A novel selective naïve Bayes algorithm

Naïve Bayes is one of the most popular data mining algorithms. Its efficiency comes from the assumption of attribute independence, although this might be violated in many real-world data sets. Many efforts have been done to mitigate the assumption, among which attribute selection is an important app...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 192; p. 105361
Main Authors Chen, Shenglei, Webb, Geoffrey I., Liu, Linyuan, Ma, Xin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.03.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2019.105361

Cover

Abstract Naïve Bayes is one of the most popular data mining algorithms. Its efficiency comes from the assumption of attribute independence, although this might be violated in many real-world data sets. Many efforts have been done to mitigate the assumption, among which attribute selection is an important approach. However, conventional efforts to perform attribute selection in naïve Bayes suffer from heavy computational overhead. This paper proposes an efficient selective naïve Bayes algorithm, which adopts only some of the attributes to construct selective naïve Bayes models. These models are built in such a way that each one is a trivial extension of another. The most predictive selective naïve Bayes model can be selected by the measures of incremental leave-one-out cross validation. As a result, attributes can be selected by efficient model selection. Empirical results demonstrate that the selective naïve Bayes shows superior classification accuracy, yet at the same time maintains the simplicity and efficiency.
AbstractList Naïve Bayes is one of the most popular data mining algorithms. Its efficiency comes from the assumption of attribute independence, although this might be violated in many real-world data sets. Many efforts have been done to mitigate the assumption, among which attribute selection is an important approach. However, conventional efforts to perform attribute selection in naïve Bayes suffer from heavy computational overhead. This paper proposes an efficient selective naïve Bayes algorithm, which adopts only some of the attributes to construct selective naïve Bayes models. These models are built in such a way that each one is a trivial extension of another. The most predictive selective naïve Bayes model can be selected by the measures of incremental leave-one-out cross validation. As a result, attributes can be selected by efficient model selection. Empirical results demonstrate that the selective naïve Bayes shows superior classification accuracy, yet at the same time maintains the simplicity and efficiency.
ArticleNumber 105361
Author Chen, Shenglei
Webb, Geoffrey I.
Ma, Xin
Liu, Linyuan
Author_xml – sequence: 1
  givenname: Shenglei
  surname: Chen
  fullname: Chen, Shenglei
  email: shenglei.chen@nau.edu.cn
  organization: Department of E-Commerce, Nanjing Audit University, Nanjing, China
– sequence: 2
  givenname: Geoffrey I.
  surname: Webb
  fullname: Webb, Geoffrey I.
  organization: Faculty of Information Technology, Monash University, VIC 3800, Australia
– sequence: 3
  givenname: Linyuan
  surname: Liu
  fullname: Liu, Linyuan
  organization: Department of E-Commerce, Nanjing Audit University, Nanjing, China
– sequence: 4
  givenname: Xin
  surname: Ma
  fullname: Ma, Xin
  organization: School of Statistics and Mathematics, Nanjing Audit University, Nanjing, China
BookMark eNqFkMtKAzEUhoNUsK2-gYsBN26m5jqZcSHU4g0KbnQd0uREM04nNZkW-lQ-hC_myLhyoasfDuf7D-eboFEbWkDolOAZwaS4qGdvbUj7NKOYVP1IsIIcoDEpJc0lx9UIjXElcC6xIEdoklKNMaaUlGN0Ps_asIMmS9CA6fwOslZ_fvRxrfeQMt28hOi71_UxOnS6SXDyk1P0fHvztLjPl493D4v5MjeM8S43vHRAOS6pqKxzVHKyWjlmKqaroiAr6yyTldNQMmZZia0wVoPAlBAJtpRsis6G3k0M71tInarDNrb9SUU5lYILXhT9Fh-2TAwpRXBqE_1ax70iWH07UbUanKhvJ2pw0mOXvzDjO9350HZR--Y_-GqAoX9_5yGqZDy0BqyPvTplg_-74AsvwoE7
CitedBy_id crossref_primary_10_1016_j_procs_2024_06_414
crossref_primary_10_1007_s11356_023_31575_5
crossref_primary_10_1109_ACCESS_2022_3169765
crossref_primary_10_1016_j_neucom_2022_03_020
crossref_primary_10_1109_TEM_2023_3338458
crossref_primary_10_1016_j_bspc_2023_105523
crossref_primary_10_3390_math9202564
crossref_primary_10_1016_j_asoc_2024_111491
crossref_primary_10_48175_IJARSCT_15065
crossref_primary_10_1016_j_bspc_2024_106577
crossref_primary_10_1155_2021_8979507
crossref_primary_10_1007_s12046_021_01608_1
crossref_primary_10_1049_ntw2_12057
crossref_primary_10_1177_1063293X241307456
crossref_primary_10_1007_s10115_021_01622_z
crossref_primary_10_1186_s12911_022_02050_x
crossref_primary_10_1186_s13007_024_01281_5
crossref_primary_10_1016_j_ymssp_2024_111134
crossref_primary_10_30526_37_1_3467
crossref_primary_10_3390_electronics12173644
crossref_primary_10_1016_j_engappai_2023_106372
crossref_primary_10_1080_15440478_2024_2311306
crossref_primary_10_32604_sdhm_2024_052683
crossref_primary_10_1016_j_knosys_2022_110140
crossref_primary_10_1007_s41939_022_00132_x
crossref_primary_10_1016_j_compag_2023_107801
crossref_primary_10_1016_j_iintel_2023_100044
crossref_primary_10_3390_acoustics6030037
crossref_primary_10_3390_rs15071896
crossref_primary_10_3390_computers13120344
crossref_primary_10_1002_dac_5206
crossref_primary_10_1155_2023_1406060
crossref_primary_10_1007_s00371_024_03655_1
crossref_primary_10_38124_ijisrt_IJISRT24MAY1438
crossref_primary_10_54691_bcpbm_v38i_4195
crossref_primary_10_1002_advs_202405580
crossref_primary_10_1016_j_knosys_2020_106422
crossref_primary_10_4018_IJISP_319303
crossref_primary_10_1002_wer_10929
crossref_primary_10_3390_w15040624
crossref_primary_10_59994_ajbtme_2024_1_11
crossref_primary_10_29130_dubited_1426401
crossref_primary_10_1155_2023_8532542
crossref_primary_10_1016_j_asoc_2024_112326
crossref_primary_10_1080_23311975_2025_2474209
crossref_primary_10_1016_j_ins_2025_122013
crossref_primary_10_1007_s13369_021_05381_5
crossref_primary_10_3390_math12152306
crossref_primary_10_1016_j_neunet_2024_106542
crossref_primary_10_1111_jebm_12548
crossref_primary_10_1088_1742_6596_2224_1_012012
crossref_primary_10_1016_j_cola_2025_101322
crossref_primary_10_1016_j_engappai_2024_108849
crossref_primary_10_1080_08839514_2024_2426377
crossref_primary_10_48084_etasr_4852
crossref_primary_10_1016_j_probengmech_2024_103670
crossref_primary_10_1016_j_jbi_2024_104699
crossref_primary_10_1080_23311916_2024_2378603
crossref_primary_10_1007_s10462_024_10822_2
crossref_primary_10_1016_j_carbpol_2023_121338
crossref_primary_10_3390_info13100475
crossref_primary_10_1080_09540091_2024_2435654
crossref_primary_10_1186_s12911_023_02185_5
crossref_primary_10_1038_s41598_024_68392_w
crossref_primary_10_1007_s11432_020_3277_0
crossref_primary_10_1016_j_engappai_2023_107284
crossref_primary_10_3390_math9222982
crossref_primary_10_38124_ijisrt_IJISRT24FEB1647
crossref_primary_10_1016_j_autcon_2023_104748
crossref_primary_10_3390_s22166164
crossref_primary_10_1080_10494820_2023_2202698
crossref_primary_10_3390_biomedinformatics4010041
crossref_primary_10_1016_j_mejo_2022_105574
crossref_primary_10_1007_s12540_022_01220_w
crossref_primary_10_1016_j_compag_2023_108319
crossref_primary_10_1016_j_ijar_2023_02_003
crossref_primary_10_1016_j_iot_2023_100819
crossref_primary_10_1016_j_patcog_2023_109473
crossref_primary_10_3390_bioengineering9100578
crossref_primary_10_1142_S0219622021500644
crossref_primary_10_23939_mmc2024_03_835
crossref_primary_10_1016_j_knosys_2022_109078
crossref_primary_10_3390_electronics11121858
crossref_primary_10_1186_s40537_024_00958_x
crossref_primary_10_1016_j_cor_2021_105456
crossref_primary_10_1080_10589759_2024_2354303
crossref_primary_10_3390_act13120514
crossref_primary_10_1007_s00521_024_10939_z
crossref_primary_10_4236_jdaip_2021_94015
crossref_primary_10_1007_s41870_023_01555_6
crossref_primary_10_1080_24733938_2022_2146177
crossref_primary_10_3390_math11183894
crossref_primary_10_1155_2023_2367167
crossref_primary_10_1142_S2196888823500100
crossref_primary_10_1177_21582440221094586
crossref_primary_10_3390_su152115598
crossref_primary_10_1016_j_ins_2021_08_025
crossref_primary_10_1016_j_patcog_2024_110299
crossref_primary_10_1111_exsy_13736
crossref_primary_10_1186_s40001_024_01988_0
crossref_primary_10_1109_TIM_2023_3334361
crossref_primary_10_1007_s12145_025_01762_8
crossref_primary_10_1007_s11277_024_11476_7
crossref_primary_10_1016_j_ins_2023_04_001
crossref_primary_10_1016_j_knosys_2020_106627
crossref_primary_10_1109_TMAG_2023_3257409
crossref_primary_10_3390_jtaer18040110
crossref_primary_10_1109_TFUZZ_2024_3494864
crossref_primary_10_3390_agronomy14050947
crossref_primary_10_1371_journal_pwat_0000259
crossref_primary_10_3233_JIFS_223754
crossref_primary_10_3390_agronomy14112542
crossref_primary_10_1016_j_envc_2024_100866
crossref_primary_10_12677_HJDM_2022_123003
crossref_primary_10_21597_jist_1537627
crossref_primary_10_1016_j_jaesx_2024_100189
crossref_primary_10_3389_frai_2024_1408845
crossref_primary_10_3390_app12189392
crossref_primary_10_48084_etasr_4205
crossref_primary_10_1016_j_eswa_2023_119564
crossref_primary_10_1016_j_eswa_2024_123406
crossref_primary_10_1016_j_cej_2025_159401
crossref_primary_10_3390_app13084881
crossref_primary_10_1016_j_jbi_2023_104284
crossref_primary_10_32604_iasc_2022_020229
crossref_primary_10_1016_j_cja_2025_103426
crossref_primary_10_1109_JSYST_2023_3238357
crossref_primary_10_1016_j_engappai_2025_110031
crossref_primary_10_7717_peerj_cs_2315
crossref_primary_10_1016_j_asoc_2024_111834
crossref_primary_10_3390_s23167154
crossref_primary_10_1155_2021_9171756
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_1016_j_knosys_2022_108511
crossref_primary_10_1108_IJDRBE_12_2021_0161
crossref_primary_10_3390_s23218909
crossref_primary_10_1016_j_cie_2024_110534
crossref_primary_10_1007_s00204_024_03701_w
crossref_primary_10_1016_j_knosys_2022_110235
crossref_primary_10_3390_math11010249
crossref_primary_10_1007_s00521_021_05989_6
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1038_s41598_023_45886_7
crossref_primary_10_1016_j_egyai_2021_100090
crossref_primary_10_1080_27684520_2023_2240334
crossref_primary_10_3390_info13080386
crossref_primary_10_3390_agronomy14040795
crossref_primary_10_1007_s12008_024_02215_0
crossref_primary_10_31590_ejosat_1234079
crossref_primary_10_32604_cmc_2022_022011
crossref_primary_10_1186_s12911_024_02683_0
crossref_primary_10_1007_s10772_022_10009_6
crossref_primary_10_18466_cbayarfbe_1014724
crossref_primary_10_3233_JIFS_233141
crossref_primary_10_1007_s42979_024_03178_5
crossref_primary_10_1016_j_apmt_2024_102306
crossref_primary_10_1016_j_jksuci_2024_101961
crossref_primary_10_1007_s10845_020_01706_7
crossref_primary_10_1016_j_eswa_2023_120094
crossref_primary_10_1109_ACCESS_2022_3187564
crossref_primary_10_3390_s21051766
crossref_primary_10_33395_sinkron_v5i2_10726
crossref_primary_10_1007_s10462_024_10733_2
crossref_primary_10_1016_j_patcog_2023_109554
crossref_primary_10_1007_s40820_024_01634_8
crossref_primary_10_1016_j_procs_2024_04_018
crossref_primary_10_1007_s11042_023_15725_y
crossref_primary_10_1016_j_ipm_2022_103121
crossref_primary_10_1109_ACCESS_2022_3155231
crossref_primary_10_1371_journal_pone_0283066
crossref_primary_10_1515_jisys_2024_0400
crossref_primary_10_1016_j_knosys_2020_106646
crossref_primary_10_1111_exsy_13125
crossref_primary_10_1016_j_neucom_2021_10_126
crossref_primary_10_1016_j_jlp_2025_105594
crossref_primary_10_3390_sym14071461
crossref_primary_10_3390_data8070121
crossref_primary_10_1016_j_ecoinf_2021_101389
crossref_primary_10_1016_j_patcog_2020_107674
crossref_primary_10_1109_ACCESS_2024_3480848
crossref_primary_10_47495_okufbed_1340798
crossref_primary_10_1016_j_cola_2023_101207
crossref_primary_10_1007_s11663_024_03037_x
crossref_primary_10_1016_j_eswa_2024_125164
Cites_doi 10.1016/j.asoc.2018.04.020
10.1016/j.knosys.2005.10.013
10.1109/TKDE.2008.234
10.1109/TCYB.2013.2245891
10.1016/j.patrec.2010.11.016
10.1016/j.knosys.2013.10.016
10.1109/TIT.1968.1054142
10.1016/j.knosys.2011.02.014
10.1007/s10115-007-0114-2
10.1016/j.eswa.2012.03.022
10.1016/j.knosys.2015.04.020
10.1007/s10994-011-5263-6
10.1109/TKDE.2018.2836440
10.1016/j.knosys.2016.02.017
10.1016/j.datak.2017.11.002
10.1007/s10994-006-6136-2
10.1016/j.ins.2013.10.007
10.1016/j.eswa.2015.02.049
10.1023/A:1007465528199
10.1007/s10115-016-0937-9
10.3390/e19090501
10.1007/s10994-005-4258-6
10.1016/j.knosys.2006.11.008
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 15, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 15, 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.105361
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_105361
S0950705119306185
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-c48fe2408259dff2741bbf3c93a9661bdfd379fae833d380d5cdae502117ed873
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Mon Jul 14 07:49:25 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Sat Oct 25 05:03:43 EDT 2025
Fri Feb 23 02:47:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Naïve Bayes
Attribute selection
Model selection
Leave-one-out cross validation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-c48fe2408259dff2741bbf3c93a9661bdfd379fae833d380d5cdae502117ed873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2427545466
PQPubID 2035257
ParticipantIDs proquest_journals_2427545466
crossref_primary_10_1016_j_knosys_2019_105361
crossref_citationtrail_10_1016_j_knosys_2019_105361
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_105361
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Soria, Garibaldi, Ambrogi, Biganzoli, Ellis (b35) 2011; 24
Hall (b7) 2007; 20
Lee (b9) 2015; 85
Zhang, Jiang, Su (b25) 2005
Friedman, Geiger, Goldszmidt (b17) 1997; 29
Liu, Yang, Webb, Boughton (b34) 2009
Webb, Boughton, Wang (b19) 2005; 58
Jiang, Zhang, Cai (b24) 2009; 21
Bouckaert (b32) 2005
Dua, Graff (b42) 2017
Lee (b10) 2018; 113
Chen, Martínez, Webb, Wang (b43) 2017; 50
Jiang (b26) 2011; 32
Kohavi (b41) 1995
Webb, Boughton, Zheng, Ting, Salem (b20) 2012; 86
Lee, Gutierrez, Dou (b8) 2012
Rish (b39) 2001
Cestnik (b38) 1990
García, Herrera (b45) 2008; 9
Jiang, Cai, Zhang, Wang (b14) 2012; 39
Hall (b15) 2000
Langseth, Nielsen (b23) 2006; 63
Zhang, Jiang, Li, Kong (b3) 2016; 100
U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.
Wang, Li, Cao, Yuan (b31) 2006; 19
Zaidi, Cerquides, Carman, Webb (b11) 2013; 14
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, Mclachlan, Ng, Liu, Yu (b1) 2008; 14
Langley, Sage (b4) 1994
Bermejo, Gmez, Puerta (b5) 2014; 55
Keogh, Pazzani (b29) 1999
Duda, Hart (b2) 1973
Chow, Liu (b18) 1968; 14
Sahami (b22) 1996
John, Langley (b33) 1995
Yu, Liu (b13) 2003
Flores, Gámez, Martínez (b16) 2014; 260
Koller, Friedman (b37) 2009
Wang, He, Wang (b36) 2014; 44
Yu, Jiang, Wang, Zhang (b21) 2017; 19
MacKay (b40) 2003
Zhang, Sheng (b6) 2004
Jiang, Zhang, Li, Wu (b12) 2019; 31
Demšar (b44) 2006; 7
Qiu, Jiang, Li (b28) 2015; 42
Harzevili, Alizadeh (b27) 2018; 69
Duda (10.1016/j.knosys.2019.105361_b2) 1973
Webb (10.1016/j.knosys.2019.105361_b20) 2012; 86
Langseth (10.1016/j.knosys.2019.105361_b23) 2006; 63
Lee (10.1016/j.knosys.2019.105361_b8) 2012
Yu (10.1016/j.knosys.2019.105361_b13) 2003
Chen (10.1016/j.knosys.2019.105361_b43) 2017; 50
Lee (10.1016/j.knosys.2019.105361_b10) 2018; 113
Soria (10.1016/j.knosys.2019.105361_b35) 2011; 24
Liu (10.1016/j.knosys.2019.105361_b34) 2009
Friedman (10.1016/j.knosys.2019.105361_b17) 1997; 29
Keogh (10.1016/j.knosys.2019.105361_b29) 1999
Wu (10.1016/j.knosys.2019.105361_b1) 2008; 14
MacKay (10.1016/j.knosys.2019.105361_b40) 2003
Bermejo (10.1016/j.knosys.2019.105361_b5) 2014; 55
10.1016/j.knosys.2019.105361_b30
Zhang (10.1016/j.knosys.2019.105361_b6) 2004
Jiang (10.1016/j.knosys.2019.105361_b12) 2019; 31
Hall (10.1016/j.knosys.2019.105361_b7) 2007; 20
Wang (10.1016/j.knosys.2019.105361_b31) 2006; 19
Kohavi (10.1016/j.knosys.2019.105361_b41) 1995
García (10.1016/j.knosys.2019.105361_b45) 2008; 9
Yu (10.1016/j.knosys.2019.105361_b21) 2017; 19
Jiang (10.1016/j.knosys.2019.105361_b26) 2011; 32
Hall (10.1016/j.knosys.2019.105361_b15) 2000
John (10.1016/j.knosys.2019.105361_b33) 1995
Zhang (10.1016/j.knosys.2019.105361_b3) 2016; 100
Lee (10.1016/j.knosys.2019.105361_b9) 2015; 85
Wang (10.1016/j.knosys.2019.105361_b36) 2014; 44
Dua (10.1016/j.knosys.2019.105361_b42) 2017
Webb (10.1016/j.knosys.2019.105361_b19) 2005; 58
Cestnik (10.1016/j.knosys.2019.105361_b38) 1990
Zaidi (10.1016/j.knosys.2019.105361_b11) 2013; 14
Chow (10.1016/j.knosys.2019.105361_b18) 1968; 14
Jiang (10.1016/j.knosys.2019.105361_b14) 2012; 39
Flores (10.1016/j.knosys.2019.105361_b16) 2014; 260
Harzevili (10.1016/j.knosys.2019.105361_b27) 2018; 69
Bouckaert (10.1016/j.knosys.2019.105361_b32) 2005
Zhang (10.1016/j.knosys.2019.105361_b25) 2005
Jiang (10.1016/j.knosys.2019.105361_b24) 2009; 21
Qiu (10.1016/j.knosys.2019.105361_b28) 2015; 42
Koller (10.1016/j.knosys.2019.105361_b37) 2009
Langley (10.1016/j.knosys.2019.105361_b4) 1994
Sahami (10.1016/j.knosys.2019.105361_b22) 1996
Rish (10.1016/j.knosys.2019.105361_b39) 2001
Demšar (10.1016/j.knosys.2019.105361_b44) 2006; 7
References_xml – volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: b17
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
– volume: 100
  start-page: 137
  year: 2016
  end-page: 144
  ident: b3
  article-title: Two feature weighting approaches for naive bayes text classifiers
  publication-title: Knowl.-Based Syst.
– start-page: 41
  year: 2001
  end-page: 46
  ident: b39
  article-title: An empirical study of the naive bayes classifier
  publication-title: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Vol. 3
– volume: 32
  start-page: 532
  year: 2011
  end-page: 539
  ident: b26
  article-title: Random one-dependence estimators
  publication-title: Pattern Recognit. Lett.
– volume: 21
  start-page: 1361
  year: 2009
  end-page: 1371
  ident: b24
  article-title: A novel bayes model: Hidden naive bayes
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 338
  year: 1995
  end-page: 345
  ident: b33
  article-title: Estimating continuous distributions in bayesian classifiers
  publication-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI’95
– year: 2009
  ident: b37
  article-title: Probabilistic Graphical Models - Principles and Techniques
– year: 2017
  ident: b42
  article-title: UCI machine learning repository
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b44
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 113
  start-page: 116
  year: 2018
  end-page: 128
  ident: b10
  article-title: An information-theoretic filter approach for value weighted classification learning in naive bayes
  publication-title: Data Knowl. Eng.
– volume: 69
  start-page: 516
  year: 2018
  end-page: 527
  ident: b27
  article-title: Mixture of latent multinomial naive bayes classifier
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 120
  year: 2007
  end-page: 126
  ident: b7
  article-title: A decision tree-based attribute weighting filter for naive bayes
  publication-title: Knowl.-Based Syst.
– volume: 14
  start-page: 1947
  year: 2013
  end-page: 1988
  ident: b11
  article-title: Alleviating naive bayes attribute independence assumption by attribute weighting
  publication-title: J. Mach. Learn. Res.
– volume: 55
  start-page: 140
  year: 2014
  end-page: 147
  ident: b5
  article-title: Speeding up incremental wrapper feature subset selection with naive bayes classifier
  publication-title: Knowl.-Based Syst.
– year: 1973
  ident: b2
  article-title: Pattern Classification and Scene Analysis
– start-page: 399
  year: 1994
  end-page: 406
  ident: b4
  article-title: Induction of selective bayesian classifiers
  publication-title: Proceedings of the 10th International Conference on Uncertainty in Artificial Intelligence
– volume: 42
  start-page: 5433
  year: 2015
  end-page: 5440
  ident: b28
  article-title: Not always simple classification: Learning superparent for class probability estimation
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 511
  year: 2006
  end-page: 515
  ident: b31
  article-title: Combining decision tree and naive bayes for classification
  publication-title: Knowl.-Based Syst.
– volume: 39
  start-page: 11022
  year: 2012
  end-page: 11028
  ident: b14
  article-title: Not so greedy: Randomly selected naive bayes
  publication-title: Expert Syst. Appl.
– start-page: 919
  year: 2005
  end-page: 924
  ident: b25
  article-title: Hidden naive bayes
  publication-title: Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2, AAAI’05
– start-page: 1146
  year: 2012
  end-page: 1151
  ident: b8
  article-title: Calculating feature weights in naive bayes with kullback-leibler measure
  publication-title: IEEE International Conference on Data Mining
– start-page: 1089
  year: 2005
  end-page: 1094
  ident: b32
  article-title: Naive bayes classifiers that perform well with continuous variables
  publication-title: AI 2004: Advances in Artificial Intelligence
– start-page: 147
  year: 1990
  end-page: 149
  ident: b38
  article-title: Estimating Probabilities: A Crucial Task in Machine Learning
– start-page: 856
  year: 2003
  end-page: 863
  ident: b13
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
  publication-title: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML’03
– year: 2000
  ident: b15
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
  publication-title: Seventeenth International Conference on Machine Learning
– volume: 31
  start-page: 201
  year: 2019
  end-page: 213
  ident: b12
  article-title: A correlation-based feature weighting filter for naive bayes
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 44
  start-page: 21
  year: 2014
  end-page: 39
  ident: b36
  article-title: Non-naive bayesian classifiers for classification problems with continuous attributes
  publication-title: IEEE Trans. Cybern.
– start-page: 335
  year: 1996
  end-page: 338
  ident: b22
  article-title: Learning limited dependence bayesian classifiers
  publication-title: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining
– year: 2003
  ident: b40
  article-title: Information Theory, Inference and Learning Algorithms
– start-page: 567
  year: 2004
  end-page: 570
  ident: b6
  article-title: Learning weighted naive bayes with accurate ranking
  publication-title: Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM ’04
– volume: 260
  start-page: 120
  year: 2014
  end-page: 148
  ident: b16
  article-title: Domains of competence of the semi-naive bayesian network classifiers
  publication-title: Inform. Sci.
– reference: U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.
– volume: 9
  start-page: 2677
  year: 2008
  end-page: 2694
  ident: b45
  article-title: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
  publication-title: J. Mach. Learn. Res.
– start-page: 174
  year: 1995
  end-page: 189
  ident: b41
  article-title: The power of decision tables
  publication-title: ECML
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: b1
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
– volume: 14
  start-page: 462
  year: 1968
  end-page: 467
  ident: b18
  article-title: Approximating discrete probability distributions with dependence trees
  publication-title: Inf. Theory IEEE Trans.
– volume: 50
  start-page: 475
  year: 2017
  end-page: 503
  ident: b43
  article-title: Selective ande for large data learning: a low-bias memory constrained approach
  publication-title: Knowl. Inf. Syst.
– start-page: 225
  year: 1999
  end-page: 230
  ident: b29
  article-title: Learning augmented bayesian classifiers: A comparison of distribution-based and classification-based approaches
  publication-title: 7th International Workshop on Artificial Intelligence and Statistics
– volume: 19
  start-page: 501
  year: 2017
  ident: b21
  article-title: Attribute value weighted average of one-dependence estimators
  publication-title: Entropy
– volume: 85
  start-page: 71
  year: 2015
  end-page: 79
  ident: b9
  article-title: A gradient approach for value weighted classification learning in naive bayes
  publication-title: Knowl.-Based Syst.
– volume: 63
  start-page: 135
  year: 2006
  end-page: 159
  ident: b23
  article-title: Classification using hierarchical naive bayes models
  publication-title: Mach. Learn.
– start-page: 302
  year: 2009
  end-page: 313
  ident: b34
  article-title: A comparative study of bandwidth choice in kernel density estimation for naive bayesian classification
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: 58
  start-page: 5
  year: 2005
  end-page: 24
  ident: b19
  article-title: Not so naive bayes: Aggregating one-dependence estimators
  publication-title: Mach. Learn.
– volume: 24
  start-page: 775
  year: 2011
  end-page: 784
  ident: b35
  article-title: A non-parametric version of the naive bayes classifier
  publication-title: Knowl.-Based Syst.
– volume: 86
  start-page: 233
  year: 2012
  end-page: 272
  ident: b20
  article-title: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification
  publication-title: Mach. Learn.
– volume: 69
  start-page: 516
  year: 2018
  ident: 10.1016/j.knosys.2019.105361_b27
  article-title: Mixture of latent multinomial naive bayes classifier
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.020
– start-page: 302
  year: 2009
  ident: 10.1016/j.knosys.2019.105361_b34
  article-title: A comparative study of bandwidth choice in kernel density estimation for naive bayesian classification
– volume: 19
  start-page: 511
  issue: 7
  year: 2006
  ident: 10.1016/j.knosys.2019.105361_b31
  article-title: Combining decision tree and naive bayes for classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2005.10.013
– volume: 21
  start-page: 1361
  issue: 10
  year: 2009
  ident: 10.1016/j.knosys.2019.105361_b24
  article-title: A novel bayes model: Hidden naive bayes
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.234
– start-page: 41
  year: 2001
  ident: 10.1016/j.knosys.2019.105361_b39
  article-title: An empirical study of the naive bayes classifier
– ident: 10.1016/j.knosys.2019.105361_b30
– year: 2009
  ident: 10.1016/j.knosys.2019.105361_b37
– start-page: 174
  year: 1995
  ident: 10.1016/j.knosys.2019.105361_b41
  article-title: The power of decision tables
– volume: 44
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2019.105361_b36
  article-title: Non-naive bayesian classifiers for classification problems with continuous attributes
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245891
– start-page: 147
  year: 1990
  ident: 10.1016/j.knosys.2019.105361_b38
– year: 2003
  ident: 10.1016/j.knosys.2019.105361_b40
– start-page: 338
  year: 1995
  ident: 10.1016/j.knosys.2019.105361_b33
  article-title: Estimating continuous distributions in bayesian classifiers
– volume: 32
  start-page: 532
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2019.105361_b26
  article-title: Random one-dependence estimators
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.11.016
– volume: 55
  start-page: 140
  year: 2014
  ident: 10.1016/j.knosys.2019.105361_b5
  article-title: Speeding up incremental wrapper feature subset selection with naive bayes classifier
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.10.016
– volume: 14
  start-page: 462
  issue: 3
  year: 1968
  ident: 10.1016/j.knosys.2019.105361_b18
  article-title: Approximating discrete probability distributions with dependence trees
  publication-title: Inf. Theory IEEE Trans.
  doi: 10.1109/TIT.1968.1054142
– volume: 24
  start-page: 775
  issue: 6
  year: 2011
  ident: 10.1016/j.knosys.2019.105361_b35
  article-title: A non-parametric version of the naive bayes classifier
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.02.014
– start-page: 856
  year: 2003
  ident: 10.1016/j.knosys.2019.105361_b13
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
– start-page: 567
  year: 2004
  ident: 10.1016/j.knosys.2019.105361_b6
  article-title: Learning weighted naive bayes with accurate ranking
– volume: 9
  start-page: 2677
  issue: 12
  year: 2008
  ident: 10.1016/j.knosys.2019.105361_b45
  article-title: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.knosys.2019.105361_b42
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2019.105361_b1
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0114-2
– volume: 39
  start-page: 11022
  issue: 12
  year: 2012
  ident: 10.1016/j.knosys.2019.105361_b14
  article-title: Not so greedy: Randomly selected naive bayes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.03.022
– volume: 14
  start-page: 1947
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2019.105361_b11
  article-title: Alleviating naive bayes attribute independence assumption by attribute weighting
  publication-title: J. Mach. Learn. Res.
– start-page: 335
  year: 1996
  ident: 10.1016/j.knosys.2019.105361_b22
  article-title: Learning limited dependence bayesian classifiers
– start-page: 225
  year: 1999
  ident: 10.1016/j.knosys.2019.105361_b29
  article-title: Learning augmented bayesian classifiers: A comparison of distribution-based and classification-based approaches
– start-page: 1089
  year: 2005
  ident: 10.1016/j.knosys.2019.105361_b32
  article-title: Naive bayes classifiers that perform well with continuous variables
– volume: 85
  start-page: 71
  year: 2015
  ident: 10.1016/j.knosys.2019.105361_b9
  article-title: A gradient approach for value weighted classification learning in naive bayes
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.04.020
– volume: 86
  start-page: 233
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2019.105361_b20
  article-title: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5263-6
– volume: 31
  start-page: 201
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2019.105361_b12
  article-title: A correlation-based feature weighting filter for naive bayes
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2836440
– volume: 100
  start-page: 137
  year: 2016
  ident: 10.1016/j.knosys.2019.105361_b3
  article-title: Two feature weighting approaches for naive bayes text classifiers
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.02.017
– volume: 113
  start-page: 116
  year: 2018
  ident: 10.1016/j.knosys.2019.105361_b10
  article-title: An information-theoretic filter approach for value weighted classification learning in naive bayes
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2017.11.002
– start-page: 1146
  year: 2012
  ident: 10.1016/j.knosys.2019.105361_b8
  article-title: Calculating feature weights in naive bayes with kullback-leibler measure
– volume: 63
  start-page: 135
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2019.105361_b23
  article-title: Classification using hierarchical naive bayes models
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6136-2
– volume: 260
  start-page: 120
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2019.105361_b16
  article-title: Domains of competence of the semi-naive bayesian network classifiers
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.10.007
– volume: 42
  start-page: 5433
  issue: 13
  year: 2015
  ident: 10.1016/j.knosys.2019.105361_b28
  article-title: Not always simple classification: Learning superparent for class probability estimation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.049
– start-page: 399
  year: 1994
  ident: 10.1016/j.knosys.2019.105361_b4
  article-title: Induction of selective bayesian classifiers
– volume: 29
  start-page: 131
  issue: 2–3
  year: 1997
  ident: 10.1016/j.knosys.2019.105361_b17
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
– start-page: 919
  year: 2005
  ident: 10.1016/j.knosys.2019.105361_b25
  article-title: Hidden naive bayes
– volume: 50
  start-page: 475
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2019.105361_b43
  article-title: Selective ande for large data learning: a low-bias memory constrained approach
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-016-0937-9
– year: 2000
  ident: 10.1016/j.knosys.2019.105361_b15
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
– volume: 19
  start-page: 501
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2019.105361_b21
  article-title: Attribute value weighted average of one-dependence estimators
  publication-title: Entropy
  doi: 10.3390/e19090501
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.knosys.2019.105361_b44
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 1973
  ident: 10.1016/j.knosys.2019.105361_b2
– volume: 58
  start-page: 5
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2019.105361_b19
  article-title: Not so naive bayes: Aggregating one-dependence estimators
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-005-4258-6
– volume: 20
  start-page: 120
  issue: 2
  year: 2007
  ident: 10.1016/j.knosys.2019.105361_b7
  article-title: A decision tree-based attribute weighting filter for naive bayes
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2006.11.008
SSID ssj0002218
Score 2.6327085
Snippet Naïve Bayes is one of the most popular data mining algorithms. Its efficiency comes from the assumption of attribute independence, although this might be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105361
SubjectTerms Algorithms
Attribute selection
Bayesian analysis
Data mining
Feature selection
Leave-one-out cross validation
Model selection
Naïve Bayes
Title A novel selective naïve Bayes algorithm
URI https://dx.doi.org/10.1016/j.knosys.2019.105361
https://www.proquest.com/docview/2427545466
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLVZrycGDl7VJNo_dYy2WqtiLFnoL-9RqTUpbhV78S_4I_5izeSgKUvAUSGaX8O3uPJKZ-RA60ZwJKnyGLfURDkJuMPVNiAXYNu0blwpmC5xvBlF_GFyNwlENdataGJtWWer-Qqfn2rq80y7RbE_H4_YtOAewX-1_MHB7wezYCvYgtiwGZ2_faR6-n3_js8LYSlflc3mO11OazZe2abfHLOEtiby_zNMvRZ1bn94W2ijdRqdTvNk2qul0B21WlAxOeUJ30WnHSbNXPXHmOb8NqDIn5R_vcDnnSz13-OQ-m40XD897aNi7uOv2cUmGgCUhwQLLgBpt-5FBvKKMsV1nhDBEMsIhYvGEMorEzHBNCVGEuiqUiusQTLgXa0Vjso_qaZbqA-TIOHY9CcGpUToQ1OeRjLTLCKMuVzBxA5EKg0SWncItYcUkqVLCHpMCucQilxTINRD-GjUtOmWskI8reJMfK56AMl8xslmtRlKeOHge-DF4g0EUHf574iO07ttw2qbrhU1UX8xe9DH4HAvRyjdVC611Lq_7g0_nhtWx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjSgUyMDAYprYeThjqagKtF1opW6WHdtQKEnVBqQu_BIfwY9h5wECCVViipRcW9Gxfe69yX0AcCZZyAlHITStj6DrMQUJUh7kWrdJpGzCQ5Pg3Ov7naF7M_JGFdAqc2FMWGXB_TmnZ2xd3GkUaDam43HjThsHer-a_2Da7NVqZwWsuh4KjAd28fYd54FQ9pHPSEMjXubPZUFeT3EyX5iq3U5oOt5i3_lLP_1i6kz9tLfARmE3Ws381bZBRcY7YLPsyWAVR3QXnDetOHmVE2ueNbjRXGbF7ONdXy7ZQs4tNrlPZuP04XkPDNtXg1YHFt0QYISxm8LIJUqagmTaYRFKmbIznCschZhpl8XhQgkchIpJgrHAxBZeJJj0tA53AilIgPdBNU5ieQCsKAhsJ9LeqRLS5QQxP_KlHeKQ2EzoiWsAlxjQqCgVbjpWTGgZE_ZIc-SoQY7myNUA_Bo1zUtlLJEPSnjpjyWnms2XjKyXq0GLI6efuyjQ5qDr-4f_nvgUrHUGvS7tXvdvj8A6Mr61id3z6qCazl7ksTZAUn6SbbBPAUrXRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+selective+na%C3%AFve+Bayes+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Chen%2C+Shenglei&rft.au=Webb%2C+Geoffrey+I.&rft.au=Liu%2C+Linyuan&rft.au=Ma%2C+Xin&rft.date=2020-03-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=192&rft_id=info:doi/10.1016%2Fj.knosys.2019.105361&rft.externalDocID=S0950705119306185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon