurements employ that the work function of doped ZnO are −4.0eV, which is higher than that of pristine ZnO (−4.5eV). This is due to that the formation of interface dipole at the interface between the ZnO layer and the active layer by unreacted hydroxyl groups and quaternary ammonium bromide. As a result, inverted PSC based on C4 doped ZnO exhibit the power conversion efficiency (PCE) up to 8.87%, which is a significant improvement over the device based on pristine ZnO (PCE=7.4%). Note that the main contribution to the enhancement of the PCE is from the improvement of the Jsc.
Author Kim, Youn Hwan
Jin, Ho Cheol
Kim, Joo Hyun
Moon, Doo Kyung
Kim, Dong Geun
Maduwu, Ratna Dewi
Author_xml – sequence: 1
  givenname: Dong Geun
  surname: Kim
  fullname: Kim, Dong Geun
  organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea
– sequence: 2
  givenname: Youn Hwan
  surname: Kim
  fullname: Kim, Youn Hwan
  organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea
– sequence: 3
  givenname: Ratna Dewi
  surname: Maduwu
  fullname: Maduwu, Ratna Dewi
  organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea
– sequence: 4
  givenname: Ho Cheol
  surname: Jin
  fullname: Jin, Ho Cheol
  organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea
– sequence: 5
  givenname: Doo Kyung
  orcidid: 0000-0001-9482-7508
  surname: Moon
  fullname: Moon, Doo Kyung
  organization: Department of Materials Chemistry and Engineering, Konkuk University, Seoul 05029, Republic of Korea
– sequence: 6
  givenname: Joo Hyun
  surname: Kim
  fullname: Kim, Joo Hyun
  email: jkim@pknu.ac.kr
  organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002390107$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LJDEQhsPiwqrrH_CU6x66zdekM7AXEb9AGBAXZC8hk1RrxjYZKkEYf70ZRy8ePFVRvM8L9RyQvZQTEHLMWc8Z1yerfhXB94Jx0zPVM6F_kH1uBt0Nc3W_13YhdMeMvv9FDkpZMaaZNHqf-AU-uBQ9hQl8xTxtKtDHzRJjiK8Q6P-0oK7Q-gifiUQrulTWGSud3AaQjhlpTC-AtQHrVvHcjiVPDqmHaSq_yc_RTQWOPuYh-Xdxfnd21d0sLq_PTm86L6WqnXdCBKmNAB7AzflMGha0WS4dV8E7ozzXzgfpFFPjwLmc8Tkf1WzGnODej_KQ_Nn1Jhztk482u_g-H7J9Qnt6e3dt5aAHqVjLml3WYy4FYbQ-VldjTu27OFnO7FasXdmtWLsVa5myTWxDxRd0jfHZ4eZ76O8OgibgJQLa4iMkDyFi02pDjt_hb17Jld8
CitedBy_id crossref_primary_10_1080_15421406_2023_2180214
crossref_primary_10_1016_j_dyepig_2019_107927
crossref_primary_10_1016_j_jiec_2021_09_042
crossref_primary_10_1039_D4TC00837E
crossref_primary_10_1002_aelm_202300562
crossref_primary_10_1016_j_dyepig_2023_111345
crossref_primary_10_1016_j_synthmet_2024_117625
crossref_primary_10_1002_admi_201900797
crossref_primary_10_1016_j_cej_2021_129895
crossref_primary_10_1039_D0TC02513E
crossref_primary_10_1080_15421406_2020_1741819
crossref_primary_10_1080_15421406_2025_2474261
Cites_doi 10.1126/science.270.5243.1789
10.1021/acsenergylett.7b00147
10.1021/cr050149z
10.1021/jp103458s
10.1021/jz2002259
10.1002/adma.201004301
10.1002/adma.201301476
10.1021/ma500333r
10.1039/C5EE03045E
10.1021/am302408w
10.1021/ja044455q
10.1021/acs.chemrev.5b00098
10.1016/j.orgel.2016.09.035
10.1002/adfm.200902386
10.1021/cm401618h
10.1039/C3TC32430C
10.1016/j.jiec.2016.10.011
10.1021/acs.chemmater.7b01615
10.1021/cr900182s
10.1002/adma.201104187
10.1021/am506470b
10.1021/acsami.6b08628
10.1021/am800039w
10.1038/nenergy.2015.27
10.1016/j.orgel.2013.01.022
10.1021/am5079418
10.1021/acsami.5b00521
10.1038/nphoton.2011.317
10.1021/am400478b
10.1016/j.solmat.2012.08.003
10.1007/s13233-015-3042-0
10.1016/j.solmat.2013.12.004
10.1038/nphoton.2015.84
10.1002/pola.22745
ContentType Journal Article
Copyright 2018 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2018 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2018.04.026
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 179
ExternalDocumentID oai_kci_go_kr_ARTI_3767340
10_1016_j_jiec_2018_04_026
S1226086X18302016
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
HZ~
MZR
OK1
SSH
ZY4
ZZE
ABTAH
ACYCR
ID FETCH-LOGICAL-c334t-ca22d3682e1dea915380d68bba14dca84c16acd3a404f71135191f4550a21ccf3
IEDL.DBID AIKHN
ISSN 1226-086X
IngestDate Sun Mar 09 07:51:05 EDT 2025
Tue Jul 01 03:34:10 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 23 02:46:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inverted polymer solar cell
Electrolyte
Electron transporting layer
Doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-ca22d3682e1dea915380d68bba14dca84c16acd3a404f71135191f4550a21ccf3
ORCID 0000-0001-9482-7508
PageCount 5
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3767340
crossref_citationtrail_10_1016_j_jiec_2018_04_026
crossref_primary_10_1016_j_jiec_2018_04_026
elsevier_sciencedirect_doi_10_1016_j_jiec_2018_04_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-25
PublicationDateYYYYMMDD 2018-09-25
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-25
  day: 25
PublicationDecade 2010
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2018
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Do, Hong, Ha, Yoo, Won, Moon, Kim (bib0120) 2015; 23
Han, Lee, Han, Lee, Moon (bib0125) 2017; 45
Wang, Liu, Chen, Peng, Ge (bib0175) 2013; 25
Xu, Kan, Ye, Zhao, Lai, Xia, Lanzani, Keivanidis, Huang (bib0105) 2015; 7
Chen, Lin, Jiang, Su, Wei (bib0140) 2015; 7
He, Yu, Cai, Peng, Xu, Ying, Chen, Yang, Cao (bib0045) 2014; 47
Lim, Ha, Jo, Park, Kang, Kim (bib0095) 2013; 5
Norrman, Gevorgyan, Krebs (bib0070) 2008; 1
Duzhko, Dunham, Rosa, Cole, Paul, Page, Dimitrakopoulos, Emrick (bib0130) 2017; 2
Shao, Zheng, Pullerits, Zhang (bib0135) 2013; 5
Guo, Cao, Wang, Moulin, Muller-Buschbaum (bib0180) 2015; 7
Cheng, Yang, Hsu (bib0040) 2009; 109
Ratcliff, Zacher, Armstrong (bib0170) 2011; 2
Huo, Tan, Wang, Zhou, Han, Li (bib0050) 2008; 46
Jo, Ha, Kim (bib0085) 2012; 107
Liao, Jhuo, Cheng, Chen (bib0165) 2013; 25
Jo, Ha, Kim (bib0090) 2013; 14
Vohra, Kawashima, Kakara, Koganezawa, Osaka, Takimiya, Murata (bib0020) 2015; 9
Kim, Sylvianti, Marsya, Park, Kang, Moon, Kim (bib0110) 2016; 8
Yu, Gao, Hummelen, Wudl, Heeger (bib0005) 1995; 270
Lu, Zheng, Wu, Schneider, Zhao, Yu (bib0015) 2015; 115
Jørgensen, Norrman, Gevorgyan, Tromholt, Andreasen, Krebs (bib0075) 2012; 24
Yan, Lee, Armstrong, Graham, Evmenenko, Dutta, Marks (bib0065) 2005; 127
Oh, Na, Jo, Lim, Vak, Kim (bib0035) 2010; 20
Nho, Baek, Park, Lee, Cha, Lim, Seo, Oh, Song, Cho (bib0055) 2016; 9
Ha, Lim, Jo, Park, Kang, Moon, Kim (bib0100) 2004; 2
Zhao, Li, Yang, Jiang, Lin, Ade, Ma, Yan (bib0030) 2016; 1
Sun, Seo, Takacs, Seifter, Heeger (bib0060) 2011; 23
Kim, Sylvianti, Marsya, Moon, Kim (bib0115) 2016; 39
Gao, Zhang, Yang, Zhang, Shi, Qi, Zhang, Xue (bib0160) 2010; 114
Gunes, Neugebauer, Sariciftci (bib0010) 2007; 107
Liao, Jhuo, Cheng, Chen (bib0145) 2013; 25
Song, Kim, Lee, Hwa, Moon (bib0025) 2014; 123
Li, Liu, Zhang, Wang, Fang (bib0155) 2017; 29
Yang, Wu, Hu, Hu, Chen, Chen (bib0150) 2016; 4
Small, Chen, Subbiah, Amb, Tsang, Lai, Reynolds, So (bib0080) 2012; 6
Gao (10.1016/j.jiec.2018.04.026_bib0160) 2010; 114
Liao (10.1016/j.jiec.2018.04.026_bib0145) 2013; 25
Duzhko (10.1016/j.jiec.2018.04.026_bib0130) 2017; 2
Oh (10.1016/j.jiec.2018.04.026_bib0035) 2010; 20
Xu (10.1016/j.jiec.2018.04.026_bib0105) 2015; 7
Chen (10.1016/j.jiec.2018.04.026_bib0140) 2015; 7
Cheng (10.1016/j.jiec.2018.04.026_bib0040) 2009; 109
Jørgensen (10.1016/j.jiec.2018.04.026_bib0075) 2012; 24
Yu (10.1016/j.jiec.2018.04.026_bib0005) 1995; 270
Kim (10.1016/j.jiec.2018.04.026_bib0110) 2016; 8
Gunes (10.1016/j.jiec.2018.04.026_bib0010) 2007; 107
Han (10.1016/j.jiec.2018.04.026_bib0125) 2017; 45
Norrman (10.1016/j.jiec.2018.04.026_bib0070) 2008; 1
Jo (10.1016/j.jiec.2018.04.026_bib0085) 2012; 107
Lu (10.1016/j.jiec.2018.04.026_bib0015) 2015; 115
Ratcliff (10.1016/j.jiec.2018.04.026_bib0170) 2011; 2
He (10.1016/j.jiec.2018.04.026_bib0045) 2014; 47
Small (10.1016/j.jiec.2018.04.026_bib0080) 2012; 6
Wang (10.1016/j.jiec.2018.04.026_bib0175) 2013; 25
Zhao (10.1016/j.jiec.2018.04.026_bib0030) 2016; 1
Liao (10.1016/j.jiec.2018.04.026_bib0165) 2013; 25
Nho (10.1016/j.jiec.2018.04.026_bib0055) 2016; 9
Yang (10.1016/j.jiec.2018.04.026_bib0150) 2016; 4
Sun (10.1016/j.jiec.2018.04.026_bib0060) 2011; 23
Yan (10.1016/j.jiec.2018.04.026_bib0065) 2005; 127
Song (10.1016/j.jiec.2018.04.026_bib0025) 2014; 123
Jo (10.1016/j.jiec.2018.04.026_bib0090) 2013; 14
Ha (10.1016/j.jiec.2018.04.026_bib0100) 2004; 2
Kim (10.1016/j.jiec.2018.04.026_bib0115) 2016; 39
Vohra (10.1016/j.jiec.2018.04.026_bib0020) 2015; 9
Guo (10.1016/j.jiec.2018.04.026_bib0180) 2015; 7
Do (10.1016/j.jiec.2018.04.026_bib0120) 2015; 23
Lim (10.1016/j.jiec.2018.04.026_bib0095) 2013; 5
Shao (10.1016/j.jiec.2018.04.026_bib0135) 2013; 5
Li (10.1016/j.jiec.2018.04.026_bib0155) 2017; 29
Huo (10.1016/j.jiec.2018.04.026_bib0050) 2008; 46
References_xml – volume: 9
  start-page: 403
  year: 2015
  ident: bib0020
  publication-title: Nat. Photonics
– volume: 109
  start-page: 5868
  year: 2009
  ident: bib0040
  publication-title: Chem. Rev.
– volume: 39
  start-page: 163
  year: 2016
  ident: bib0115
  publication-title: Org. Electron.
– volume: 23
  start-page: 367
  year: 2015
  ident: bib0120
  publication-title: Macromol. Res.
– volume: 123
  start-page: 112
  year: 2014
  ident: bib0025
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 107
  start-page: 1
  year: 2012
  ident: bib0085
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 270
  start-page: 1789
  year: 1995
  ident: bib0005
  publication-title: Science
– volume: 5
  start-page: 380
  year: 2013
  ident: bib0135
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 6508
  year: 2013
  ident: bib0095
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 44
  year: 2017
  ident: bib0125
  publication-title: J. Ind. Eng. Chem.
– volume: 25
  start-page: 3196
  year: 2013
  ident: bib0175
  publication-title: Chem. Mater.
– volume: 6
  start-page: 115
  year: 2012
  ident: bib0080
  publication-title: Nat. Photonics
– volume: 115
  start-page: 12666
  year: 2015
  ident: bib0015
  publication-title: Chem. Rev.
– volume: 2
  start-page: 1337
  year: 2011
  ident: bib0170
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  start-page: 4176
  year: 2017
  ident: bib0155
  publication-title: Chem. Mater.
– volume: 1
  start-page: 102
  year: 2008
  ident: bib0070
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 3820
  year: 2004
  ident: bib0100
  publication-title: J. Mater. Chem. C
– volume: 20
  start-page: 1977
  year: 2010
  ident: bib0035
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 4038
  year: 2008
  ident: bib0050
  publication-title: J. Polym. Sci. A: Polym Chem.
– volume: 7
  start-page: 452
  year: 2015
  ident: bib0105
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 240
  year: 2016
  ident: bib0055
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 4766
  year: 2013
  ident: bib0165
  publication-title: Adv. Mater.
– volume: 127
  start-page: 3172
  year: 2005
  ident: bib0065
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 15027
  year: 2016
  ident: bib0030
  publication-title: Nat. Energy
– volume: 8
  start-page: 32992
  year: 2016
  ident: bib0110
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 2921
  year: 2014
  ident: bib0045
  publication-title: Macromolecules
– volume: 25
  start-page: 4766
  year: 2013
  ident: bib0145
  publication-title: Adv. Mater.
– volume: 4
  start-page: 8783
  year: 2016
  ident: bib0150
  publication-title: J. Mater Chem. C
– volume: 2
  start-page: 957
  year: 2017
  ident: bib0130
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 995
  year: 2013
  ident: bib0090
  publication-title: Org. Electron.
– volume: 23
  start-page: 1679
  year: 2011
  ident: bib0060
  publication-title: Adv. Mater.
– volume: 114
  start-page: 13477
  year: 2010
  ident: bib0160
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 580
  year: 2012
  ident: bib0075
  publication-title: Adv. Mater.
– volume: 7
  start-page: 6273
  year: 2015
  ident: bib0140
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 1324
  year: 2007
  ident: bib0010
  publication-title: Chem. Rev.
– volume: 7
  start-page: 4641
  year: 2015
  ident: bib0180
  publication-title: ACS Appl. Mater. Interfaces
– volume: 270
  start-page: 1789
  year: 1995
  ident: 10.1016/j.jiec.2018.04.026_bib0005
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 2
  start-page: 957
  year: 2017
  ident: 10.1016/j.jiec.2018.04.026_bib0130
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00147
– volume: 107
  start-page: 1324
  year: 2007
  ident: 10.1016/j.jiec.2018.04.026_bib0010
  publication-title: Chem. Rev.
  doi: 10.1021/cr050149z
– volume: 114
  start-page: 13477
  year: 2010
  ident: 10.1016/j.jiec.2018.04.026_bib0160
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103458s
– volume: 2
  start-page: 1337
  year: 2011
  ident: 10.1016/j.jiec.2018.04.026_bib0170
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2002259
– volume: 23
  start-page: 1679
  year: 2011
  ident: 10.1016/j.jiec.2018.04.026_bib0060
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004301
– volume: 25
  start-page: 4766
  year: 2013
  ident: 10.1016/j.jiec.2018.04.026_bib0145
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301476
– volume: 47
  start-page: 2921
  year: 2014
  ident: 10.1016/j.jiec.2018.04.026_bib0045
  publication-title: Macromolecules
  doi: 10.1021/ma500333r
– volume: 9
  start-page: 240
  year: 2016
  ident: 10.1016/j.jiec.2018.04.026_bib0055
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03045E
– volume: 5
  start-page: 380
  year: 2013
  ident: 10.1016/j.jiec.2018.04.026_bib0135
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302408w
– volume: 127
  start-page: 3172
  year: 2005
  ident: 10.1016/j.jiec.2018.04.026_bib0065
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044455q
– volume: 115
  start-page: 12666
  year: 2015
  ident: 10.1016/j.jiec.2018.04.026_bib0015
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00098
– volume: 39
  start-page: 163
  year: 2016
  ident: 10.1016/j.jiec.2018.04.026_bib0115
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.09.035
– volume: 25
  start-page: 4766
  year: 2013
  ident: 10.1016/j.jiec.2018.04.026_bib0165
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301476
– volume: 20
  start-page: 1977
  year: 2010
  ident: 10.1016/j.jiec.2018.04.026_bib0035
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902386
– volume: 25
  start-page: 3196
  year: 2013
  ident: 10.1016/j.jiec.2018.04.026_bib0175
  publication-title: Chem. Mater.
  doi: 10.1021/cm401618h
– volume: 2
  start-page: 3820
  year: 2004
  ident: 10.1016/j.jiec.2018.04.026_bib0100
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC32430C
– volume: 45
  start-page: 44
  year: 2017
  ident: 10.1016/j.jiec.2018.04.026_bib0125
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.10.011
– volume: 29
  start-page: 4176
  year: 2017
  ident: 10.1016/j.jiec.2018.04.026_bib0155
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01615
– volume: 4
  start-page: 8783
  year: 2016
  ident: 10.1016/j.jiec.2018.04.026_bib0150
  publication-title: J. Mater Chem. C
– volume: 109
  start-page: 5868
  year: 2009
  ident: 10.1016/j.jiec.2018.04.026_bib0040
  publication-title: Chem. Rev.
  doi: 10.1021/cr900182s
– volume: 24
  start-page: 580
  year: 2012
  ident: 10.1016/j.jiec.2018.04.026_bib0075
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104187
– volume: 7
  start-page: 452
  year: 2015
  ident: 10.1016/j.jiec.2018.04.026_bib0105
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506470b
– volume: 8
  start-page: 32992
  year: 2016
  ident: 10.1016/j.jiec.2018.04.026_bib0110
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08628
– volume: 1
  start-page: 102
  year: 2008
  ident: 10.1016/j.jiec.2018.04.026_bib0070
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am800039w
– volume: 1
  start-page: 15027
  year: 2016
  ident: 10.1016/j.jiec.2018.04.026_bib0030
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.27
– volume: 14
  start-page: 995
  year: 2013
  ident: 10.1016/j.jiec.2018.04.026_bib0090
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2013.01.022
– volume: 7
  start-page: 4641
  year: 2015
  ident: 10.1016/j.jiec.2018.04.026_bib0180
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5079418
– volume: 7
  start-page: 6273
  year: 2015
  ident: 10.1016/j.jiec.2018.04.026_bib0140
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00521
– volume: 6
  start-page: 115
  year: 2012
  ident: 10.1016/j.jiec.2018.04.026_bib0080
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.317
– volume: 5
  start-page: 6508
  year: 2013
  ident: 10.1016/j.jiec.2018.04.026_bib0095
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400478b
– volume: 107
  start-page: 1
  year: 2012
  ident: 10.1016/j.jiec.2018.04.026_bib0085
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2012.08.003
– volume: 23
  start-page: 367
  year: 2015
  ident: 10.1016/j.jiec.2018.04.026_bib0120
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-015-3042-0
– volume: 123
  start-page: 112
  year: 2014
  ident: 10.1016/j.jiec.2018.04.026_bib0025
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.12.004
– volume: 9
  start-page: 403
  year: 2015
  ident: 10.1016/j.jiec.2018.04.026_bib0020
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.84
– volume: 46
  start-page: 4038
  year: 2008
  ident: 10.1016/j.jiec.2018.04.026_bib0050
  publication-title: J. Polym. Sci. A: Polym Chem.
  doi: 10.1002/pola.22745
SSID ssj0060386
ssib009049966
Score 2.2515996
Snippet [Display omitted] •Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted...
Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Doping
Electrolyte
Electron transporting layer
Inverted polymer solar cell
화학공학
Title Organic electrolyte hybridized ZnO as the electron transport layer for inverted polymer solar cells
URI https://dx.doi.org/10.1016/j.jiec.2018.04.026
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002390107
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2018, 65(0), , pp.175-179
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xy6U9VC20Kv1AFuoNhY1jx8keESpaiqCHFmnFxXImThtYwmo3PcCB396ZxKmoVHHoKYrlsaIZa_wczXsD8GnqplI7pSLMTBHpzJvIpS6JJJqS8Igz2LFcz87N7EJ_mafzDTgauDBcVhlyf5_Tu2wdRibBm5NlXU--SUIOBMjnkiWsCLmMYDOh0z4fw-bhyensfEjIJlZdw0eeH7FB4M70ZV5XtWclQ5l3iqessfDv82nUrKpHJ8_xS3gRIKM47L_qFWz4ZguePxIS3AbsKZUoQlebxV3rxc87ZmPV974Ul81X4daCwN4woxHtIGsuFo5wtyD0KuqG2zOTwZKWuKHBNd98Bf_dX7-Gi-PP349mUWifEKFSuo3QJUmpTJ54WXoKCaW2uDR5UTipS3S5RmkclsrpWFeZ7Fr1yYpZzi6RiJV6A-PmtvFvQdClrXLO6Yz5lum0LDAl4KPzFDPM86raATk4zWLQFucWFws7FJFdWXa0ZUfbWFty9A7s_7FZ9soaT85Oh1jYv_aHpdT_pN0eBc5eY21ZSJufP27t9crSdeHEspSN0vG7_1z8PTzjNy4fSdIPMG5Xv_xHwihtsQujgwe5G3bibwlw5gQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wNwQOVLFApYiBuKNo4dJ3usqla7tF0OtNKKi-VMnJJ2SVe74VB-PTOJg1oJ9cApkuOxohlr_BzNewPwaeImUjulIsxMEenMm8ilLokkmpLwiDPYsVzP5mZ6ob8s0sUWHA5cGC6rDLm_z-ldtg4j4-DN8aqux98kIQcC5AvJElaEXLZhR3NT6xHsHMxOpvMhIZtYdQ0feX7EBoE705d5XdWelQxl3imessbCv8-n7WZd3Tl5jnfhaYCM4qD_qmew5Zvn8OSOkOALwJ5SiSJ0tVnetl78uGU2Vv3bl-J781W4jSCwN8xoRDvImoulI9wtCL2KuuH2zGSwoiV-0uCGb76C_-5vXsLF8dH54TQK7RMiVEq3EbokKZXJEy9LTyGh1BaXJi8KJ3WJLtcojcNSOR3rKpNdqz5ZMcvZJRKxUq9g1Nw0_jUIurRVzjmdMd8ynZQFpgR8dJ5ihnleVXsgB6dZDNri3OJiaYcisivLjrbsaBtrS47eg89_bVa9ssaDs9MhFvbe_rCU-h-0-0iBs9dYWxbS5ufljb1eW7ouzCxL2Sgdv_nPxT_Ao-n52ak9nc1P3sJjfsOlJEm6D6N2_cu_I7zSFu_DfvwDdo_n6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+electrolyte+hybridized+ZnO+as+the+electron+transport+layer+for+inverted+polymer+solar+cells&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Kim%2C+Dong+Geun&rft.au=Kim%2C+Youn+Hwan&rft.au=Maduwu%2C+Ratna+Dewi&rft.au=Jin%2C+Ho+Cheol&rft.date=2018-09-25&rft.issn=1226-086X&rft.volume=65&rft.spage=175&rft.epage=179&rft_id=info:doi/10.1016%2Fj.jiec.2018.04.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jiec_2018_04_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon