Method and Validation of Coal Mine Gas Concentration Prediction by Integrating PSO Algorithm and LSTM Network

Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Te...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 12; no. 5; p. 898
Main Authors Yang, Guangyu, Zhu, Quanjie, Wang, Dacang, Feng, Yu, Chen, Xuexi, Li, Qingsong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr12050898

Cover

Abstract Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM) is proposed. First, the principle of the PSO-LSTM fusion model is analyzed, and the PSO-LSTM gas concentration analysis and prediction model is constructed. Second, the gas concentration data are normalized and preprocessed. The PSO algorithm is utilized to optimize the training set of the LSTM model, facilitating the selection of the training data set for the LSTM model. Finally, the MAE, RMSE, and coefficient of determination R2 evaluation indicators are proposed to verify and analyze the prediction results. Gas concentration prediction comparison and verification research was conducted using gas concentration data measured in a mine as the sample data. The experimental results show that: (1) The maximum RMSE predicted using the PSO-LSTM model is 0.0029, and the minimum RMSE is 0.0010 when the sample size changes. This verifies the reliability of the prediction effect of the PSO-LSTM model. (2) The predictive performance of all models ranks as follows: PSO-LSTM > SVR-LSTM > LSTM > PSO-GRU. Comparative analysis with the LSTM model demonstrates that the PSO-LSTM model is more effective in predicting gas concentration, further confirming the superiority of this model in gas concentration prediction.
AbstractList Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM) is proposed. First, the principle of the PSO-LSTM fusion model is analyzed, and the PSO-LSTM gas concentration analysis and prediction model is constructed. Second, the gas concentration data are normalized and preprocessed. The PSO algorithm is utilized to optimize the training set of the LSTM model, facilitating the selection of the training data set for the LSTM model. Finally, the MAE, RMSE, and coefficient of determination R2 evaluation indicators are proposed to verify and analyze the prediction results. Gas concentration prediction comparison and verification research was conducted using gas concentration data measured in a mine as the sample data. The experimental results show that: (1) The maximum RMSE predicted using the PSO-LSTM model is 0.0029, and the minimum RMSE is 0.0010 when the sample size changes. This verifies the reliability of the prediction effect of the PSO-LSTM model. (2) The predictive performance of all models ranks as follows: PSO-LSTM > SVR-LSTM > LSTM > PSO-GRU. Comparative analysis with the LSTM model demonstrates that the PSO-LSTM model is more effective in predicting gas concentration, further confirming the superiority of this model in gas concentration prediction.
Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM) is proposed. First, the principle of the PSO-LSTM fusion model is analyzed, and the PSO-LSTM gas concentration analysis and prediction model is constructed. Second, the gas concentration data are normalized and preprocessed. The PSO algorithm is utilized to optimize the training set of the LSTM model, facilitating the selection of the training data set for the LSTM model. Finally, the MAE, RMSE, and coefficient of determination R[sup.2] evaluation indicators are proposed to verify and analyze the prediction results. Gas concentration prediction comparison and verification research was conducted using gas concentration data measured in a mine as the sample data. The experimental results show that: (1) The maximum RMSE predicted using the PSO-LSTM model is 0.0029, and the minimum RMSE is 0.0010 when the sample size changes. This verifies the reliability of the prediction effect of the PSO-LSTM model. (2) The predictive performance of all models ranks as follows: PSO-LSTM > SVR-LSTM > LSTM > PSO-GRU. Comparative analysis with the LSTM model demonstrates that the PSO-LSTM model is more effective in predicting gas concentration, further confirming the superiority of this model in gas concentration prediction.
Audience Academic
Author Yang, Guangyu
Zhu, Quanjie
Chen, Xuexi
Wang, Dacang
Feng, Yu
Li, Qingsong
Author_xml – sequence: 1
  givenname: Guangyu
  surname: Yang
  fullname: Yang, Guangyu
– sequence: 2
  givenname: Quanjie
  orcidid: 0000-0003-3735-0744
  surname: Zhu
  fullname: Zhu, Quanjie
– sequence: 3
  givenname: Dacang
  surname: Wang
  fullname: Wang, Dacang
– sequence: 4
  givenname: Yu
  surname: Feng
  fullname: Feng, Yu
– sequence: 5
  givenname: Xuexi
  surname: Chen
  fullname: Chen, Xuexi
– sequence: 6
  givenname: Qingsong
  surname: Li
  fullname: Li, Qingsong
BookMark eNp9UV1PwjAUbQwmIvLiL2jimwZs141tj4QokoCQgL4upb2F4mixKzH8ewsz0Rhjm7T345ybk3MvUcNYAwhdU9JlLCf3O0cjkpAsz85QM4qitJOnNG38iC9Qu6o2JJycsizpNdF2An5tJeZG4ldeasm9tgZbhQeWl3iiDeAhr0JmBBjv6vbMgdTiFC4PeGQ8rI4ds8Kz-RT3y5V12q-3p6nj-WKCn8F_WPd2hc4VLytof_0t9PL4sBg8dcbT4WjQH3cEY7HviF4EmSAZAxkvgXIaqTiHmCmSAYcsZYIuc8mYEEyxmCZSSaq4hFDjIqaMtdBdPXdvdvzwwcuy2Dm95e5QUFIczSq-zQromxq9c_Z9D5UvNnbvTBBYMJLkvZSEN6C6NWrFSyi0UTa4IcKVsNUibELpUO-neRLHPZocRZCaIJytKgeqENqf_AtEXf6t5PYX5R_Znx9OmKo
CitedBy_id crossref_primary_10_3390_pr12081691
crossref_primary_10_3390_agriculture14091544
crossref_primary_10_1016_j_apenergy_2024_124613
crossref_primary_10_1007_s40722_024_00369_3
Cites_doi 10.1080/00949655.2020.1814776
10.3390/pr9071187
10.1016/j.jclepro.2022.133258
10.1016/j.dss.2015.03.009
10.1109/ACCESS.2020.3047828
10.1186/s12859-016-1236-x
10.1016/j.rineng.2023.100951
10.1016/S1006-1266(08)60037-1
10.1016/j.solener.2015.03.015
10.1016/j.cor.2023.106152
10.1016/j.ref.2023.100520
10.3390/en16052318
10.1007/s00500-022-07451-8
10.1016/j.energy.2022.126208
10.1080/00031305.2019.1585288
10.3390/ijerph16081406
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/pr12050898
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10.3390/pr12050898
A795446153
10_3390_pr12050898
GeographicLocations China
Guizhou China
GeographicLocations_xml – name: China
– name: Guizhou China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c334t-c62e8c083ed4be1a12f49e43f08eae873c1b9d33cc3f3415dfd1fade9d3ac4133
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Sun Sep 07 11:00:19 EDT 2025
Fri Jul 25 11:44:57 EDT 2025
Mon Oct 20 17:05:12 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Thu Oct 16 04:43:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-c62e8c083ed4be1a12f49e43f08eae873c1b9d33cc3f3415dfd1fade9d3ac4133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3735-0744
OpenAccessLink https://www.proquest.com/docview/3059670059?pq-origsite=%requestingapplication%&accountid=15518
PQID 3059670059
PQPubID 2032344
ParticipantIDs unpaywall_primary_10_3390_pr12050898
proquest_journals_3059670059
gale_infotracacademiconefile_A795446153
crossref_citationtrail_10_3390_pr12050898
crossref_primary_10_3390_pr12050898
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Czajkowski (ref_4) 2015; 74
Fu (ref_18) 2021; 34
Kumar (ref_28) 2022; 26
Cao (ref_12) 2008; 18
Zhang (ref_17) 2021; 28
Li (ref_7) 2022; 41
ref_19
Wen (ref_22) 2023; 264
Brodny (ref_20) 2022; 368
Zhao (ref_6) 2021; 40
Liu (ref_14) 2022; 18
Zhou (ref_13) 2023; 40
Li (ref_15) 2018; 44
Blanquero (ref_5) 2023; 152
Liang (ref_21) 2022; 49
ref_25
ref_23
Li (ref_16) 2020; 48
Khan (ref_10) 2023; 20
Jiang (ref_26) 2019; 7
Olatomiwa (ref_11) 2015; 115
Bukhari (ref_9) 2024; 48
Zhang (ref_3) 2019; 74
Tang (ref_24) 2021; 9
Lu (ref_1) 2021; 22
Ruma (ref_27) 2023; 17
Wang (ref_2) 2021; 91
ref_8
References_xml – volume: 91
  start-page: 353
  year: 2021
  ident: ref_2
  article-title: Improving random forest algorithm by Lasso method
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2020.1814776
– ident: ref_23
  doi: 10.3390/pr9071187
– volume: 18
  start-page: 108
  year: 2022
  ident: ref_14
  article-title: LSTM gas concentration prediction model based on multiple factors
  publication-title: J. Saf. Sci. Technol.
– volume: 368
  start-page: 133258
  year: 2022
  ident: ref_20
  article-title: The use of the neuro-fuzzy model to predict the methane hazard during the underground coal mining production process
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133258
– volume: 74
  start-page: 57
  year: 2015
  ident: ref_4
  article-title: Cost-sensitive global model trees applied to loan charge-off forecasting
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2015.03.009
– volume: 9
  start-page: 17986
  year: 2021
  ident: ref_24
  article-title: Continuous Estimation of Human Upper Limb Joint Angles by Using PSO-LSTM Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047828
– ident: ref_25
  doi: 10.1186/s12859-016-1236-x
– volume: 28
  start-page: 61
  year: 2021
  ident: ref_17
  article-title: Prediction of Mine Gas Concentration in Heading Face Based on Keras Long Short Time Memory network
  publication-title: Saf. Environ. Eng.
– volume: 49
  start-page: 80
  year: 2022
  ident: ref_21
  article-title: Research on intelligent prediction of gas concentration in working face based on CS-LSTM
  publication-title: Min. Saf. Environ. Prot.
– volume: 17
  start-page: 100951
  year: 2023
  ident: ref_27
  article-title: Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.100951
– volume: 22
  start-page: 386
  year: 2021
  ident: ref_1
  article-title: A Unified Framework for Random Forest Prediction Error Estimation
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 100364
  year: 2019
  ident: ref_26
  article-title: Gas Concentration Prediction Model Based on Improved Neural Network
  publication-title: IEEE Access
– volume: 18
  start-page: 172
  year: 2008
  ident: ref_12
  article-title: A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM
  publication-title: J. China Univ. Min. Technol.
  doi: 10.1016/S1006-1266(08)60037-1
– volume: 41
  start-page: 131
  year: 2022
  ident: ref_7
  article-title: Research on Influencing Factors of Coal Mine Gas Emissions Based on Multiple Stepwise Linear Regression
  publication-title: Coal Technol.
– volume: 34
  start-page: 784
  year: 2021
  ident: ref_18
  article-title: Research on Gas Concentration Prediction Based on Multi-Sensor-Deep Long Short-Term Memory Network Fusion
  publication-title: Chin. J. Sens. Actuators
– volume: 115
  start-page: 632
  year: 2015
  ident: ref_11
  article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.03.015
– volume: 152
  start-page: 106152
  year: 2023
  ident: ref_5
  article-title: On optimal regression trees to detect critical intervals for multivariate functional data
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106152
– volume: 20
  start-page: 100486
  year: 2023
  ident: ref_10
  article-title: Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0
  publication-title: Energy Convers. Manag. X
– volume: 40
  start-page: 118
  year: 2021
  ident: ref_6
  article-title: Prediction of Coal Face Gas Emission Based on Multiple Linear Regression
  publication-title: Coal Technol.
– volume: 48
  start-page: 100520
  year: 2024
  ident: ref_9
  article-title: Federated transfer learning with orchard-optimized Conv-SGRU: A novel approach to secure and accurate photovoltaic power forecasting
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2023.100520
– ident: ref_19
  doi: 10.3390/en16052318
– volume: 26
  start-page: 12115
  year: 2022
  ident: ref_28
  article-title: An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07451-8
– volume: 44
  start-page: 48
  year: 2018
  ident: ref_15
  article-title: Gas concentration prediction model for fully mechanize coal mining face
  publication-title: Ind. Mine Autom.
– volume: 40
  start-page: 617
  year: 2023
  ident: ref_13
  article-title: Performance Evaluation of Rockburst Prediction Based on PSO-SVM, HHO-SVM, and MFO-SVM Hybrid Models
  publication-title: Min. Metall. Explor.
– volume: 264
  start-page: 126208
  year: 2023
  ident: ref_22
  article-title: Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126208
– volume: 74
  start-page: 392
  year: 2019
  ident: ref_3
  article-title: Random forest prediction intervals
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2019.1585288
– ident: ref_8
  doi: 10.3390/ijerph16081406
– volume: 48
  start-page: 33
  year: 2020
  ident: ref_16
  article-title: Research on prediction model of gas concentration based on RNN in coal mining face
  publication-title: Coal Sci. Technol.
SSID ssj0000913856
Score 2.3211725
Snippet Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 898
SubjectTerms Algorithms
Artificial intelligence
Coal industry
Coal mines
Coal mining
Comparative analysis
Forecasts and trends
Long short-term memory
Methods
Neural networks
Particle swarm optimization
Performance prediction
Prediction models
Rankings
Support vector machines
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AA9AC2gBgqyoBL0sGXX9r6OUUQpiIRIbVA5rWzvGCrSTZRshMqvZ7zrlBChits-_BjZY8838vgbgMM4dyhVpAEKlQTSho4DMuUBmVKMtI0RsQmQHSanY_nxIr7YgperuzBr5_eC3PG3s3nEQwIReXYHtpOY8HYHtsfDUe-ryxrHeRrk5JC0vKMbFf6yNJv77Q7cXVYzdf1TTSZrBuXkAfRXorRxJD-Ol7U-Nr82WBpvl_Uh3Pd4kvVaBdiFLaz2YGeNZXAPdv36XbA3nmT66BFcDZrU0UxVJftCWLxNrcSmlvWn1N6AqrP3akFvVRu_2fwezd25TvOor9kHTzVBvbDR2WfWm3ybzi_r71dNq5_Ozgds2EaZP4bxybvz_mngUy8ERghZBybhmBmCZ1hKjZGKuJU5SmHDDBVmqTCRzkshjBGW7GBc2jKyqkT6pgzZRfEEOtW0wn1geak5hplUIaJUXGY21tIKoZMyy7UOu3C0mqbCeF5ylx5jUpB_4sa1-DOuXXh1U3bWsnH8s9RrN9uFW6LUklH-pgHJ48iuil6ax-QF017fhYOVQhR-7S4K4TISpe5WbhcOb5Tklv6e_l-xZ3CPEyJqoyUPoFPPl_icEE2tX3iV_g3GL_Fd
  priority: 102
  providerName: Unpaywall
Title Method and Validation of Coal Mine Gas Concentration Prediction by Integrating PSO Algorithm and LSTM Network
URI https://www.proquest.com/docview/3059670059
https://doi.org/10.3390/pr12050898
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH7augPsMLEBWtmYLDEJdoiWxE7iHBAqU7uBaKjYisYp8k84dGlpO6Fd-Nt5TpxuTNNuceI8R37xe8_28_cBHCa5i1JpFhgq0oDZ0GFAZnGArtRE0ibGmDpBtkjPxuzzZXK5BkV7FsalVbY2sTbUeqrcGvkxdTwxmTsr-WH2O3CsUW53taXQEJ5aQb-vIcbWYSN2yFgd2PjYL0bfVqsuDgWTJ2mDU0pxvn88m0dxiFFKzv_zTPft8yY8ua5m4uaPmEzuOKDBM9jykSPpNarehjVT7cDmHTzBHdj2I3VB3nk46aPncDWsSaKJqDT5jlF3Q6JEppacTFHeEF8np2KBparJ1Kwfj-ZuB6e-lDfkkweVwFbI6Pwr6U1-Yt8sf13VUr-cXwxJ0eSTv4DxoH9xchZ4koVAUcqWgUpjwxUGYkYzaSIRxZblhlEbciMMz6iKZK4pVYpa9HiJtjqyQhu8JxR6QPoSOtW0MrtAci1jE3ImQmOYiBm3iWSWUplqnksZduGo7eBSeQRyR4QxKXEm4pRR3iqjC29WdWcN7saDtd46PZVuMKIkJfyZAvweB2tV9rI8wfkuWvUu7LeqLP0oXZS3_1QXDlfqfaS9V49L2YOnMcY8TT7kPnSW82vzGmOWpTyAdT44PfC_I5aGf_tYGhej3o9_UQrvgQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOVaGtGkrblUrVcrCwvevXAaGUQpOSpFEJFTezTzgEJ02CUP5cfxuz9jrQquLGzY_1rLWzO4_dmW8AtqPMWqk08TTlsceMbzEgk9BDVaoDYSKtdRkg24tbp-z7WXS2BH_qXBgbVlnLxFJQq5G0e-S71NaJSWyu5P74t2erRtnT1bqEBnelFdReCTHmEjuO9fwGXbjpXvsr8vtjGB4dDg5anqsy4ElK2cyTcahTiZaIVkzogAehYZlm1Pip5jpNqAxEpiiVkhoU-ZEyKjBcaXzGJaoAinSfwAqjLEPnb-XLYa__c7HLY1E30yiucFEpzfzd8SQIfbSKsvQvTfivPliD1etizOc3fDi8p_COnsMzZ6mSZjW11mFJFxuwdg-_cAPWnWSYks8OvnrnBVx1y6LUhBeK_EIrvyraREaGHIyQXhc_J9_4FO-KKjK0fN2f2BOj8lLMSduBWGAvpH_ygzSHF8iL2eVVSbVzMuiSXhW__hJOH2W4X8FyMSr0ayCZEqH2U8Z9rRkPWWoiwQylIlZpJoTfgJ16gHPpEM9t4Y1hjp6PZUZ-x4wGfFi0HVc4H_9t9cnyKbeLHylJ7nIY8H8sjFbeTLII_WvUIg3YqlmZO6kwze_mcAO2F-x9oL_Nh6m8h9XWoNvJO-3e8Rt4GqK9VcVibsHybHKt36K9NBPv3KQkcP7Y6-AWxigqqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgE9IFpABApYogh6WGV37X0dEIpa0oY2IVIf6m3xY9we0k1IUlX5a_w6xvtIC0K99bYP73jlGc-M7ZlvALaizHmpPPGQy9gT1ncYkEnokSnFQNkIEcsA2UG8fyK-n0VnK_C7yYVxYZWNTiwVtRlrt0fe5q5OTOJyJdu2DosY7na_Tn55roKUO2ltymlUInKAi2tavs2-9HaJ1x_DsPvteGffqysMeJpzMfd0HGKqyQtBIxQGMgityFBw66coMU24DlRmONeaW1L3kbEmsNIgPZOa1D8nug_gYeJQ3F2Wendvub_j8DbTKK4QUTnP_PZkGoQ--UNZ-pcN_NcSrMHjq2IiF9dyNLpl6rrP4Gnto7JOJVTrsILFBqzdQi7cgPVaJ8zY5xq4evs5XPbLctRMFoadkn9flWtiY8t2xkSvT5-zPTmju6KKCS1fD6furKi8VAvWq-ErqBc2PPrBOqNzGvn5xWVJ9fDouM8GVeT6Czi5l8F-CavFuMBXwDKjQvRTIX1EIUOR2kgJy7mKTZop5bdguxngXNdY567kxiinNY9jRn7DjBZ8WLadVAgf_231yfEpd9OeKGlZZy_Q_zgArbyTZBGtrMl-tGCzYWVe64NZfiO9LdhasveO_l7fTeU9PCLpzw97g4M38CQkR6sKwtyE1fn0Ct-SozRX70qJZPDzvqfAH6o_KEU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AA9AC2gBgqyoBL0sGXX9r6OUUQpiIRIbVA5rWzvGCrSTZRshMqvZ7zrlBChits-_BjZY8838vgbgMM4dyhVpAEKlQTSho4DMuUBmVKMtI0RsQmQHSanY_nxIr7YgperuzBr5_eC3PG3s3nEQwIReXYHtpOY8HYHtsfDUe-ryxrHeRrk5JC0vKMbFf6yNJv77Q7cXVYzdf1TTSZrBuXkAfRXorRxJD-Ol7U-Nr82WBpvl_Uh3Pd4kvVaBdiFLaz2YGeNZXAPdv36XbA3nmT66BFcDZrU0UxVJftCWLxNrcSmlvWn1N6AqrP3akFvVRu_2fwezd25TvOor9kHTzVBvbDR2WfWm3ybzi_r71dNq5_Ozgds2EaZP4bxybvz_mngUy8ERghZBybhmBmCZ1hKjZGKuJU5SmHDDBVmqTCRzkshjBGW7GBc2jKyqkT6pgzZRfEEOtW0wn1geak5hplUIaJUXGY21tIKoZMyy7UOu3C0mqbCeF5ylx5jUpB_4sa1-DOuXXh1U3bWsnH8s9RrN9uFW6LUklH-pgHJ48iuil6ax-QF017fhYOVQhR-7S4K4TISpe5WbhcOb5Tklv6e_l-xZ3CPEyJqoyUPoFPPl_icEE2tX3iV_g3GL_Fd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+and+Validation+of+Coal+Mine+Gas+Concentration+Prediction+by+Integrating+PSO+Algorithm+and+LSTM+Network&rft.jtitle=Processes&rft.au=Yang%2C+Guangyu&rft.au=Zhu%2C+Quanjie&rft.au=Wang%2C+Dacang&rft.au=Yu%2C+Feng&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=12&rft.issue=5&rft.spage=898&rft_id=info:doi/10.3390%2Fpr12050898&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon