Organic electrolyte hybridized ZnO as the electron transport layer for inverted polymer solar cells
[Display omitted] •Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted from the Jsc improvement. Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped Z...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 65; pp. 175 - 179 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.09.2018
한국공업화학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-086X 1876-794X |
DOI | 10.1016/j.jiec.2018.04.026 |
Cover
Abstract | [Display omitted]
•Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted from the Jsc improvement.
Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process and used as the for an electron transport layer in inverted polymer solar cells (PSCs). The electron mobility of the doped ZnO is comparable to that of pristine ZnO because the crystallinity of the ZnO layer is not significantly affected by the doping process. The Kelvin probe microscopy measurements employ that the work function of doped ZnO are −4.0eV, which is higher than that of pristine ZnO (−4.5eV). This is due to that the formation of interface dipole at the interface between the ZnO layer and the active layer by unreacted hydroxyl groups and quaternary ammonium bromide. As a result, inverted PSC based on C4 doped ZnO exhibit the power conversion efficiency (PCE) up to 8.87%, which is a significant improvement over the device based on pristine ZnO (PCE=7.4%). Note that the main contribution to the enhancement of the PCE is from the improvement of the Jsc. |
---|---|
AbstractList | Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process and used as the for an electron transport layer in inverted polymer solar cells (PSCs). The electron mobility of the doped ZnO is comparable to that of pristine ZnO because the crystallinity of the ZnO layer is not significantly affected by the doping process. The Kelvin probe microscopy measurements employ that the work function of doped ZnO are −4.0 eV, which is higher than that of pristine ZnO (−4.5 eV). This is due to that the formation of interface dipole at the interface between the ZnO layer and the active layer by unreacted hydroxyl groups and quaternary ammonium bromide. As a result, inverted PSC based on C4 doped ZnO exhibit the power conversion efficiency (PCE) up to 8.87%, which is a significant improvement over the device based on pristine ZnO (PCE = 7.4%). Note that the main contribution to the enhancement of the PCE is from the improvement of the Jsc. KCI Citation Count: 8 [Display omitted] •Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted from the Jsc improvement. Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process and used as the for an electron transport layer in inverted polymer solar cells (PSCs). The electron mobility of the doped ZnO is comparable to that of pristine ZnO because the crystallinity of the ZnO layer is not significantly affected by the doping process. The Kelvin probe microscopy measurements employ that the work function of doped ZnO are −4.0eV, which is higher than that of pristine ZnO (−4.5eV). This is due to that the formation of interface dipole at the interface between the ZnO layer and the active layer by unreacted hydroxyl groups and quaternary ammonium bromide. As a result, inverted PSC based on C4 doped ZnO exhibit the power conversion efficiency (PCE) up to 8.87%, which is a significant improvement over the device based on pristine ZnO (PCE=7.4%). Note that the main contribution to the enhancement of the PCE is from the improvement of the Jsc. |
Author | Kim, Youn Hwan Jin, Ho Cheol Kim, Joo Hyun Moon, Doo Kyung Kim, Dong Geun Maduwu, Ratna Dewi |
Author_xml | – sequence: 1 givenname: Dong Geun surname: Kim fullname: Kim, Dong Geun organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea – sequence: 2 givenname: Youn Hwan surname: Kim fullname: Kim, Youn Hwan organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea – sequence: 3 givenname: Ratna Dewi surname: Maduwu fullname: Maduwu, Ratna Dewi organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea – sequence: 4 givenname: Ho Cheol surname: Jin fullname: Jin, Ho Cheol organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea – sequence: 5 givenname: Doo Kyung orcidid: 0000-0001-9482-7508 surname: Moon fullname: Moon, Doo Kyung organization: Department of Materials Chemistry and Engineering, Konkuk University, Seoul 05029, Republic of Korea – sequence: 6 givenname: Joo Hyun surname: Kim fullname: Kim, Joo Hyun email: jkim@pknu.ac.kr organization: Department of Polymer Engineering, Pukyong National University, Busan 48547, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002390107$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LJDEQhsPiwqrrH_CU6x66zdekM7AXEb9AGBAXZC8hk1RrxjYZKkEYf70ZRy8ePFVRvM8L9RyQvZQTEHLMWc8Z1yerfhXB94Jx0zPVM6F_kH1uBt0Nc3W_13YhdMeMvv9FDkpZMaaZNHqf-AU-uBQ9hQl8xTxtKtDHzRJjiK8Q6P-0oK7Q-gifiUQrulTWGSud3AaQjhlpTC-AtQHrVvHcjiVPDqmHaSq_yc_RTQWOPuYh-Xdxfnd21d0sLq_PTm86L6WqnXdCBKmNAB7AzflMGha0WS4dV8E7ozzXzgfpFFPjwLmc8Tkf1WzGnODej_KQ_Nn1Jhztk482u_g-H7J9Qnt6e3dt5aAHqVjLml3WYy4FYbQ-VldjTu27OFnO7FasXdmtWLsVa5myTWxDxRd0jfHZ4eZ76O8OgibgJQLa4iMkDyFi02pDjt_hb17Jld8 |
CitedBy_id | crossref_primary_10_1080_15421406_2023_2180214 crossref_primary_10_1016_j_dyepig_2019_107927 crossref_primary_10_1016_j_jiec_2021_09_042 crossref_primary_10_1039_D4TC00837E crossref_primary_10_1002_aelm_202300562 crossref_primary_10_1016_j_dyepig_2023_111345 crossref_primary_10_1016_j_synthmet_2024_117625 crossref_primary_10_1002_admi_201900797 crossref_primary_10_1016_j_cej_2021_129895 crossref_primary_10_1039_D0TC02513E crossref_primary_10_1080_15421406_2020_1741819 crossref_primary_10_1080_15421406_2025_2474261 |
Cites_doi | 10.1126/science.270.5243.1789 10.1021/acsenergylett.7b00147 10.1021/cr050149z 10.1021/jp103458s 10.1021/jz2002259 10.1002/adma.201004301 10.1002/adma.201301476 10.1021/ma500333r 10.1039/C5EE03045E 10.1021/am302408w 10.1021/ja044455q 10.1021/acs.chemrev.5b00098 10.1016/j.orgel.2016.09.035 10.1002/adfm.200902386 10.1021/cm401618h 10.1039/C3TC32430C 10.1016/j.jiec.2016.10.011 10.1021/acs.chemmater.7b01615 10.1021/cr900182s 10.1002/adma.201104187 10.1021/am506470b 10.1021/acsami.6b08628 10.1021/am800039w 10.1038/nenergy.2015.27 10.1016/j.orgel.2013.01.022 10.1021/am5079418 10.1021/acsami.5b00521 10.1038/nphoton.2011.317 10.1021/am400478b 10.1016/j.solmat.2012.08.003 10.1007/s13233-015-3042-0 10.1016/j.solmat.2013.12.004 10.1038/nphoton.2015.84 10.1002/pola.22745 |
ContentType | Journal Article |
Copyright | 2018 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2018 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2018.04.026 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 179 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3767340 10_1016_j_jiec_2018_04_026 S1226086X18302016 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION HZ~ MZR OK1 SSH ZY4 ZZE ABTAH ACYCR |
ID | FETCH-LOGICAL-c334t-ca22d3682e1dea915380d68bba14dca84c16acd3a404f71135191f4550a21ccf3 |
IEDL.DBID | AIKHN |
ISSN | 1226-086X |
IngestDate | Sun Mar 09 07:51:05 EDT 2025 Tue Jul 01 03:34:10 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Fri Feb 23 02:46:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inverted polymer solar cell Electrolyte Electron transporting layer Doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-ca22d3682e1dea915380d68bba14dca84c16acd3a404f71135191f4550a21ccf3 |
ORCID | 0000-0001-9482-7508 |
PageCount | 5 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3767340 crossref_citationtrail_10_1016_j_jiec_2018_04_026 crossref_primary_10_1016_j_jiec_2018_04_026 elsevier_sciencedirect_doi_10_1016_j_jiec_2018_04_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-25 |
PublicationDateYYYYMMDD | 2018-09-25 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2018 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Do, Hong, Ha, Yoo, Won, Moon, Kim (bib0120) 2015; 23 Han, Lee, Han, Lee, Moon (bib0125) 2017; 45 Wang, Liu, Chen, Peng, Ge (bib0175) 2013; 25 Xu, Kan, Ye, Zhao, Lai, Xia, Lanzani, Keivanidis, Huang (bib0105) 2015; 7 Chen, Lin, Jiang, Su, Wei (bib0140) 2015; 7 He, Yu, Cai, Peng, Xu, Ying, Chen, Yang, Cao (bib0045) 2014; 47 Lim, Ha, Jo, Park, Kang, Kim (bib0095) 2013; 5 Norrman, Gevorgyan, Krebs (bib0070) 2008; 1 Duzhko, Dunham, Rosa, Cole, Paul, Page, Dimitrakopoulos, Emrick (bib0130) 2017; 2 Shao, Zheng, Pullerits, Zhang (bib0135) 2013; 5 Guo, Cao, Wang, Moulin, Muller-Buschbaum (bib0180) 2015; 7 Cheng, Yang, Hsu (bib0040) 2009; 109 Ratcliff, Zacher, Armstrong (bib0170) 2011; 2 Huo, Tan, Wang, Zhou, Han, Li (bib0050) 2008; 46 Jo, Ha, Kim (bib0085) 2012; 107 Liao, Jhuo, Cheng, Chen (bib0165) 2013; 25 Jo, Ha, Kim (bib0090) 2013; 14 Vohra, Kawashima, Kakara, Koganezawa, Osaka, Takimiya, Murata (bib0020) 2015; 9 Kim, Sylvianti, Marsya, Park, Kang, Moon, Kim (bib0110) 2016; 8 Yu, Gao, Hummelen, Wudl, Heeger (bib0005) 1995; 270 Lu, Zheng, Wu, Schneider, Zhao, Yu (bib0015) 2015; 115 Jørgensen, Norrman, Gevorgyan, Tromholt, Andreasen, Krebs (bib0075) 2012; 24 Yan, Lee, Armstrong, Graham, Evmenenko, Dutta, Marks (bib0065) 2005; 127 Oh, Na, Jo, Lim, Vak, Kim (bib0035) 2010; 20 Nho, Baek, Park, Lee, Cha, Lim, Seo, Oh, Song, Cho (bib0055) 2016; 9 Ha, Lim, Jo, Park, Kang, Moon, Kim (bib0100) 2004; 2 Zhao, Li, Yang, Jiang, Lin, Ade, Ma, Yan (bib0030) 2016; 1 Sun, Seo, Takacs, Seifter, Heeger (bib0060) 2011; 23 Kim, Sylvianti, Marsya, Moon, Kim (bib0115) 2016; 39 Gao, Zhang, Yang, Zhang, Shi, Qi, Zhang, Xue (bib0160) 2010; 114 Gunes, Neugebauer, Sariciftci (bib0010) 2007; 107 Liao, Jhuo, Cheng, Chen (bib0145) 2013; 25 Song, Kim, Lee, Hwa, Moon (bib0025) 2014; 123 Li, Liu, Zhang, Wang, Fang (bib0155) 2017; 29 Yang, Wu, Hu, Hu, Chen, Chen (bib0150) 2016; 4 Small, Chen, Subbiah, Amb, Tsang, Lai, Reynolds, So (bib0080) 2012; 6 Gao (10.1016/j.jiec.2018.04.026_bib0160) 2010; 114 Liao (10.1016/j.jiec.2018.04.026_bib0145) 2013; 25 Duzhko (10.1016/j.jiec.2018.04.026_bib0130) 2017; 2 Oh (10.1016/j.jiec.2018.04.026_bib0035) 2010; 20 Xu (10.1016/j.jiec.2018.04.026_bib0105) 2015; 7 Chen (10.1016/j.jiec.2018.04.026_bib0140) 2015; 7 Cheng (10.1016/j.jiec.2018.04.026_bib0040) 2009; 109 Jørgensen (10.1016/j.jiec.2018.04.026_bib0075) 2012; 24 Yu (10.1016/j.jiec.2018.04.026_bib0005) 1995; 270 Kim (10.1016/j.jiec.2018.04.026_bib0110) 2016; 8 Gunes (10.1016/j.jiec.2018.04.026_bib0010) 2007; 107 Han (10.1016/j.jiec.2018.04.026_bib0125) 2017; 45 Norrman (10.1016/j.jiec.2018.04.026_bib0070) 2008; 1 Jo (10.1016/j.jiec.2018.04.026_bib0085) 2012; 107 Lu (10.1016/j.jiec.2018.04.026_bib0015) 2015; 115 Ratcliff (10.1016/j.jiec.2018.04.026_bib0170) 2011; 2 He (10.1016/j.jiec.2018.04.026_bib0045) 2014; 47 Small (10.1016/j.jiec.2018.04.026_bib0080) 2012; 6 Wang (10.1016/j.jiec.2018.04.026_bib0175) 2013; 25 Zhao (10.1016/j.jiec.2018.04.026_bib0030) 2016; 1 Liao (10.1016/j.jiec.2018.04.026_bib0165) 2013; 25 Nho (10.1016/j.jiec.2018.04.026_bib0055) 2016; 9 Yang (10.1016/j.jiec.2018.04.026_bib0150) 2016; 4 Sun (10.1016/j.jiec.2018.04.026_bib0060) 2011; 23 Yan (10.1016/j.jiec.2018.04.026_bib0065) 2005; 127 Song (10.1016/j.jiec.2018.04.026_bib0025) 2014; 123 Jo (10.1016/j.jiec.2018.04.026_bib0090) 2013; 14 Ha (10.1016/j.jiec.2018.04.026_bib0100) 2004; 2 Kim (10.1016/j.jiec.2018.04.026_bib0115) 2016; 39 Vohra (10.1016/j.jiec.2018.04.026_bib0020) 2015; 9 Guo (10.1016/j.jiec.2018.04.026_bib0180) 2015; 7 Do (10.1016/j.jiec.2018.04.026_bib0120) 2015; 23 Lim (10.1016/j.jiec.2018.04.026_bib0095) 2013; 5 Shao (10.1016/j.jiec.2018.04.026_bib0135) 2013; 5 Li (10.1016/j.jiec.2018.04.026_bib0155) 2017; 29 Huo (10.1016/j.jiec.2018.04.026_bib0050) 2008; 46 |
References_xml | – volume: 9 start-page: 403 year: 2015 ident: bib0020 publication-title: Nat. Photonics – volume: 109 start-page: 5868 year: 2009 ident: bib0040 publication-title: Chem. Rev. – volume: 39 start-page: 163 year: 2016 ident: bib0115 publication-title: Org. Electron. – volume: 23 start-page: 367 year: 2015 ident: bib0120 publication-title: Macromol. Res. – volume: 123 start-page: 112 year: 2014 ident: bib0025 publication-title: Sol. Energy Mater. Sol. Cells – volume: 107 start-page: 1 year: 2012 ident: bib0085 publication-title: Sol. Energy Mater. Sol. Cells. – volume: 270 start-page: 1789 year: 1995 ident: bib0005 publication-title: Science – volume: 5 start-page: 380 year: 2013 ident: bib0135 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 6508 year: 2013 ident: bib0095 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 44 year: 2017 ident: bib0125 publication-title: J. Ind. Eng. Chem. – volume: 25 start-page: 3196 year: 2013 ident: bib0175 publication-title: Chem. Mater. – volume: 6 start-page: 115 year: 2012 ident: bib0080 publication-title: Nat. Photonics – volume: 115 start-page: 12666 year: 2015 ident: bib0015 publication-title: Chem. Rev. – volume: 2 start-page: 1337 year: 2011 ident: bib0170 publication-title: J. Phys. Chem. Lett. – volume: 29 start-page: 4176 year: 2017 ident: bib0155 publication-title: Chem. Mater. – volume: 1 start-page: 102 year: 2008 ident: bib0070 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 3820 year: 2004 ident: bib0100 publication-title: J. Mater. Chem. C – volume: 20 start-page: 1977 year: 2010 ident: bib0035 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 4038 year: 2008 ident: bib0050 publication-title: J. Polym. Sci. A: Polym Chem. – volume: 7 start-page: 452 year: 2015 ident: bib0105 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 240 year: 2016 ident: bib0055 publication-title: Energy Environ. Sci. – volume: 25 start-page: 4766 year: 2013 ident: bib0165 publication-title: Adv. Mater. – volume: 127 start-page: 3172 year: 2005 ident: bib0065 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 15027 year: 2016 ident: bib0030 publication-title: Nat. Energy – volume: 8 start-page: 32992 year: 2016 ident: bib0110 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 2921 year: 2014 ident: bib0045 publication-title: Macromolecules – volume: 25 start-page: 4766 year: 2013 ident: bib0145 publication-title: Adv. Mater. – volume: 4 start-page: 8783 year: 2016 ident: bib0150 publication-title: J. Mater Chem. C – volume: 2 start-page: 957 year: 2017 ident: bib0130 publication-title: ACS Energy Lett. – volume: 14 start-page: 995 year: 2013 ident: bib0090 publication-title: Org. Electron. – volume: 23 start-page: 1679 year: 2011 ident: bib0060 publication-title: Adv. Mater. – volume: 114 start-page: 13477 year: 2010 ident: bib0160 publication-title: J. Phys. Chem. C – volume: 24 start-page: 580 year: 2012 ident: bib0075 publication-title: Adv. Mater. – volume: 7 start-page: 6273 year: 2015 ident: bib0140 publication-title: ACS Appl. Mater. Interfaces – volume: 107 start-page: 1324 year: 2007 ident: bib0010 publication-title: Chem. Rev. – volume: 7 start-page: 4641 year: 2015 ident: bib0180 publication-title: ACS Appl. Mater. Interfaces – volume: 270 start-page: 1789 year: 1995 ident: 10.1016/j.jiec.2018.04.026_bib0005 publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 2 start-page: 957 year: 2017 ident: 10.1016/j.jiec.2018.04.026_bib0130 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00147 – volume: 107 start-page: 1324 year: 2007 ident: 10.1016/j.jiec.2018.04.026_bib0010 publication-title: Chem. Rev. doi: 10.1021/cr050149z – volume: 114 start-page: 13477 year: 2010 ident: 10.1016/j.jiec.2018.04.026_bib0160 publication-title: J. Phys. Chem. C doi: 10.1021/jp103458s – volume: 2 start-page: 1337 year: 2011 ident: 10.1016/j.jiec.2018.04.026_bib0170 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2002259 – volume: 23 start-page: 1679 year: 2011 ident: 10.1016/j.jiec.2018.04.026_bib0060 publication-title: Adv. Mater. doi: 10.1002/adma.201004301 – volume: 25 start-page: 4766 year: 2013 ident: 10.1016/j.jiec.2018.04.026_bib0145 publication-title: Adv. Mater. doi: 10.1002/adma.201301476 – volume: 47 start-page: 2921 year: 2014 ident: 10.1016/j.jiec.2018.04.026_bib0045 publication-title: Macromolecules doi: 10.1021/ma500333r – volume: 9 start-page: 240 year: 2016 ident: 10.1016/j.jiec.2018.04.026_bib0055 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03045E – volume: 5 start-page: 380 year: 2013 ident: 10.1016/j.jiec.2018.04.026_bib0135 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302408w – volume: 127 start-page: 3172 year: 2005 ident: 10.1016/j.jiec.2018.04.026_bib0065 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044455q – volume: 115 start-page: 12666 year: 2015 ident: 10.1016/j.jiec.2018.04.026_bib0015 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00098 – volume: 39 start-page: 163 year: 2016 ident: 10.1016/j.jiec.2018.04.026_bib0115 publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.09.035 – volume: 25 start-page: 4766 year: 2013 ident: 10.1016/j.jiec.2018.04.026_bib0165 publication-title: Adv. Mater. doi: 10.1002/adma.201301476 – volume: 20 start-page: 1977 year: 2010 ident: 10.1016/j.jiec.2018.04.026_bib0035 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902386 – volume: 25 start-page: 3196 year: 2013 ident: 10.1016/j.jiec.2018.04.026_bib0175 publication-title: Chem. Mater. doi: 10.1021/cm401618h – volume: 2 start-page: 3820 year: 2004 ident: 10.1016/j.jiec.2018.04.026_bib0100 publication-title: J. Mater. Chem. C doi: 10.1039/C3TC32430C – volume: 45 start-page: 44 year: 2017 ident: 10.1016/j.jiec.2018.04.026_bib0125 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.10.011 – volume: 29 start-page: 4176 year: 2017 ident: 10.1016/j.jiec.2018.04.026_bib0155 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01615 – volume: 4 start-page: 8783 year: 2016 ident: 10.1016/j.jiec.2018.04.026_bib0150 publication-title: J. Mater Chem. C – volume: 109 start-page: 5868 year: 2009 ident: 10.1016/j.jiec.2018.04.026_bib0040 publication-title: Chem. Rev. doi: 10.1021/cr900182s – volume: 24 start-page: 580 year: 2012 ident: 10.1016/j.jiec.2018.04.026_bib0075 publication-title: Adv. Mater. doi: 10.1002/adma.201104187 – volume: 7 start-page: 452 year: 2015 ident: 10.1016/j.jiec.2018.04.026_bib0105 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am506470b – volume: 8 start-page: 32992 year: 2016 ident: 10.1016/j.jiec.2018.04.026_bib0110 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08628 – volume: 1 start-page: 102 year: 2008 ident: 10.1016/j.jiec.2018.04.026_bib0070 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am800039w – volume: 1 start-page: 15027 year: 2016 ident: 10.1016/j.jiec.2018.04.026_bib0030 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.27 – volume: 14 start-page: 995 year: 2013 ident: 10.1016/j.jiec.2018.04.026_bib0090 publication-title: Org. Electron. doi: 10.1016/j.orgel.2013.01.022 – volume: 7 start-page: 4641 year: 2015 ident: 10.1016/j.jiec.2018.04.026_bib0180 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5079418 – volume: 7 start-page: 6273 year: 2015 ident: 10.1016/j.jiec.2018.04.026_bib0140 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00521 – volume: 6 start-page: 115 year: 2012 ident: 10.1016/j.jiec.2018.04.026_bib0080 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.317 – volume: 5 start-page: 6508 year: 2013 ident: 10.1016/j.jiec.2018.04.026_bib0095 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400478b – volume: 107 start-page: 1 year: 2012 ident: 10.1016/j.jiec.2018.04.026_bib0085 publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2012.08.003 – volume: 23 start-page: 367 year: 2015 ident: 10.1016/j.jiec.2018.04.026_bib0120 publication-title: Macromol. Res. doi: 10.1007/s13233-015-3042-0 – volume: 123 start-page: 112 year: 2014 ident: 10.1016/j.jiec.2018.04.026_bib0025 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.12.004 – volume: 9 start-page: 403 year: 2015 ident: 10.1016/j.jiec.2018.04.026_bib0020 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.84 – volume: 46 start-page: 4038 year: 2008 ident: 10.1016/j.jiec.2018.04.026_bib0050 publication-title: J. Polym. Sci. A: Polym Chem. doi: 10.1002/pola.22745 |
SSID | ssj0060386 ssib009049966 |
Score | 2.2515996 |
Snippet | [Display omitted]
•Small molecular organic electrolyte for dopant.•Electrolyte doped ZnO a the electron transport layer.•Enhancement of the PCE mainly resulted... Small molecular organic electrolyte; N,N,N,N,N,N-hexakis(2-hydroxyethyl)butane-1,4-diaminium bromide (C4), doped ZnO is prepared by a typical sol–gel process... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 175 |
SubjectTerms | Doping Electrolyte Electron transporting layer Inverted polymer solar cell 화학공학 |
Title | Organic electrolyte hybridized ZnO as the electron transport layer for inverted polymer solar cells |
URI | https://dx.doi.org/10.1016/j.jiec.2018.04.026 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002390107 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2018, 65(0), , pp.175-179 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xy6U9VC20Kv1AFuoNhY1jx8keESpaiqCHFmnFxXImThtYwmo3PcCB396ZxKmoVHHoKYrlsaIZa_wczXsD8GnqplI7pSLMTBHpzJvIpS6JJJqS8Igz2LFcz87N7EJ_mafzDTgauDBcVhlyf5_Tu2wdRibBm5NlXU--SUIOBMjnkiWsCLmMYDOh0z4fw-bhyensfEjIJlZdw0eeH7FB4M70ZV5XtWclQ5l3iqessfDv82nUrKpHJ8_xS3gRIKM47L_qFWz4ZguePxIS3AbsKZUoQlebxV3rxc87ZmPV974Ul81X4daCwN4woxHtIGsuFo5wtyD0KuqG2zOTwZKWuKHBNd98Bf_dX7-Gi-PP349mUWifEKFSuo3QJUmpTJ54WXoKCaW2uDR5UTipS3S5RmkclsrpWFeZ7Fr1yYpZzi6RiJV6A-PmtvFvQdClrXLO6Yz5lum0LDAl4KPzFDPM86raATk4zWLQFucWFws7FJFdWXa0ZUfbWFty9A7s_7FZ9soaT85Oh1jYv_aHpdT_pN0eBc5eY21ZSJufP27t9crSdeHEspSN0vG7_1z8PTzjNy4fSdIPMG5Xv_xHwihtsQujgwe5G3bibwlw5gQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wNwQOVLFApYiBuKNo4dJ3usqla7tF0OtNKKi-VMnJJ2SVe74VB-PTOJg1oJ9cApkuOxohlr_BzNewPwaeImUjulIsxMEenMm8ilLokkmpLwiDPYsVzP5mZ6ob8s0sUWHA5cGC6rDLm_z-ldtg4j4-DN8aqux98kIQcC5AvJElaEXLZhR3NT6xHsHMxOpvMhIZtYdQ0feX7EBoE705d5XdWelQxl3imessbCv8-n7WZd3Tl5jnfhaYCM4qD_qmew5Zvn8OSOkOALwJ5SiSJ0tVnetl78uGU2Vv3bl-J781W4jSCwN8xoRDvImoulI9wtCL2KuuH2zGSwoiV-0uCGb76C_-5vXsLF8dH54TQK7RMiVEq3EbokKZXJEy9LTyGh1BaXJi8KJ3WJLtcojcNSOR3rKpNdqz5ZMcvZJRKxUq9g1Nw0_jUIurRVzjmdMd8ynZQFpgR8dJ5ihnleVXsgB6dZDNri3OJiaYcisivLjrbsaBtrS47eg89_bVa9ssaDs9MhFvbe_rCU-h-0-0iBs9dYWxbS5ufljb1eW7ouzCxL2Sgdv_nPxT_Ao-n52ak9nc1P3sJjfsOlJEm6D6N2_cu_I7zSFu_DfvwDdo_n6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+electrolyte+hybridized+ZnO+as+the+electron+transport+layer+for+inverted+polymer+solar+cells&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Kim%2C+Dong+Geun&rft.au=Kim%2C+Youn+Hwan&rft.au=Maduwu%2C+Ratna+Dewi&rft.au=Jin%2C+Ho+Cheol&rft.date=2018-09-25&rft.issn=1226-086X&rft.volume=65&rft.spage=175&rft.epage=179&rft_id=info:doi/10.1016%2Fj.jiec.2018.04.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jiec_2018_04_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |