A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach

Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focus...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 136; no. 4; p. 407
Main Authors Shafiq, Anum, Mebarek-Oudina, Fateh, Sindhu, Tabassum Naz, Abidi, Awatef
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-5444
2190-5444
DOI10.1140/epjp/s13360-021-01394-z

Cover

Abstract Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter A describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis.
AbstractList Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter A describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis.
Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter A describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis.
ArticleNumber 407
Author Mebarek-Oudina, Fateh
Sindhu, Tabassum Naz
Abidi, Awatef
Shafiq, Anum
Author_xml – sequence: 1
  givenname: Anum
  surname: Shafiq
  fullname: Shafiq, Anum
  organization: School of Mathematics and Statistics, Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Fateh
  orcidid: 0000-0001-6145-8195
  surname: Mebarek-Oudina
  fullname: Mebarek-Oudina, Fateh
  email: oudina2003@yahoo.fr, f.mebarek_oudina@univ-skikda.dz
  organization: Department of Physics, Faculty of Sciences, University of 20 Août 1955-Skikda
– sequence: 3
  givenname: Tabassum Naz
  surname: Sindhu
  fullname: Sindhu, Tabassum Naz
  organization: Department of Statistics, Quaid-i-Azam University, Department of Sciences and Humanities, FAST - National University
– sequence: 4
  givenname: Awatef
  surname: Abidi
  fullname: Abidi, Awatef
  organization: Physics Department, College of Sciences Abha, King Khalid University, Research Laboratory of Metrology and Energy Systems, National Engineering School, Energy Engineering Department, Monastir University, Higher School of Sciences and Technology of Hammam Sousse, Sousse University
BookMark eNqNkF1LBCEUhiUK-vwNCV10Na3OuDNj0EUtfUEQRNGluH5sLqaTOhst9N9zm6DopkQ8HjnvezzPNlh33ikA9jE6wpigkerm3SjiqqpRgUpcIFxRUizXwFaJKSrGhJD1H_dNsBfjHOVFKCaUbIH3UxhTL9-g11D23OYs8GS0Efn0DuYdE5-5Ieu8cQk-cptUiIfwDDruvLa9kVBb_woXhsPApcnVCwXvzIzDzvKkjiFf2SQTUza2kHdd8Fw87YINzW1Ue19xBzxcnN9Proqb28vryelNIaqKpEIgqltNqpoIKXAtSV1KrnSeCiOBGlHqKW2nVDaiyY_ltKFclpXGoiFYj7PHDjgYfHPbl17FxOa-Dy63ZCXFdEzbuqK56mSoEsHHGJRmwqTPwTMTYxlGbAWdraCzATrL0NkndLbM-uaXvgvmmYe3fyjbQRmzws1U-P7fX9IPP6yfHQ
CitedBy_id crossref_primary_10_1615_JPorMedia_2023050040
crossref_primary_10_1080_10407790_2023_2174624
crossref_primary_10_1016_j_ijft_2024_100640
crossref_primary_10_1515_ijcre_2021_0124
crossref_primary_10_1002_htj_22339
crossref_primary_10_1002_htj_22573
crossref_primary_10_1016_j_jrras_2024_101273
crossref_primary_10_3390_lubricants10090209
crossref_primary_10_1016_j_aej_2022_06_041
crossref_primary_10_1080_17455030_2022_2099598
crossref_primary_10_3390_mca29060098
crossref_primary_10_1016_j_heliyon_2024_e34048
crossref_primary_10_3390_pr10061221
crossref_primary_10_1016_j_csite_2025_105924
crossref_primary_10_1142_S0217984921505266
crossref_primary_10_1080_17455030_2022_2102689
crossref_primary_10_1166_jon_2022_1834
crossref_primary_10_1016_j_icheatmasstransfer_2021_105479
crossref_primary_10_1007_s12648_022_02326_y
crossref_primary_10_1016_j_aej_2022_03_065
crossref_primary_10_1016_j_jrras_2025_101397
crossref_primary_10_1080_17455030_2023_2265493
crossref_primary_10_1002_htj_22624
crossref_primary_10_1002_zamm_202100506
crossref_primary_10_1080_16583655_2024_2387925
crossref_primary_10_1016_j_padiff_2024_100692
crossref_primary_10_1002_htj_22501
crossref_primary_10_1016_j_applthermaleng_2025_125696
crossref_primary_10_1002_htj_22865
crossref_primary_10_3390_inventions6040073
crossref_primary_10_3390_en14216911
crossref_primary_10_1007_s13369_021_06355_3
crossref_primary_10_1166_jon_2022_1863
crossref_primary_10_1515_ntrev_2022_0050
crossref_primary_10_1108_HFF_04_2021_0288
crossref_primary_10_1080_01430750_2022_2031292
crossref_primary_10_1080_01430750_2023_2267564
crossref_primary_10_3390_e23070813
crossref_primary_10_1080_16583655_2021_2014691
crossref_primary_10_3390_en16020681
crossref_primary_10_1038_s41598_022_14312_9
crossref_primary_10_1016_j_csite_2021_101747
crossref_primary_10_1016_j_aej_2022_06_025
crossref_primary_10_1038_s41598_022_20256_x
crossref_primary_10_1016_j_csite_2024_105411
crossref_primary_10_1038_s41598_023_35630_6
crossref_primary_10_1166_jon_2021_1807
crossref_primary_10_1080_10407790_2024_2364767
crossref_primary_10_1002_zamm_202300556
crossref_primary_10_1016_j_asej_2021_08_005
crossref_primary_10_1016_j_jrras_2025_101334
crossref_primary_10_1002_htj_22601
crossref_primary_10_1002_htj_22287
crossref_primary_10_3390_en14185953
crossref_primary_10_1016_j_jics_2022_100873
crossref_primary_10_1016_j_rinp_2023_106647
crossref_primary_10_1155_2022_3992590
crossref_primary_10_1007_s10973_021_10976_z
crossref_primary_10_1080_17455030_2023_2265506
crossref_primary_10_1080_01430750_2021_2023044
crossref_primary_10_1080_10407790_2023_2252590
crossref_primary_10_1007_s10973_023_12734_9
crossref_primary_10_1016_j_aej_2022_05_044
crossref_primary_10_1080_15502287_2023_2291012
crossref_primary_10_3389_fmats_2023_1132468
crossref_primary_10_1142_S0217979224500036
crossref_primary_10_3390_en15176269
crossref_primary_10_32604_fdmp_2023_021590
crossref_primary_10_1016_j_aej_2022_03_035
crossref_primary_10_1007_s42757_021_0131_5
crossref_primary_10_1016_j_asej_2024_102828
crossref_primary_10_1016_j_csite_2021_101089
crossref_primary_10_1002_htj_22650
crossref_primary_10_1002_zamm_202400308
crossref_primary_10_1016_j_rineng_2024_103760
crossref_primary_10_1016_j_ijmecsci_2021_106955
crossref_primary_10_1016_j_rineng_2025_104456
crossref_primary_10_1080_01430750_2023_2276125
crossref_primary_10_3390_mi13020201
crossref_primary_10_1007_s11043_024_09729_w
crossref_primary_10_1016_j_jrras_2024_101218
crossref_primary_10_52280_pujm_2021_530805
crossref_primary_10_1016_j_aej_2023_01_016
crossref_primary_10_1142_S0217984924504001
crossref_primary_10_1002_zamm_202200492
crossref_primary_10_1007_s12648_024_03359_1
crossref_primary_10_1038_s41598_022_04948_y
crossref_primary_10_1080_17455030_2022_2118396
crossref_primary_10_1002_htj_22302
crossref_primary_10_1016_j_csite_2023_103715
crossref_primary_10_1002_htj_22546
crossref_primary_10_1142_S0217984925500435
crossref_primary_10_1002_er_7140
crossref_primary_10_1002_htj_22661
crossref_primary_10_1142_S0217979224504009
crossref_primary_10_1177_23977914241270753
crossref_primary_10_1515_phys_2024_0073
crossref_primary_10_1108_MMMS_05_2024_0120
crossref_primary_10_1002_fld_5216
crossref_primary_10_1016_j_icheatmasstransfer_2022_105947
crossref_primary_10_1038_s41598_021_94450_8
crossref_primary_10_3390_sym13122358
crossref_primary_10_1007_s12648_021_02193_z
crossref_primary_10_1016_j_aej_2022_01_043
crossref_primary_10_1080_17455030_2022_2066218
crossref_primary_10_1002_htj_22511
crossref_primary_10_1080_17455030_2021_1978592
crossref_primary_10_1002_zamm_202400208
crossref_primary_10_1080_01932691_2021_1942035
crossref_primary_10_1093_jcde_qwac019
crossref_primary_10_1016_j_swevo_2024_101775
crossref_primary_10_1080_10420150_2024_2424752
crossref_primary_10_1088_1402_4896_abfe31
crossref_primary_10_1515_ntrev_2023_0106
crossref_primary_10_1038_s41598_021_93790_9
crossref_primary_10_1142_S0217979224500267
crossref_primary_10_1142_S0217979224501510
crossref_primary_10_1016_j_csite_2021_101151
crossref_primary_10_1016_j_ijft_2024_101027
crossref_primary_10_1166_jon_2022_1892
crossref_primary_10_1002_htj_22405
crossref_primary_10_1166_jon_2020_1741
crossref_primary_10_3934_math_2024821
crossref_primary_10_1142_S0217984925500976
crossref_primary_10_1088_1402_4896_ad03c2
crossref_primary_10_1155_2022_1111657
crossref_primary_10_1515_phys_2023_0150
crossref_primary_10_1016_j_csite_2021_101714
crossref_primary_10_1080_15502287_2023_2211985
crossref_primary_10_1166_jon_2022_1819
crossref_primary_10_1166_jon_2022_1818
Cites_doi 10.1016/j.csite.2018.04.014
10.1155/2008/149272
10.1016/j.icheatmasstransfer.2020.104737
10.1016/j.tsep.2017.11.005
10.1007/s10973-020-09488-z
10.1108/HFF-07-2020-0418
10.1007/s10483-017-2168-9
10.1007/s11012-013-9818-4
10.1007/s11814-012-0201-2
10.4028/www.scientific.net/DF.28.1
10.1007/s10973-020-09865-8
10.1007/s002310100215
10.4028/www.scientific.net/DDF.401.92
10.1007/s11771-018-3947-9
10.1115/1.3450574
10.1016/0017-9310(82)90007-2
10.1007/s12648-020-01923-z
10.1007/s10973-020-10518-z
10.1088/1402-4896/aaf548
10.1108/HFF-05-2020-0321
10.1007/978-981-15-4308-1_70
10.1016/j.rinp.2016.11.051
10.1088/1402-4896/ab3990
10.1016/j.icheatmasstransfer.2019.104401
10.1007/s10665-008-9259-6
10.1016/j.surfin.2020.100783
10.3389/fphy.2019.00215
10.1007/s40819-019-0608-0
10.1007/3-211-38078-7
10.1002/htj.21902
10.1007/s10483-014-1840-7
10.1108/MMMS-07-2018-0133
10.1108/HFF-09-2012-0219
10.1115/1.1863258
10.1016/j.molliq.2016.01.004
10.1007/s10973-020-10432-4
10.1016/j.ijmachtools.2005.07.024
10.1007/s13369-020-04680-7
10.1016/j.molliq.2016.10.055
10.1016/j.jppr.2020.10.002
10.1016/j.chaos.2019.109415
10.1007/s40430-016-0697-1
10.1016/j.jnnms.2015.06.004
10.1002/htj.22117
10.1016/0017-9310(88)90114-7
10.1016/j.jmmm.2019.165646
10.31349/RevMexFis.65.479
10.1016/S1290-0729(01)01306-0
10.1108/HFF-12-2018-0797
10.3390/math7111103
10.1016/j.rinp.2018.01.013
10.1016/j.molliq.2016.09.126
10.1016/j.cnsns.2010.12.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-021-01394-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_021_01394_z
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAAVM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADQRH
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
EJD
FINBP
FSGXE
O9-
PHGZM
PHGZT
S1Z
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-c09f8f4364cdc16d462daef19010c07c2fb98b9d7c7f192b79ad23f1c741f5c33
IEDL.DBID AGYKE
ISSN 2190-5444
IngestDate Fri Jul 25 23:28:05 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Tue Jul 01 02:42:22 EDT 2025
Fri Feb 21 02:48:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-c09f8f4364cdc16d462daef19010c07c2fb98b9d7c7f192b79ad23f1c741f5c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6145-8195
PQID 2919598639
PQPubID 2044220
ParticipantIDs proquest_journals_2919598639
crossref_citationtrail_10_1140_epjp_s13360_021_01394_z
crossref_primary_10_1140_epjp_s13360_021_01394_z
springer_journals_10_1140_epjp_s13360_021_01394_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Rathish KumarBVShaliniGCombined influence of mass and thermal stratification on double diffusion non-Darcian natural convection from a wavy vertical wall to porous mediaJ. Heat Transf.200512763764710.1115/1.1863258
WaqasMKhanMIHayatTGulzarMMAlsaediATransportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditionsChaos Solitons Fractals2020130109415400352910.1016/j.chaos.2019.109415
AmanullaCWakifASaleemSNumerical study of a Williamson fluid past a semi-infinite vertical plate with convective heating and radiation effectsDiffus. Found.20202811510.4028/www.scientific.net/DF.28.1
AbelMSJayashreeSMelting heat transfer in MHD boundary layer stagnation-point flow towards a stretching sheetIOSR J. Math.2015119198
Mebarek-OudinaFBessaihRMahantheshBChamkhaAJRazaJMagneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metalInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-05-2020-0321
HimasekharKJaluriaYLaminar buoyancy-induced axisymmetric free boundary flows in a thermally stratified mediumInt. J. Heat Mass Transf.1982252132210496.7610510.1016/0017-9310(82)90007-2
RasoolGZhangTShafiqASecond grade nanofluidic flow past a convectively heated vertical Riga platePhys. Scr.2019941212521210.1088/1402-4896/ab3990
HayatTQayyumSAlsaediAWaqasMSimultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surfaceJ. Mol. Liq.201622481181710.1016/j.molliq.2016.09.126
WakifAChamkhaAThummaTAnimasaunILSehaquiRThermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’snanofluid modelJ. Therm. Anal. Calorim.20211431201122010.1007/s10973-020-09488-z
RehmanKUKhanAAMalikMYAliUMutual effects of stratification and mixed convection on Williamson fluid flow under stagnation region towards an inclined cylindrical surfaceMethods X20174429444
MahmoudMAAWaheedSEMelting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)Appl. Math. Mech.-Engl. Ed.20143597999232422771298.7607010.1007/s10483-014-1840-7
GanesanPSuganthiRKLoganathanPThermophoresis particle deposition effects in a free convective doubly stratified medium over a vertical plateMeccanica20144965967231714431337.7606810.1007/s11012-013-9818-4
KhanUZaibAMebarek-OudinaFMixed convective magneto flow of SiO2–MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: stability analysisArab. J. Sci. Eng.2020459061907310.1007/s13369-020-04680-7
GanesanPSuganthiRKFree convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effectsKorean J. Chem. Eng.20133081382210.1007/s11814-012-0201-2
PantokratorasAMagyariEEMHD free-convection boundary-layer flow from a Riga-plateJ. Eng. Math.2009643033151168.7638410.1007/s10665-008-9259-6
JavedMFarooqMAhmadSMelting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous mediumJ. Cent. South Univ.2018252701271110.1007/s11771-018-3947-9
ArmenioVSarkarSEnvironmental stratified flows2005New YorkSpringer1092.7600310.1007/3-211-38078-7
HayatTQayyumSWaqasMAlsaediAThermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surfaceJ. Mol. Liq.201622480181010.1016/j.molliq.2016.10.055
SwainKMebarek-OudinaFAbo-DahabSMInfluence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with variable magnetic field and chemical reactionJ. Therm. Anal. Calorim.202010.1007/s10973-020-10432-4
Mebarek-OudinaFConvective heat transfer of titaniananofluids of different base fluids in cylindrical annulus with discreteHeat Source Heat Transf.2019481135147
WaqasMJabeenSHayatTShehzadSAAlsaediANumerical simulation for nonlinear radiated Eyring–Powell nanofluid considering magnetic dipole and activation energyInt. Commun. Heat Mass Transf.202011210440110.1016/j.icheatmasstransfer.2019.104401
PantokratorasASome exact solutions of boundary layer flows along a vertical plate with buoyancy forces combined with Lorentz forces under uniform suctionMath. Probl. Eng.2008200814927224488171353.7608210.1155/2008/149272
ShafiqAZariIKhanIKhanTSSherifSMSheikhAHMarangoni driven boundary layer flow of carbon nanotubes towards a Riga plateFront. Phys.2020721510.3389/fphy.2019.00215
Mebarek-OudinaFKeerthi ReddyNSankarMRushi KumarBSivarajRPrakashJHeat source location effects on buoyant convection of nanofluids in an annulusAdvances in Fluid Dynamics, Lecture Notes in Mechanical Engineering2021Springer92393710.1007/978-981-15-4308-1_70
FaresRMebarek-OudinaFAissaABilalSMÖztopHFOptimal entropy generation in Darcy–Forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquidJ. Therm. Anal. Calorim.202110.1007/s10973-020-10518-z
ZaimAAissaAMebarek-OudinaFMahantheshBLorenziniGSahnounMGalerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosurePropuls. Power Res.20209438339310.1016/j.jppr.2020.10.002
Mebarek-OudinaFAissaAMahantheshBÖztopFHHeat transport of magnetized newtoniannanoliquids in an annular space between porous vertical cylinders with discrete heat sourceInt. Commun. Heat Mass Transf.202011710473710.1016/j.icheatmasstransfer.2020.104737
SrinivasanJAngirasaDNumerical study of double-diffusive free convection from a vertical surfaceInt. J. Heat Mass Transf.1988312033203810.1016/0017-9310(88)90114-7
HayatTMumtazMShafiqAAlsaediAThermal stratified three-dimensional flow with inclined magnetic field and Joule heatingJ. Braz. Soc. Mech. Sci. Eng.2017391607162110.1007/s40430-016-0697-1
HayatTShafiqAImtiazMAlsaediAImpact of melting phenomenon in the Falkner–Skan wedge flow of second grade nanofluid: a revised modelJ. Mol. Liq.201621566467010.1016/j.molliq.2016.01.004
ShankerBReddyBPAnandRJRadiation and mass transfer effects on unsteady MHD free convective fluid flow embedded in a porous medium with heat generation/absorptionIndian J. Pure Appl. Phys.201048157165
ShafiqARashidiMMHammouchZKhanIAnalytical investigation of stagnation point flow of Williamson liquid with melting phenomenonPhys. Scr.20199430352042019PhyS...94c5204S10.1088/1402-4896/aaf548
MarzouguiSBouabidMMebarek-OudinaFAbu-HamdehNMagherbiMRameshKA computational analysis of heat transport irreversibility phenomenon in a magnetized porous channelInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-07-2020-0418
G. Rasool, A. Shafiq, and C.M. Khalique, Marangoni forced convective casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete Contin. Dyn. Syst. pp 1–18 (2019)
RasoolGWakifANumerical spectral examination of EMHD mixed convective flow of second grade nanofluid towards a vertical Riga plate using an advanced version of the revised buongiorno'snanofluid modelJ. Therm. Anal. Calorim.20211432379239310.1007/s10973-020-09865-8
MagyariEPantokratorasAAiding and opposing mixed convection flows over the Riga-plateCommun. Nonlinear Sci.2011163158316727830061419.7660110.1016/j.cnsns.2010.12.003
KannanRMPullepuBShehzadSANumerical solutions of dissipative natural convective flow from a vertical cone with heat absorption, generation, MHD and radiated surface heat fluxInt. J. Appl. Comput. Math.2019512439056330704607310.1007/s40819-019-0608-0
WaqasMDiffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convectionSurf. Interfaces20212310078310.1016/j.surfin.2020.100783
Abo-DahabSMAbdelhafezMAMebarek-OudinaFBilalSMMHD Cassonnanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injectionIndian J Phys.202110.1007/s12648-020-01923-z
WaqasMA mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactionsJ. Magn. Magn. Mater.202049316564610.1016/j.jmmm.2019.165646
NaseemAShafiqAZhaoLFarooqMUAnalytical investigation of third grade nanofluidic flow over a Riga plate using Cattaneo–Christov modelResult Phys.201899619692018ResPh...9..961N10.1016/j.rinp.2018.01.013
PopSRGrosanTPopIRadiation effects on the flow near the stagnation point of a stretching sheetTechn. Mech.200425100106
MahapatraTGuptaAHeat transfer in stagnation-point flow towards a stretching sheetHeat Mass Transf.2002385175212002HMT....38..517M10.1007/s002310100215
TakharHSChamkhaAJNathGNatural convection on a vertical cylinder embedded in a thermally stratified high-porosity mediumInt. J. Therm. Sci.202041839310.1016/S1290-0729(01)01306-0
HayatTMumtazMShafiqAAlsaediAStratified MHD flow of Tangent hyperbolic nanofluid induced by inclined sheetApp. Math. Mechanics-Engl. Ed.201738227128810.1007/s10483-017-2168-9
ShafiqAHammouchZTurabAImpact of radiation in a stagnation point flow of Walters' B fluid towards a Riga plateTherm. Sci. Eng. Prog.20186273310.1016/j.tsep.2017.11.005
HayatTAsadSAlsaediANon-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified mediumJ. Appl. Fluid Mech.201610915924
AliUAlqahtaniASRehmanKUMalikMYOn Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat generation effects in a Carreaunanofluid over a stretching sheetRev. Mex. Fis.201965547948810.31349/RevMexFis.65.479
HayatTFarooqMAlsaediAMelting heat transfer in the stagnation point flow of Maxwell fluid with double diffusive convectionInt. J. Numer. Methods Heat Fluid Flow20142476077432227731356.7632110.1108/HFF-09-2012-0219
SwainKMahantheshBMebarek-OudinaFHeat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspectsHeat Transf.202010.1002/htj.21902
SharmaPRSinghGEffects of variable thermal
T Hayat (1394_CR50) 2016; 215
A Shafiq (1394_CR24) 2020; 7
U Khan (1394_CR32) 2020; 45
G Rasool (1394_CR22) 2021; 143
G Rasool (1394_CR26) 2019; 94
K Swain (1394_CR33) 2020
J Raza (1394_CR61) 2020; 401
E Magyari (1394_CR23) 2011; 16
T Hayat (1394_CR58) 2016; 224
SM Abo-Dahab (1394_CR30) 2021
C Amanulla (1394_CR56) 2020; 28
A Pantokratoras (1394_CR21) 2009; 64
A Naseem (1394_CR29) 2018; 9
A Shafiq (1394_CR47) 2019; 94
T Hayat (1394_CR60) 2016; 224
NA Abukhshim (1394_CR12) 2006; 46
A Shafiq (1394_CR28) 2018; 6
C Rajashekhar (1394_CR27) 2021
K Himasekhar (1394_CR3) 1982; 25
B Shanker (1394_CR16) 2010; 48
A Pantokratoras (1394_CR20) 2008; 2008
T Mahapatra (1394_CR51) 2002; 38
M Waqas (1394_CR62) 2021; 23
M Javed (1394_CR46) 2018; 25
MAA Mahmoud (1394_CR43) 2014; 35
KU Rehman (1394_CR6) 2017; 4
U Ali (1394_CR15) 2019; 65
K Swain (1394_CR34) 2020
R Fares (1394_CR40) 2021
F Mabood (1394_CR45) 2016; 3
P Ganesan (1394_CR11) 2014; 49
J Raza (1394_CR36) 2019; 15
CC Chen (1394_CR2) 1976; 98
M Waqas (1394_CR35) 2019; 30
A Zaim (1394_CR37) 2020; 9
F Mebarek-Oudina (1394_CR49) 2020
T Hayat (1394_CR18) 2016; 10
PR Sharma (1394_CR52) 2009; 2
HS Takhar (1394_CR5) 2020; 41
F Mebarek-Oudina (1394_CR39) 2021
SK Adegbie (1394_CR41) 2016; 35
A Shafiq (1394_CR19) 2019; 7
T Hayat (1394_CR9) 2017; 39
T Hayat (1394_CR42) 2014; 24
KU Rehman (1394_CR13) 2018; 12
BV Rathish Kumar (1394_CR10) 2005; 127
RM Kannan (1394_CR14) 2019; 5
F Mabood (1394_CR48) 2017; 7
A Wakif (1394_CR57) 2021; 143
MS Abel (1394_CR44) 2015; 11
P Ganesan (1394_CR17) 2013; 30
M Waqas (1394_CR55) 2020; 130
M Waqas (1394_CR59) 2020; 112
SR Pop (1394_CR53) 2004; 25
F Mebarek-Oudina (1394_CR31) 2019; 48
J Srinivasan (1394_CR4) 1988; 31
M Waqas (1394_CR54) 2020; 493
S Marzougui (1394_CR7) 2020
T Hayat (1394_CR8) 2017; 38
1394_CR25
V Armenio (1394_CR1) 2005
F Mebarek-Oudina (1394_CR38) 2020; 117
References_xml – reference: AdegbieSKKorikoOKAnimasaunILMelting heat transfer effects on stagnation point flow of micropolar fluid with variable dynamic viscosity and thermal conductivity at constant vortex viscosityJ. Nig. Math. Soc.2016353435126751360.8000510.1016/j.jnnms.2015.06.004
– reference: HayatTShafiqAImtiazMAlsaediAImpact of melting phenomenon in the Falkner–Skan wedge flow of second grade nanofluid: a revised modelJ. Mol. Liq.201621566467010.1016/j.molliq.2016.01.004
– reference: HayatTAsadSAlsaediANon-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified mediumJ. Appl. Fluid Mech.201610915924
– reference: KannanRMPullepuBShehzadSANumerical solutions of dissipative natural convective flow from a vertical cone with heat absorption, generation, MHD and radiated surface heat fluxInt. J. Appl. Comput. Math.2019512439056330704607310.1007/s40819-019-0608-0
– reference: WaqasMKhanMIHayatTGulzarMMAlsaediATransportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditionsChaos Solitons Fractals2020130109415400352910.1016/j.chaos.2019.109415
– reference: HayatTQayyumSWaqasMAlsaediAThermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surfaceJ. Mol. Liq.201622480181010.1016/j.molliq.2016.10.055
– reference: ZaimAAissaAMebarek-OudinaFMahantheshBLorenziniGSahnounMGalerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosurePropuls. Power Res.20209438339310.1016/j.jppr.2020.10.002
– reference: MahapatraTGuptaAHeat transfer in stagnation-point flow towards a stretching sheetHeat Mass Transf.2002385175212002HMT....38..517M10.1007/s002310100215
– reference: PantokratorasASome exact solutions of boundary layer flows along a vertical plate with buoyancy forces combined with Lorentz forces under uniform suctionMath. Probl. Eng.2008200814927224488171353.7608210.1155/2008/149272
– reference: G. Rasool, A. Shafiq, and C.M. Khalique, Marangoni forced convective casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete Contin. Dyn. Syst. pp 1–18 (2019)
– reference: AliUAlqahtaniASRehmanKUMalikMYOn Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat generation effects in a Carreaunanofluid over a stretching sheetRev. Mex. Fis.201965547948810.31349/RevMexFis.65.479
– reference: Mebarek-OudinaFKeerthi ReddyNSankarMRushi KumarBSivarajRPrakashJHeat source location effects on buoyant convection of nanofluids in an annulusAdvances in Fluid Dynamics, Lecture Notes in Mechanical Engineering2021Springer92393710.1007/978-981-15-4308-1_70
– reference: SwainKMebarek-OudinaFAbo-DahabSMInfluence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with variable magnetic field and chemical reactionJ. Therm. Anal. Calorim.202010.1007/s10973-020-10432-4
– reference: AbelMSJayashreeSMelting heat transfer in MHD boundary layer stagnation-point flow towards a stretching sheetIOSR J. Math.2015119198
– reference: AbukhshimNAMativengaPTSheikhMAHeat generation and temperature prediction in metal cutting: a review and implications for high speed machiningInt. J. Mach. Tools Manuf.20064678280010.1016/j.ijmachtools.2005.07.024
– reference: JavedMFarooqMAhmadSMelting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous mediumJ. Cent. South Univ.2018252701271110.1007/s11771-018-3947-9
– reference: SwainKMahantheshBMebarek-OudinaFHeat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspectsHeat Transf.202010.1002/htj.21902
– reference: GanesanPSuganthiRKFree convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effectsKorean J. Chem. Eng.20133081382210.1007/s11814-012-0201-2
– reference: MaboodFShafiqAHayatTAbelmanSRadiation effects on stagnation point flow with melting heat transfer and second order slipResults Phys.2017731422017ResPh...7...31M10.1016/j.rinp.2016.11.051
– reference: WaqasMSimulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinderInt. J. Numer. Methods Heat Fluid Flow20193042193220510.1108/HFF-12-2018-0797
– reference: HayatTMumtazMShafiqAAlsaediAThermal stratified three-dimensional flow with inclined magnetic field and Joule heatingJ. Braz. Soc. Mech. Sci. Eng.2017391607162110.1007/s40430-016-0697-1
– reference: MagyariEPantokratorasAAiding and opposing mixed convection flows over the Riga-plateCommun. Nonlinear Sci.2011163158316727830061419.7660110.1016/j.cnsns.2010.12.003
– reference: PantokratorasAMagyariEEMHD free-convection boundary-layer flow from a Riga-plateJ. Eng. Math.2009643033151168.7638410.1007/s10665-008-9259-6
– reference: ShafiqARashidiMMHammouchZKhanIAnalytical investigation of stagnation point flow of Williamson liquid with melting phenomenonPhys. Scr.20199430352042019PhyS...94c5204S10.1088/1402-4896/aaf548
– reference: HayatTMumtazMShafiqAAlsaediAStratified MHD flow of Tangent hyperbolic nanofluid induced by inclined sheetApp. Math. Mechanics-Engl. Ed.201738227128810.1007/s10483-017-2168-9
– reference: RazaJMebarek-OudinaFRamPSharmaSMHD flow of non-newtonian molybdenum disulfidenanofluid in a converging/diverging channel with rosseland radiationDefect Diffus. Forum20204019210610.4028/www.scientific.net/DDF.401.92
– reference: ShankerBReddyBPAnandRJRadiation and mass transfer effects on unsteady MHD free convective fluid flow embedded in a porous medium with heat generation/absorptionIndian J. Pure Appl. Phys.201048157165
– reference: WaqasMA mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactionsJ. Magn. Magn. Mater.202049316564610.1016/j.jmmm.2019.165646
– reference: Abo-DahabSMAbdelhafezMAMebarek-OudinaFBilalSMMHD Cassonnanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injectionIndian J Phys.202110.1007/s12648-020-01923-z
– reference: GanesanPSuganthiRKLoganathanPThermophoresis particle deposition effects in a free convective doubly stratified medium over a vertical plateMeccanica20144965967231714431337.7606810.1007/s11012-013-9818-4
– reference: ShafiqAKhanIRasoolGSeikhAHEl-SayedMSSignificance of double stratification in stagnation point flow of third-grade fluid towards a radiative stretching cylinderMathematics2019711110310.3390/math7111103
– reference: RehmanKUAlshomraniASMalikMYZehraINaseerMThermo-physical aspects in tangent hyperbolic fluid flow regime: a short communicationCase Stud. Therm. Eng.20181220321210.1016/j.csite.2018.04.014
– reference: NaseemAShafiqAZhaoLFarooqMUAnalytical investigation of third grade nanofluidic flow over a Riga plate using Cattaneo–Christov modelResult Phys.201899619692018ResPh...9..961N10.1016/j.rinp.2018.01.013
– reference: ChenCCEichhornRNatural convection from a vertical surface to a thermally stratified fluidJ. Heat Transf.19769844645110.1115/1.3450574
– reference: RehmanKUKhanAAMalikMYAliUMutual effects of stratification and mixed convection on Williamson fluid flow under stagnation region towards an inclined cylindrical surfaceMethods X20174429444
– reference: SharmaPRSinghGEffects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheetJ. Appl. Fluid Mech.2009211321
– reference: Rathish KumarBVShaliniGCombined influence of mass and thermal stratification on double diffusion non-Darcian natural convection from a wavy vertical wall to porous mediaJ. Heat Transf.200512763764710.1115/1.1863258
– reference: RasoolGWakifANumerical spectral examination of EMHD mixed convective flow of second grade nanofluid towards a vertical Riga plate using an advanced version of the revised buongiorno'snanofluid modelJ. Therm. Anal. Calorim.20211432379239310.1007/s10973-020-09865-8
– reference: AmanullaCWakifASaleemSNumerical study of a Williamson fluid past a semi-infinite vertical plate with convective heating and radiation effectsDiffus. Found.20202811510.4028/www.scientific.net/DF.28.1
– reference: ShafiqAHammouchZTurabAImpact of radiation in a stagnation point flow of Walters' B fluid towards a Riga plateTherm. Sci. Eng. Prog.20186273310.1016/j.tsep.2017.11.005
– reference: MarzouguiSBouabidMMebarek-OudinaFAbu-HamdehNMagherbiMRameshKA computational analysis of heat transport irreversibility phenomenon in a magnetized porous channelInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-07-2020-0418
– reference: TakharHSChamkhaAJNathGNatural convection on a vertical cylinder embedded in a thermally stratified high-porosity mediumInt. J. Therm. Sci.202041839310.1016/S1290-0729(01)01306-0
– reference: WakifAChamkhaAThummaTAnimasaunILSehaquiRThermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’snanofluid modelJ. Therm. Anal. Calorim.20211431201122010.1007/s10973-020-09488-z
– reference: WaqasMDiffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convectionSurf. Interfaces20212310078310.1016/j.surfin.2020.100783
– reference: MaboodFDasKMelting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slipEur. Phys. J. Plus20163131138
– reference: HimasekharKJaluriaYLaminar buoyancy-induced axisymmetric free boundary flows in a thermally stratified mediumInt. J. Heat Mass Transf.1982252132210496.7610510.1016/0017-9310(82)90007-2
– reference: WaqasMJabeenSHayatTShehzadSAAlsaediANumerical simulation for nonlinear radiated Eyring–Powell nanofluid considering magnetic dipole and activation energyInt. Commun. Heat Mass Transf.202011210440110.1016/j.icheatmasstransfer.2019.104401
– reference: ArmenioVSarkarSEnvironmental stratified flows2005New YorkSpringer1092.7600310.1007/3-211-38078-7
– reference: KhanUZaibAMebarek-OudinaFMixed convective magneto flow of SiO2–MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: stability analysisArab. J. Sci. Eng.2020459061907310.1007/s13369-020-04680-7
– reference: HayatTFarooqMAlsaediAMelting heat transfer in the stagnation point flow of Maxwell fluid with double diffusive convectionInt. J. Numer. Methods Heat Fluid Flow20142476077432227731356.7632110.1108/HFF-09-2012-0219
– reference: RazaJMebarek-OudinaFChamkhaAJMagnetohydrodynamic flow of molybdenum disulfidenanofluid in a channel with shape effectsMultidiscip. Model. Mater. Struct.201915473775710.1108/MMMS-07-2018-0133
– reference: MahmoudMAAWaheedSEMelting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)Appl. Math. Mech.-Engl. Ed.20143597999232422771298.7607010.1007/s10483-014-1840-7
– reference: RajashekharCMebarek-OudinaFVaidyaHPrasadKVManjunathaGBalachandraHMass and heat transport impact on the peristaltic flow of Ree-Eyring liquid whit variable properties for hemodynamic flowHeat Transf.202110.1002/htj.22117
– reference: RasoolGZhangTShafiqASecond grade nanofluidic flow past a convectively heated vertical Riga platePhys. Scr.2019941212521210.1088/1402-4896/ab3990
– reference: SrinivasanJAngirasaDNumerical study of double-diffusive free convection from a vertical surfaceInt. J. Heat Mass Transf.1988312033203810.1016/0017-9310(88)90114-7
– reference: FaresRMebarek-OudinaFAissaABilalSMÖztopHFOptimal entropy generation in Darcy–Forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquidJ. Therm. Anal. Calorim.202110.1007/s10973-020-10518-z
– reference: Mebarek-OudinaFConvective heat transfer of titaniananofluids of different base fluids in cylindrical annulus with discreteHeat Source Heat Transf.2019481135147
– reference: Mebarek-OudinaFAissaAMahantheshBÖztopFHHeat transport of magnetized newtoniannanoliquids in an annular space between porous vertical cylinders with discrete heat sourceInt. Commun. Heat Mass Transf.202011710473710.1016/j.icheatmasstransfer.2020.104737
– reference: PopSRGrosanTPopIRadiation effects on the flow near the stagnation point of a stretching sheetTechn. Mech.200425100106
– reference: ShafiqAZariIKhanIKhanTSSherifSMSheikhAHMarangoni driven boundary layer flow of carbon nanotubes towards a Riga plateFront. Phys.2020721510.3389/fphy.2019.00215
– reference: Mebarek-OudinaFBessaihRMahantheshBChamkhaAJRazaJMagneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metalInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-05-2020-0321
– reference: HayatTQayyumSAlsaediAWaqasMSimultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surfaceJ. Mol. Liq.201622481181710.1016/j.molliq.2016.09.126
– volume: 12
  start-page: 203
  year: 2018
  ident: 1394_CR13
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2018.04.014
– volume: 2008
  start-page: 149272
  year: 2008
  ident: 1394_CR20
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2008/149272
– volume: 117
  start-page: 104737
  year: 2020
  ident: 1394_CR38
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104737
– volume: 6
  start-page: 27
  year: 2018
  ident: 1394_CR28
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2017.11.005
– volume: 143
  start-page: 1201
  year: 2021
  ident: 1394_CR57
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09488-z
– year: 2020
  ident: 1394_CR7
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-07-2020-0418
– volume: 38
  start-page: 271
  issue: 2
  year: 2017
  ident: 1394_CR8
  publication-title: App. Math. Mechanics-Engl. Ed.
  doi: 10.1007/s10483-017-2168-9
– volume: 49
  start-page: 659
  year: 2014
  ident: 1394_CR11
  publication-title: Meccanica
  doi: 10.1007/s11012-013-9818-4
– volume: 30
  start-page: 813
  year: 2013
  ident: 1394_CR17
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-012-0201-2
– volume: 28
  start-page: 1
  year: 2020
  ident: 1394_CR56
  publication-title: Diffus. Found.
  doi: 10.4028/www.scientific.net/DF.28.1
– volume: 143
  start-page: 2379
  year: 2021
  ident: 1394_CR22
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09865-8
– volume: 38
  start-page: 517
  year: 2002
  ident: 1394_CR51
  publication-title: Heat Mass Transf.
  doi: 10.1007/s002310100215
– volume: 401
  start-page: 92
  year: 2020
  ident: 1394_CR61
  publication-title: Defect Diffus. Forum
  doi: 10.4028/www.scientific.net/DDF.401.92
– volume: 25
  start-page: 2701
  year: 2018
  ident: 1394_CR46
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-018-3947-9
– volume: 98
  start-page: 446
  year: 1976
  ident: 1394_CR2
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3450574
– volume: 48
  start-page: 135
  issue: 1
  year: 2019
  ident: 1394_CR31
  publication-title: Heat Source Heat Transf.
– volume: 25
  start-page: 213
  year: 1982
  ident: 1394_CR3
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(82)90007-2
– year: 2021
  ident: 1394_CR30
  publication-title: Indian J Phys.
  doi: 10.1007/s12648-020-01923-z
– year: 2021
  ident: 1394_CR40
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-10518-z
– volume: 94
  start-page: 035204
  issue: 3
  year: 2019
  ident: 1394_CR47
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aaf548
– year: 2020
  ident: 1394_CR49
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-05-2020-0321
– start-page: 923
  volume-title: Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering
  year: 2021
  ident: 1394_CR39
  doi: 10.1007/978-981-15-4308-1_70
– volume: 7
  start-page: 31
  year: 2017
  ident: 1394_CR48
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2016.11.051
– volume: 94
  start-page: 125
  issue: 12
  year: 2019
  ident: 1394_CR26
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab3990
– ident: 1394_CR25
– volume: 112
  start-page: 104401
  year: 2020
  ident: 1394_CR59
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104401
– volume: 64
  start-page: 303
  year: 2009
  ident: 1394_CR21
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-008-9259-6
– volume: 23
  start-page: 100783
  year: 2021
  ident: 1394_CR62
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2020.100783
– volume: 7
  start-page: 215
  year: 2020
  ident: 1394_CR24
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00215
– volume: 5
  start-page: 24
  issue: 1
  year: 2019
  ident: 1394_CR14
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-019-0608-0
– volume: 4
  start-page: 429
  year: 2017
  ident: 1394_CR6
  publication-title: Methods X
– volume: 48
  start-page: 157
  year: 2010
  ident: 1394_CR16
  publication-title: Indian J. Pure Appl. Phys.
– volume-title: Environmental stratified flows
  year: 2005
  ident: 1394_CR1
  doi: 10.1007/3-211-38078-7
– year: 2020
  ident: 1394_CR34
  publication-title: Heat Transf.
  doi: 10.1002/htj.21902
– volume: 35
  start-page: 979
  year: 2014
  ident: 1394_CR43
  publication-title: Appl. Math. Mech.-Engl. Ed.
  doi: 10.1007/s10483-014-1840-7
– volume: 3
  start-page: 131
  year: 2016
  ident: 1394_CR45
  publication-title: Eur. Phys. J. Plus
– volume: 15
  start-page: 737
  issue: 4
  year: 2019
  ident: 1394_CR36
  publication-title: Multidiscip. Model. Mater. Struct.
  doi: 10.1108/MMMS-07-2018-0133
– volume: 24
  start-page: 760
  year: 2014
  ident: 1394_CR42
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-09-2012-0219
– volume: 127
  start-page: 637
  year: 2005
  ident: 1394_CR10
  publication-title: J. Heat Transf.
  doi: 10.1115/1.1863258
– volume: 215
  start-page: 664
  year: 2016
  ident: 1394_CR50
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.01.004
– volume: 25
  start-page: 100
  year: 2004
  ident: 1394_CR53
  publication-title: Techn. Mech.
– year: 2020
  ident: 1394_CR33
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-10432-4
– volume: 46
  start-page: 782
  year: 2006
  ident: 1394_CR12
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2005.07.024
– volume: 45
  start-page: 9061
  year: 2020
  ident: 1394_CR32
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04680-7
– volume: 224
  start-page: 801
  year: 2016
  ident: 1394_CR60
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.10.055
– volume: 9
  start-page: 383
  issue: 4
  year: 2020
  ident: 1394_CR37
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2020.10.002
– volume: 2
  start-page: 13
  issue: 1
  year: 2009
  ident: 1394_CR52
  publication-title: J. Appl. Fluid Mech.
– volume: 130
  start-page: 109415
  year: 2020
  ident: 1394_CR55
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109415
– volume: 39
  start-page: 1607
  year: 2017
  ident: 1394_CR9
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-016-0697-1
– volume: 35
  start-page: 34
  year: 2016
  ident: 1394_CR41
  publication-title: J. Nig. Math. Soc.
  doi: 10.1016/j.jnnms.2015.06.004
– year: 2021
  ident: 1394_CR27
  publication-title: Heat Transf.
  doi: 10.1002/htj.22117
– volume: 31
  start-page: 2033
  year: 1988
  ident: 1394_CR4
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(88)90114-7
– volume: 493
  start-page: 165646
  year: 2020
  ident: 1394_CR54
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165646
– volume: 65
  start-page: 479
  issue: 5
  year: 2019
  ident: 1394_CR15
  publication-title: Rev. Mex. Fis.
  doi: 10.31349/RevMexFis.65.479
– volume: 41
  start-page: 83
  year: 2020
  ident: 1394_CR5
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/S1290-0729(01)01306-0
– volume: 30
  start-page: 2193
  issue: 4
  year: 2019
  ident: 1394_CR35
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-12-2018-0797
– volume: 7
  start-page: 1103
  issue: 11
  year: 2019
  ident: 1394_CR19
  publication-title: Mathematics
  doi: 10.3390/math7111103
– volume: 10
  start-page: 915
  year: 2016
  ident: 1394_CR18
  publication-title: J. Appl. Fluid Mech.
– volume: 9
  start-page: 961
  year: 2018
  ident: 1394_CR29
  publication-title: Result Phys.
  doi: 10.1016/j.rinp.2018.01.013
– volume: 224
  start-page: 811
  year: 2016
  ident: 1394_CR58
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.09.126
– volume: 16
  start-page: 3158
  year: 2011
  ident: 1394_CR23
  publication-title: Commun. Nonlinear Sci.
  doi: 10.1016/j.cnsns.2010.12.003
– volume: 11
  start-page: 91
  year: 2015
  ident: 1394_CR44
  publication-title: IOSR J. Math.
SSID ssj0000491494
Score 2.5526683
Snippet Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 407
SubjectTerms Applied and Technical Physics
Approximation
Atomic
Coefficient of friction
Complex Systems
Condensed Matter Physics
Differential equations
Dimensionless numbers
Error analysis
Fluid flow
Hartmann number
Heat generation
Heat transfer
Heat transport
Homotopy theory
Investigations
Liquid flow
Lorentz force
Magnetic fields
Mass transport
Mathematical and Computational Physics
Molecular
Nanofluids
Optical and Plasma Physics
Optimization
Parameters
Particle deposition
Physics
Physics and Astronomy
Probable error
Radiation
Regular Article
Rheological properties
Rheology
Skin friction
Solidification
Stagnation point
Temperature effects
Theoretical
Thermal stratification
Thermophoresis
Transport equations
Transport rate
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSyQxEA6uIuxFdHfFWR_UYWFPYfoR--FFRnFWBD3IynoL6aQjI0N3r90qDPjfrUqnHdbDCn3qkGroSlJf6vEVYz_iJAtjmytulIi50KUiDkjD0ZYYtDg2sDlVI19eJec34uL28NY73FqfVjmcie6gNrUmH_k4yokGJUODetz85dQ1iqKrvoXGJ7YWRjhEleLTX28-FkS_eAEQPq0LrxLjsrlvxi3ey5KAU3ICASDBF_8apSXSfBccdTZnusk2PFiESa_dLbZSVl_Yukva1O1X9jIBxw4LtQUqqYKeA9d6Nxzgg9jvrvf3QVPPqg7-uPB4-xNOoFJVbeePMwN2Xj_D00zBAzEV0AEI17M7Bc0ckegRKBLTOUZn_MjAQv6N3UzPfp-ec99Oges4Fh3XQW4zK-JEaKPDxIgkMqq0hAgCHaQ6skWeFblJdYovoyLNlYliG2oEHfYQZWyz1aquyh0GxmSC4pUpEfjhXBSbCJVlOizLIsj1iCXD_5Tac41Ty4u57OugA0mKkL0iJCpCOkXIxYgFbxObnm7j4yl7g8Kk33-tXK6WEQsHJS6HPxD5_f8id9nnyC0eyt_ZY6vdw2O5j9CkKw7c-nsFa9DjNA
  priority: 102
  providerName: ProQuest
Title A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach
URI https://link.springer.com/article/10.1140/epjp/s13360-021-01394-z
https://www.proquest.com/docview/2919598639
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB90RfDlTr0T905lHgSfqmmb7ce97YqrKIqIy-m9hDRpZHVpi9u9g4X735304_bOhxOEQiFlpu1kkvklmfwCsO8HkeubWDpact_hKpWWA1I7FEs0RRzDTGx3I19eBWcjfn7Xu_v7qC-b7d4uSVY9dc1ny47S4rE4mtKQKmCOzSuw2IU782VY6dEohdrkSv_0_mIxwULQl9A_b3K6_qPh34i0gJmvVkargDP8CD_aT63zTJ4OZ2VyqOavWBzf9S_r8KGBodiv_WYDltJsE1ardFA1_QS_-1jxzmJu0G7Wwppd1zQTfEgXocqHeiYRi3yclfi9WnifHuAAM5nlZjIbazST_Bf-HEt8thwItmvFm_GDxGJCGPcbSqumrLii6SUtv_lnGA1Pbo_PnOagBkf5Pi8dxWITGe4HXGnlBpoHnpapsViDKRYqzyRxlMQ6VCEVekkYS-35xlUEZ0yPdGxBJ8uzdBtQ64jbldDQUgOSLKkNuIwi5aZpwmLVhaCtLKEaFnN7mMZE1DusmbC2FbVtBdlWVLYV8y6wP4JFTeTxtshO6w2iadlT4cWWjiciYNcFt63cxeM3VH55h8xXWPMqJ7HpQjvQKZ9n6S4hoTLZg-VoeLrXeD7dBydX1zdUOvL6L-s-Bvg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEF5KRfRFvOLRqvOg-LScJLvNRRCpl-OpvTxIi31bN3spRw5JbFKLBf-Sv9GZTdKDPtinQp4SdgKZydznG8aeizSPhS80t1oKLo3ThAFpOdoSixbHR76gaeS9_XR-KD8dbR6tsd_jLAy1VY46MShqWxvKkU-TgmBQcjSob5rvnLZGUXV1XKHRi8WO-3mGIVv7evs98vdFksw-HLyb82GrADdCyI6bqPC5lyKVxpo4tTJNrHaeDGNkoswkvizysrCZyfBmUmaFtonwsUHb6zcNJUBR5V-TQghqIcxnHy9yOuhtY8AhhzYyDF2mrvnWTFuMA9OIUzMEOVySn_9tBFee7T_F2GDjZrfZrcE5ha1emu6wNVfdZddDk6hp77FfWxDQaKH2QCNc0GPu-iHtB3ihr3nc5xehqRdVB19COb59CW-h0lXtl6cLC35Zn8GPhYYTQkYghQufF8camiV6vq9AE5kuIEjjS0bU8_vs8Eo-9AO2XtWVe8jA2lxSfTQjwEA8i2RTqfPcxM6VUWEmLB2_pzIDtjmt2Fiqfu46UsQI1TNCISNUYIQ6n7Do4mDTw3tcfmRjZJga_vdWraRzwuKRiavHl5B89H-Sz9iN-cHertrd3t95zG4mQZCod2iDrXcnp-4JukVd-TTIIrCvVy38fwDMqyCv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB7qieKLaG3xtOo8FPoUbpNs88O3q_ao2pYiHvZt2exmy8mRhF6uhYL_e2c2SYs-WBDylDATyLeb-XZn5luA3TjJwtjlOrBaxoE0pWYNSBtQLLEUcZxwOXcjn5wmR3P59Xz_fAMOh14YX-0-pCS7ngZWaaraSWNdr20rJmXzq5msaHmViIBrDJjHyODmETyWFLC5smseTe-2WogE0zpA9tVd_7D_MzbdE86_cqQ-9MxewPOeM-K0A_klbJTVJjzxtZtm9Qp-T9GLxGLtkDursJPCdf1uHNJFFPCi2_bDpl5ULf70WfLVHh5gpavaLdcLi25ZX-PVQuMlCxbwfxC_Ly40NksipB9Rs5vWCzvTSwYx8i2Yzw5_fDoK-lMVAhPHsg2MyF3mZJxIY02YWJlEVpeOiYEwIjWRK_KsyG1qUroZFWmubRS70BD3cPvkYxtGVV2VrwGtzSSnLVPW8SNbcptInWUmLMtC5GYMyfA9leklx_nki6Xq2qGFYiBUB4QiIJQHQt2MQdwZNp3qxsMmOwNgqp-GKxXlrJ2TEQsbQziAeP_4AZdv_sPmAzw9-zxTx19Ov72FZ5EfXFzmswOj9nJdviMG0xbv_fi8BRiT65k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+dual+stratification+on+stagnation+point+Walters%27+B+nanofluid+flow+via+radiative+Riga+plate%3A+a+statistical+approach&rft.jtitle=European+physical+journal+plus&rft.au=Shafiq%2C+Anum&rft.au=Mebarek-Oudina%2C+Fateh&rft.au=Sindhu%2C+Tabassum+Naz&rft.au=Abidi%2C+Awatef&rft.date=2021-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=136&rft.issue=4&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-021-01394-z&rft.externalDocID=10_1140_epjp_s13360_021_01394_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon