Method and Validation of Coal Mine Gas Concentration Prediction by Integrating PSO Algorithm and LSTM Network
Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Te...
Saved in:
| Published in | Processes Vol. 12; no. 5; p. 898 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9717 2227-9717 |
| DOI | 10.3390/pr12050898 |
Cover
| Abstract | Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM) is proposed. First, the principle of the PSO-LSTM fusion model is analyzed, and the PSO-LSTM gas concentration analysis and prediction model is constructed. Second, the gas concentration data are normalized and preprocessed. The PSO algorithm is utilized to optimize the training set of the LSTM model, facilitating the selection of the training data set for the LSTM model. Finally, the MAE, RMSE, and coefficient of determination R2 evaluation indicators are proposed to verify and analyze the prediction results. Gas concentration prediction comparison and verification research was conducted using gas concentration data measured in a mine as the sample data. The experimental results show that: (1) The maximum RMSE predicted using the PSO-LSTM model is 0.0029, and the minimum RMSE is 0.0010 when the sample size changes. This verifies the reliability of the prediction effect of the PSO-LSTM model. (2) The predictive performance of all models ranks as follows: PSO-LSTM > SVR-LSTM > LSTM > PSO-GRU. Comparative analysis with the LSTM model demonstrates that the PSO-LSTM model is more effective in predicting gas concentration, further confirming the superiority of this model in gas concentration prediction. |
|---|---|
| AbstractList | Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM) is proposed. First, the principle of the PSO-LSTM fusion model is analyzed, and the PSO-LSTM gas concentration analysis and prediction model is constructed. Second, the gas concentration data are normalized and preprocessed. The PSO algorithm is utilized to optimize the training set of the LSTM model, facilitating the selection of the training data set for the LSTM model. Finally, the MAE, RMSE, and coefficient of determination R2 evaluation indicators are proposed to verify and analyze the prediction results. Gas concentration prediction comparison and verification research was conducted using gas concentration data measured in a mine as the sample data. The experimental results show that: (1) The maximum RMSE predicted using the PSO-LSTM model is 0.0029, and the minimum RMSE is 0.0010 when the sample size changes. This verifies the reliability of the prediction effect of the PSO-LSTM model. (2) The predictive performance of all models ranks as follows: PSO-LSTM > SVR-LSTM > LSTM > PSO-GRU. Comparative analysis with the LSTM model demonstrates that the PSO-LSTM model is more effective in predicting gas concentration, further confirming the superiority of this model in gas concentration prediction. Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in conventional gas concentration prediction, a new method for gas concentration prediction based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM) is proposed. First, the principle of the PSO-LSTM fusion model is analyzed, and the PSO-LSTM gas concentration analysis and prediction model is constructed. Second, the gas concentration data are normalized and preprocessed. The PSO algorithm is utilized to optimize the training set of the LSTM model, facilitating the selection of the training data set for the LSTM model. Finally, the MAE, RMSE, and coefficient of determination R[sup.2] evaluation indicators are proposed to verify and analyze the prediction results. Gas concentration prediction comparison and verification research was conducted using gas concentration data measured in a mine as the sample data. The experimental results show that: (1) The maximum RMSE predicted using the PSO-LSTM model is 0.0029, and the minimum RMSE is 0.0010 when the sample size changes. This verifies the reliability of the prediction effect of the PSO-LSTM model. (2) The predictive performance of all models ranks as follows: PSO-LSTM > SVR-LSTM > LSTM > PSO-GRU. Comparative analysis with the LSTM model demonstrates that the PSO-LSTM model is more effective in predicting gas concentration, further confirming the superiority of this model in gas concentration prediction. |
| Audience | Academic |
| Author | Yang, Guangyu Zhu, Quanjie Chen, Xuexi Wang, Dacang Feng, Yu Li, Qingsong |
| Author_xml | – sequence: 1 givenname: Guangyu surname: Yang fullname: Yang, Guangyu – sequence: 2 givenname: Quanjie orcidid: 0000-0003-3735-0744 surname: Zhu fullname: Zhu, Quanjie – sequence: 3 givenname: Dacang surname: Wang fullname: Wang, Dacang – sequence: 4 givenname: Yu surname: Feng fullname: Feng, Yu – sequence: 5 givenname: Xuexi surname: Chen fullname: Chen, Xuexi – sequence: 6 givenname: Qingsong surname: Li fullname: Li, Qingsong |
| BookMark | eNp9UV1PwjAUbQwmIvLiL2jimwZs141tj4QokoCQgL4upb2F4mixKzH8ewsz0Rhjm7T345ybk3MvUcNYAwhdU9JlLCf3O0cjkpAsz85QM4qitJOnNG38iC9Qu6o2JJycsizpNdF2An5tJeZG4ldeasm9tgZbhQeWl3iiDeAhr0JmBBjv6vbMgdTiFC4PeGQ8rI4ds8Kz-RT3y5V12q-3p6nj-WKCn8F_WPd2hc4VLytof_0t9PL4sBg8dcbT4WjQH3cEY7HviF4EmSAZAxkvgXIaqTiHmCmSAYcsZYIuc8mYEEyxmCZSSaq4hFDjIqaMtdBdPXdvdvzwwcuy2Dm95e5QUFIczSq-zQromxq9c_Z9D5UvNnbvTBBYMJLkvZSEN6C6NWrFSyi0UTa4IcKVsNUibELpUO-neRLHPZocRZCaIJytKgeqENqf_AtEXf6t5PYX5R_Znx9OmKo |
| CitedBy_id | crossref_primary_10_3390_pr12081691 crossref_primary_10_3390_agriculture14091544 crossref_primary_10_1016_j_apenergy_2024_124613 crossref_primary_10_1007_s40722_024_00369_3 |
| Cites_doi | 10.1080/00949655.2020.1814776 10.3390/pr9071187 10.1016/j.jclepro.2022.133258 10.1016/j.dss.2015.03.009 10.1109/ACCESS.2020.3047828 10.1186/s12859-016-1236-x 10.1016/j.rineng.2023.100951 10.1016/S1006-1266(08)60037-1 10.1016/j.solener.2015.03.015 10.1016/j.cor.2023.106152 10.1016/j.ref.2023.100520 10.3390/en16052318 10.1007/s00500-022-07451-8 10.1016/j.energy.2022.126208 10.1080/00031305.2019.1585288 10.3390/ijerph16081406 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/pr12050898 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10.3390/pr12050898 A795446153 10_3390_pr12050898 |
| GeographicLocations | China Guizhou China |
| GeographicLocations_xml | – name: China – name: Guizhou China |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c334t-c62e8c083ed4be1a12f49e43f08eae873c1b9d33cc3f3415dfd1fade9d3ac4133 |
| IEDL.DBID | BENPR |
| ISSN | 2227-9717 |
| IngestDate | Sun Sep 07 11:00:19 EDT 2025 Fri Jul 25 11:44:57 EDT 2025 Mon Oct 20 17:05:12 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Thu Oct 16 04:43:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-c62e8c083ed4be1a12f49e43f08eae873c1b9d33cc3f3415dfd1fade9d3ac4133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3735-0744 |
| OpenAccessLink | https://www.proquest.com/docview/3059670059?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3059670059 |
| PQPubID | 2032344 |
| ParticipantIDs | unpaywall_primary_10_3390_pr12050898 proquest_journals_3059670059 gale_infotracacademiconefile_A795446153 crossref_citationtrail_10_3390_pr12050898 crossref_primary_10_3390_pr12050898 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Czajkowski (ref_4) 2015; 74 Fu (ref_18) 2021; 34 Kumar (ref_28) 2022; 26 Cao (ref_12) 2008; 18 Zhang (ref_17) 2021; 28 Li (ref_7) 2022; 41 ref_19 Wen (ref_22) 2023; 264 Brodny (ref_20) 2022; 368 Zhao (ref_6) 2021; 40 Liu (ref_14) 2022; 18 Zhou (ref_13) 2023; 40 Li (ref_15) 2018; 44 Blanquero (ref_5) 2023; 152 Liang (ref_21) 2022; 49 ref_25 ref_23 Li (ref_16) 2020; 48 Khan (ref_10) 2023; 20 Jiang (ref_26) 2019; 7 Olatomiwa (ref_11) 2015; 115 Bukhari (ref_9) 2024; 48 Zhang (ref_3) 2019; 74 Tang (ref_24) 2021; 9 Lu (ref_1) 2021; 22 Ruma (ref_27) 2023; 17 Wang (ref_2) 2021; 91 ref_8 |
| References_xml | – volume: 91 start-page: 353 year: 2021 ident: ref_2 article-title: Improving random forest algorithm by Lasso method publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2020.1814776 – ident: ref_23 doi: 10.3390/pr9071187 – volume: 18 start-page: 108 year: 2022 ident: ref_14 article-title: LSTM gas concentration prediction model based on multiple factors publication-title: J. Saf. Sci. Technol. – volume: 368 start-page: 133258 year: 2022 ident: ref_20 article-title: The use of the neuro-fuzzy model to predict the methane hazard during the underground coal mining production process publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133258 – volume: 74 start-page: 57 year: 2015 ident: ref_4 article-title: Cost-sensitive global model trees applied to loan charge-off forecasting publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2015.03.009 – volume: 9 start-page: 17986 year: 2021 ident: ref_24 article-title: Continuous Estimation of Human Upper Limb Joint Angles by Using PSO-LSTM Model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047828 – ident: ref_25 doi: 10.1186/s12859-016-1236-x – volume: 28 start-page: 61 year: 2021 ident: ref_17 article-title: Prediction of Mine Gas Concentration in Heading Face Based on Keras Long Short Time Memory network publication-title: Saf. Environ. Eng. – volume: 49 start-page: 80 year: 2022 ident: ref_21 article-title: Research on intelligent prediction of gas concentration in working face based on CS-LSTM publication-title: Min. Saf. Environ. Prot. – volume: 17 start-page: 100951 year: 2023 ident: ref_27 article-title: Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network publication-title: Results Eng. doi: 10.1016/j.rineng.2023.100951 – volume: 22 start-page: 386 year: 2021 ident: ref_1 article-title: A Unified Framework for Random Forest Prediction Error Estimation publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 100364 year: 2019 ident: ref_26 article-title: Gas Concentration Prediction Model Based on Improved Neural Network publication-title: IEEE Access – volume: 18 start-page: 172 year: 2008 ident: ref_12 article-title: A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM publication-title: J. China Univ. Min. Technol. doi: 10.1016/S1006-1266(08)60037-1 – volume: 41 start-page: 131 year: 2022 ident: ref_7 article-title: Research on Influencing Factors of Coal Mine Gas Emissions Based on Multiple Stepwise Linear Regression publication-title: Coal Technol. – volume: 34 start-page: 784 year: 2021 ident: ref_18 article-title: Research on Gas Concentration Prediction Based on Multi-Sensor-Deep Long Short-Term Memory Network Fusion publication-title: Chin. J. Sens. Actuators – volume: 115 start-page: 632 year: 2015 ident: ref_11 article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction publication-title: Sol. Energy doi: 10.1016/j.solener.2015.03.015 – volume: 152 start-page: 106152 year: 2023 ident: ref_5 article-title: On optimal regression trees to detect critical intervals for multivariate functional data publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106152 – volume: 20 start-page: 100486 year: 2023 ident: ref_10 article-title: Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0 publication-title: Energy Convers. Manag. X – volume: 40 start-page: 118 year: 2021 ident: ref_6 article-title: Prediction of Coal Face Gas Emission Based on Multiple Linear Regression publication-title: Coal Technol. – volume: 48 start-page: 100520 year: 2024 ident: ref_9 article-title: Federated transfer learning with orchard-optimized Conv-SGRU: A novel approach to secure and accurate photovoltaic power forecasting publication-title: Renew. Energy Focus doi: 10.1016/j.ref.2023.100520 – ident: ref_19 doi: 10.3390/en16052318 – volume: 26 start-page: 12115 year: 2022 ident: ref_28 article-title: An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting publication-title: Soft Comput. doi: 10.1007/s00500-022-07451-8 – volume: 44 start-page: 48 year: 2018 ident: ref_15 article-title: Gas concentration prediction model for fully mechanize coal mining face publication-title: Ind. Mine Autom. – volume: 40 start-page: 617 year: 2023 ident: ref_13 article-title: Performance Evaluation of Rockburst Prediction Based on PSO-SVM, HHO-SVM, and MFO-SVM Hybrid Models publication-title: Min. Metall. Explor. – volume: 264 start-page: 126208 year: 2023 ident: ref_22 article-title: Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning publication-title: Energy doi: 10.1016/j.energy.2022.126208 – volume: 74 start-page: 392 year: 2019 ident: ref_3 article-title: Random forest prediction intervals publication-title: Am. Stat. doi: 10.1080/00031305.2019.1585288 – ident: ref_8 doi: 10.3390/ijerph16081406 – volume: 48 start-page: 33 year: 2020 ident: ref_16 article-title: Research on prediction model of gas concentration based on RNN in coal mining face publication-title: Coal Sci. Technol. |
| SSID | ssj0000913856 |
| Score | 2.3211725 |
| Snippet | Gas concentration monitoring is an effective method for predicting gas disasters in mines. In response to the shortcomings of low efficiency and accuracy in... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 898 |
| SubjectTerms | Algorithms Artificial intelligence Coal industry Coal mines Coal mining Comparative analysis Forecasts and trends Long short-term memory Methods Neural networks Particle swarm optimization Performance prediction Prediction models Rankings Support vector machines |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AA9AC2gBgqyoBL0sGXX9r6OUUQpiIRIbVA5rWzvGCrSTZRshMqvZ7zrlBChits-_BjZY8838vgbgMM4dyhVpAEKlQTSho4DMuUBmVKMtI0RsQmQHSanY_nxIr7YgperuzBr5_eC3PG3s3nEQwIReXYHtpOY8HYHtsfDUe-ryxrHeRrk5JC0vKMbFf6yNJv77Q7cXVYzdf1TTSZrBuXkAfRXorRxJD-Ol7U-Nr82WBpvl_Uh3Pd4kvVaBdiFLaz2YGeNZXAPdv36XbA3nmT66BFcDZrU0UxVJftCWLxNrcSmlvWn1N6AqrP3akFvVRu_2fwezd25TvOor9kHTzVBvbDR2WfWm3ybzi_r71dNq5_Ozgds2EaZP4bxybvz_mngUy8ERghZBybhmBmCZ1hKjZGKuJU5SmHDDBVmqTCRzkshjBGW7GBc2jKyqkT6pgzZRfEEOtW0wn1geak5hplUIaJUXGY21tIKoZMyy7UOu3C0mqbCeF5ylx5jUpB_4sa1-DOuXXh1U3bWsnH8s9RrN9uFW6LUklH-pgHJ48iuil6ax-QF017fhYOVQhR-7S4K4TISpe5WbhcOb5Tklv6e_l-xZ3CPEyJqoyUPoFPPl_icEE2tX3iV_g3GL_Fd priority: 102 providerName: Unpaywall |
| Title | Method and Validation of Coal Mine Gas Concentration Prediction by Integrating PSO Algorithm and LSTM Network |
| URI | https://www.proquest.com/docview/3059670059 https://doi.org/10.3390/pr12050898 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH7augPsMLEBWtmYLDEJdoiWxE7iHBAqU7uBaKjYisYp8k84dGlpO6Fd-Nt5TpxuTNNuceI8R37xe8_28_cBHCa5i1JpFhgq0oDZ0GFAZnGArtRE0ibGmDpBtkjPxuzzZXK5BkV7FsalVbY2sTbUeqrcGvkxdTwxmTsr-WH2O3CsUW53taXQEJ5aQb-vIcbWYSN2yFgd2PjYL0bfVqsuDgWTJ2mDU0pxvn88m0dxiFFKzv_zTPft8yY8ua5m4uaPmEzuOKDBM9jykSPpNarehjVT7cDmHTzBHdj2I3VB3nk46aPncDWsSaKJqDT5jlF3Q6JEppacTFHeEF8np2KBparJ1Kwfj-ZuB6e-lDfkkweVwFbI6Pwr6U1-Yt8sf13VUr-cXwxJ0eSTv4DxoH9xchZ4koVAUcqWgUpjwxUGYkYzaSIRxZblhlEbciMMz6iKZK4pVYpa9HiJtjqyQhu8JxR6QPoSOtW0MrtAci1jE3ImQmOYiBm3iWSWUplqnksZduGo7eBSeQRyR4QxKXEm4pRR3iqjC29WdWcN7saDtd46PZVuMKIkJfyZAvweB2tV9rI8wfkuWvUu7LeqLP0oXZS3_1QXDlfqfaS9V49L2YOnMcY8TT7kPnSW82vzGmOWpTyAdT44PfC_I5aGf_tYGhej3o9_UQrvgQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOVaGtGkrblUrVcrCwvevXAaGUQpOSpFEJFTezTzgEJ02CUP5cfxuz9jrQquLGzY_1rLWzO4_dmW8AtqPMWqk08TTlsceMbzEgk9BDVaoDYSKtdRkg24tbp-z7WXS2BH_qXBgbVlnLxFJQq5G0e-S71NaJSWyu5P74t2erRtnT1bqEBnelFdReCTHmEjuO9fwGXbjpXvsr8vtjGB4dDg5anqsy4ElK2cyTcahTiZaIVkzogAehYZlm1Pip5jpNqAxEpiiVkhoU-ZEyKjBcaXzGJaoAinSfwAqjLEPnb-XLYa__c7HLY1E30yiucFEpzfzd8SQIfbSKsvQvTfivPliD1etizOc3fDi8p_COnsMzZ6mSZjW11mFJFxuwdg-_cAPWnWSYks8OvnrnBVx1y6LUhBeK_EIrvyraREaGHIyQXhc_J9_4FO-KKjK0fN2f2BOj8lLMSduBWGAvpH_ygzSHF8iL2eVVSbVzMuiSXhW__hJOH2W4X8FyMSr0ayCZEqH2U8Z9rRkPWWoiwQylIlZpJoTfgJ16gHPpEM9t4Y1hjp6PZUZ-x4wGfFi0HVc4H_9t9cnyKbeLHylJ7nIY8H8sjFbeTLII_WvUIg3YqlmZO6kwze_mcAO2F-x9oL_Nh6m8h9XWoNvJO-3e8Rt4GqK9VcVibsHybHKt36K9NBPv3KQkcP7Y6-AWxigqqw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgE9IFpABApYogh6WGV37X0dEIpa0oY2IVIf6m3xY9we0k1IUlX5a_w6xvtIC0K99bYP73jlGc-M7ZlvALaizHmpPPGQy9gT1ncYkEnokSnFQNkIEcsA2UG8fyK-n0VnK_C7yYVxYZWNTiwVtRlrt0fe5q5OTOJyJdu2DosY7na_Tn55roKUO2ltymlUInKAi2tavs2-9HaJ1x_DsPvteGffqysMeJpzMfd0HGKqyQtBIxQGMgityFBw66coMU24DlRmONeaW1L3kbEmsNIgPZOa1D8nug_gYeJQ3F2Wendvub_j8DbTKK4QUTnP_PZkGoQ--UNZ-pcN_NcSrMHjq2IiF9dyNLpl6rrP4Gnto7JOJVTrsILFBqzdQi7cgPVaJ8zY5xq4evs5XPbLctRMFoadkn9flWtiY8t2xkSvT5-zPTmju6KKCS1fD6furKi8VAvWq-ErqBc2PPrBOqNzGvn5xWVJ9fDouM8GVeT6Czi5l8F-CavFuMBXwDKjQvRTIX1EIUOR2kgJy7mKTZop5bdguxngXNdY567kxiinNY9jRn7DjBZ8WLadVAgf_231yfEpd9OeKGlZZy_Q_zgArbyTZBGtrMl-tGCzYWVe64NZfiO9LdhasveO_l7fTeU9PCLpzw97g4M38CQkR6sKwtyE1fn0Ct-SozRX70qJZPDzvqfAH6o_KEU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AA9AC2gBgqyoBL0sGXX9r6OUUQpiIRIbVA5rWzvGCrSTZRshMqvZ7zrlBChits-_BjZY8838vgbgMM4dyhVpAEKlQTSho4DMuUBmVKMtI0RsQmQHSanY_nxIr7YgperuzBr5_eC3PG3s3nEQwIReXYHtpOY8HYHtsfDUe-ryxrHeRrk5JC0vKMbFf6yNJv77Q7cXVYzdf1TTSZrBuXkAfRXorRxJD-Ol7U-Nr82WBpvl_Uh3Pd4kvVaBdiFLaz2YGeNZXAPdv36XbA3nmT66BFcDZrU0UxVJftCWLxNrcSmlvWn1N6AqrP3akFvVRu_2fwezd25TvOor9kHTzVBvbDR2WfWm3ybzi_r71dNq5_Ozgds2EaZP4bxybvz_mngUy8ERghZBybhmBmCZ1hKjZGKuJU5SmHDDBVmqTCRzkshjBGW7GBc2jKyqkT6pgzZRfEEOtW0wn1geak5hplUIaJUXGY21tIKoZMyy7UOu3C0mqbCeF5ylx5jUpB_4sa1-DOuXXh1U3bWsnH8s9RrN9uFW6LUklH-pgHJ48iuil6ax-QF017fhYOVQhR-7S4K4TISpe5WbhcOb5Tklv6e_l-xZ3CPEyJqoyUPoFPPl_icEE2tX3iV_g3GL_Fd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+and+Validation+of+Coal+Mine+Gas+Concentration+Prediction+by+Integrating+PSO+Algorithm+and+LSTM+Network&rft.jtitle=Processes&rft.au=Yang%2C+Guangyu&rft.au=Zhu%2C+Quanjie&rft.au=Wang%2C+Dacang&rft.au=Yu%2C+Feng&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=12&rft.issue=5&rft.spage=898&rft_id=info:doi/10.3390%2Fpr12050898&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |