A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach
Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focus...
Saved in:
Published in | European physical journal plus Vol. 136; no. 4; p. 407 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-5444 2190-5444 |
DOI | 10.1140/epjp/s13360-021-01394-z |
Cover
Abstract | Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter
A
describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis. |
---|---|
AbstractList | Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter
A
describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis. Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter A describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis. |
ArticleNumber | 407 |
Author | Mebarek-Oudina, Fateh Sindhu, Tabassum Naz Abidi, Awatef Shafiq, Anum |
Author_xml | – sequence: 1 givenname: Anum surname: Shafiq fullname: Shafiq, Anum organization: School of Mathematics and Statistics, Nanjing University of Information Science and Technology – sequence: 2 givenname: Fateh orcidid: 0000-0001-6145-8195 surname: Mebarek-Oudina fullname: Mebarek-Oudina, Fateh email: oudina2003@yahoo.fr, f.mebarek_oudina@univ-skikda.dz organization: Department of Physics, Faculty of Sciences, University of 20 Août 1955-Skikda – sequence: 3 givenname: Tabassum Naz surname: Sindhu fullname: Sindhu, Tabassum Naz organization: Department of Statistics, Quaid-i-Azam University, Department of Sciences and Humanities, FAST - National University – sequence: 4 givenname: Awatef surname: Abidi fullname: Abidi, Awatef organization: Physics Department, College of Sciences Abha, King Khalid University, Research Laboratory of Metrology and Energy Systems, National Engineering School, Energy Engineering Department, Monastir University, Higher School of Sciences and Technology of Hammam Sousse, Sousse University |
BookMark | eNqNkF1LBCEUhiUK-vwNCV10Na3OuDNj0EUtfUEQRNGluH5sLqaTOhst9N9zm6DopkQ8HjnvezzPNlh33ikA9jE6wpigkerm3SjiqqpRgUpcIFxRUizXwFaJKSrGhJD1H_dNsBfjHOVFKCaUbIH3UxhTL9-g11D23OYs8GS0Efn0DuYdE5-5Ieu8cQk-cptUiIfwDDruvLa9kVBb_woXhsPApcnVCwXvzIzDzvKkjiFf2SQTUza2kHdd8Fw87YINzW1Ue19xBzxcnN9Proqb28vryelNIaqKpEIgqltNqpoIKXAtSV1KrnSeCiOBGlHqKW2nVDaiyY_ltKFclpXGoiFYj7PHDjgYfHPbl17FxOa-Dy63ZCXFdEzbuqK56mSoEsHHGJRmwqTPwTMTYxlGbAWdraCzATrL0NkndLbM-uaXvgvmmYe3fyjbQRmzws1U-P7fX9IPP6yfHQ |
CitedBy_id | crossref_primary_10_1615_JPorMedia_2023050040 crossref_primary_10_1080_10407790_2023_2174624 crossref_primary_10_1016_j_ijft_2024_100640 crossref_primary_10_1515_ijcre_2021_0124 crossref_primary_10_1002_htj_22339 crossref_primary_10_1002_htj_22573 crossref_primary_10_1016_j_jrras_2024_101273 crossref_primary_10_3390_lubricants10090209 crossref_primary_10_1016_j_aej_2022_06_041 crossref_primary_10_1080_17455030_2022_2099598 crossref_primary_10_3390_mca29060098 crossref_primary_10_1016_j_heliyon_2024_e34048 crossref_primary_10_3390_pr10061221 crossref_primary_10_1016_j_csite_2025_105924 crossref_primary_10_1142_S0217984921505266 crossref_primary_10_1080_17455030_2022_2102689 crossref_primary_10_1166_jon_2022_1834 crossref_primary_10_1016_j_icheatmasstransfer_2021_105479 crossref_primary_10_1007_s12648_022_02326_y crossref_primary_10_1016_j_aej_2022_03_065 crossref_primary_10_1016_j_jrras_2025_101397 crossref_primary_10_1080_17455030_2023_2265493 crossref_primary_10_1002_htj_22624 crossref_primary_10_1002_zamm_202100506 crossref_primary_10_1080_16583655_2024_2387925 crossref_primary_10_1016_j_padiff_2024_100692 crossref_primary_10_1002_htj_22501 crossref_primary_10_1016_j_applthermaleng_2025_125696 crossref_primary_10_1002_htj_22865 crossref_primary_10_3390_inventions6040073 crossref_primary_10_3390_en14216911 crossref_primary_10_1007_s13369_021_06355_3 crossref_primary_10_1166_jon_2022_1863 crossref_primary_10_1515_ntrev_2022_0050 crossref_primary_10_1108_HFF_04_2021_0288 crossref_primary_10_1080_01430750_2022_2031292 crossref_primary_10_1080_01430750_2023_2267564 crossref_primary_10_3390_e23070813 crossref_primary_10_1080_16583655_2021_2014691 crossref_primary_10_3390_en16020681 crossref_primary_10_1038_s41598_022_14312_9 crossref_primary_10_1016_j_csite_2021_101747 crossref_primary_10_1016_j_aej_2022_06_025 crossref_primary_10_1038_s41598_022_20256_x crossref_primary_10_1016_j_csite_2024_105411 crossref_primary_10_1038_s41598_023_35630_6 crossref_primary_10_1166_jon_2021_1807 crossref_primary_10_1080_10407790_2024_2364767 crossref_primary_10_1002_zamm_202300556 crossref_primary_10_1016_j_asej_2021_08_005 crossref_primary_10_1016_j_jrras_2025_101334 crossref_primary_10_1002_htj_22601 crossref_primary_10_1002_htj_22287 crossref_primary_10_3390_en14185953 crossref_primary_10_1016_j_jics_2022_100873 crossref_primary_10_1016_j_rinp_2023_106647 crossref_primary_10_1155_2022_3992590 crossref_primary_10_1007_s10973_021_10976_z crossref_primary_10_1080_17455030_2023_2265506 crossref_primary_10_1080_01430750_2021_2023044 crossref_primary_10_1080_10407790_2023_2252590 crossref_primary_10_1007_s10973_023_12734_9 crossref_primary_10_1016_j_aej_2022_05_044 crossref_primary_10_1080_15502287_2023_2291012 crossref_primary_10_3389_fmats_2023_1132468 crossref_primary_10_1142_S0217979224500036 crossref_primary_10_3390_en15176269 crossref_primary_10_32604_fdmp_2023_021590 crossref_primary_10_1016_j_aej_2022_03_035 crossref_primary_10_1007_s42757_021_0131_5 crossref_primary_10_1016_j_asej_2024_102828 crossref_primary_10_1016_j_csite_2021_101089 crossref_primary_10_1002_htj_22650 crossref_primary_10_1002_zamm_202400308 crossref_primary_10_1016_j_rineng_2024_103760 crossref_primary_10_1016_j_ijmecsci_2021_106955 crossref_primary_10_1016_j_rineng_2025_104456 crossref_primary_10_1080_01430750_2023_2276125 crossref_primary_10_3390_mi13020201 crossref_primary_10_1007_s11043_024_09729_w crossref_primary_10_1016_j_jrras_2024_101218 crossref_primary_10_52280_pujm_2021_530805 crossref_primary_10_1016_j_aej_2023_01_016 crossref_primary_10_1142_S0217984924504001 crossref_primary_10_1002_zamm_202200492 crossref_primary_10_1007_s12648_024_03359_1 crossref_primary_10_1038_s41598_022_04948_y crossref_primary_10_1080_17455030_2022_2118396 crossref_primary_10_1002_htj_22302 crossref_primary_10_1016_j_csite_2023_103715 crossref_primary_10_1002_htj_22546 crossref_primary_10_1142_S0217984925500435 crossref_primary_10_1002_er_7140 crossref_primary_10_1002_htj_22661 crossref_primary_10_1142_S0217979224504009 crossref_primary_10_1177_23977914241270753 crossref_primary_10_1515_phys_2024_0073 crossref_primary_10_1108_MMMS_05_2024_0120 crossref_primary_10_1002_fld_5216 crossref_primary_10_1016_j_icheatmasstransfer_2022_105947 crossref_primary_10_1038_s41598_021_94450_8 crossref_primary_10_3390_sym13122358 crossref_primary_10_1007_s12648_021_02193_z crossref_primary_10_1016_j_aej_2022_01_043 crossref_primary_10_1080_17455030_2022_2066218 crossref_primary_10_1002_htj_22511 crossref_primary_10_1080_17455030_2021_1978592 crossref_primary_10_1002_zamm_202400208 crossref_primary_10_1080_01932691_2021_1942035 crossref_primary_10_1093_jcde_qwac019 crossref_primary_10_1016_j_swevo_2024_101775 crossref_primary_10_1080_10420150_2024_2424752 crossref_primary_10_1088_1402_4896_abfe31 crossref_primary_10_1515_ntrev_2023_0106 crossref_primary_10_1038_s41598_021_93790_9 crossref_primary_10_1142_S0217979224500267 crossref_primary_10_1142_S0217979224501510 crossref_primary_10_1016_j_csite_2021_101151 crossref_primary_10_1016_j_ijft_2024_101027 crossref_primary_10_1166_jon_2022_1892 crossref_primary_10_1002_htj_22405 crossref_primary_10_1166_jon_2020_1741 crossref_primary_10_3934_math_2024821 crossref_primary_10_1142_S0217984925500976 crossref_primary_10_1088_1402_4896_ad03c2 crossref_primary_10_1155_2022_1111657 crossref_primary_10_1515_phys_2023_0150 crossref_primary_10_1016_j_csite_2021_101714 crossref_primary_10_1080_15502287_2023_2211985 crossref_primary_10_1166_jon_2022_1819 crossref_primary_10_1166_jon_2022_1818 |
Cites_doi | 10.1016/j.csite.2018.04.014 10.1155/2008/149272 10.1016/j.icheatmasstransfer.2020.104737 10.1016/j.tsep.2017.11.005 10.1007/s10973-020-09488-z 10.1108/HFF-07-2020-0418 10.1007/s10483-017-2168-9 10.1007/s11012-013-9818-4 10.1007/s11814-012-0201-2 10.4028/www.scientific.net/DF.28.1 10.1007/s10973-020-09865-8 10.1007/s002310100215 10.4028/www.scientific.net/DDF.401.92 10.1007/s11771-018-3947-9 10.1115/1.3450574 10.1016/0017-9310(82)90007-2 10.1007/s12648-020-01923-z 10.1007/s10973-020-10518-z 10.1088/1402-4896/aaf548 10.1108/HFF-05-2020-0321 10.1007/978-981-15-4308-1_70 10.1016/j.rinp.2016.11.051 10.1088/1402-4896/ab3990 10.1016/j.icheatmasstransfer.2019.104401 10.1007/s10665-008-9259-6 10.1016/j.surfin.2020.100783 10.3389/fphy.2019.00215 10.1007/s40819-019-0608-0 10.1007/3-211-38078-7 10.1002/htj.21902 10.1007/s10483-014-1840-7 10.1108/MMMS-07-2018-0133 10.1108/HFF-09-2012-0219 10.1115/1.1863258 10.1016/j.molliq.2016.01.004 10.1007/s10973-020-10432-4 10.1016/j.ijmachtools.2005.07.024 10.1007/s13369-020-04680-7 10.1016/j.molliq.2016.10.055 10.1016/j.jppr.2020.10.002 10.1016/j.chaos.2019.109415 10.1007/s40430-016-0697-1 10.1016/j.jnnms.2015.06.004 10.1002/htj.22117 10.1016/0017-9310(88)90114-7 10.1016/j.jmmm.2019.165646 10.31349/RevMexFis.65.479 10.1016/S1290-0729(01)01306-0 10.1108/HFF-12-2018-0797 10.3390/math7111103 10.1016/j.rinp.2018.01.013 10.1016/j.molliq.2016.09.126 10.1016/j.cnsns.2010.12.003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-021-01394-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_021_01394_z |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 2VQ AAAVM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADQRH AEBTG AEKMD AEZWR AFDZB AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION EJD FINBP FSGXE O9- PHGZM PHGZT S1Z 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-c09f8f4364cdc16d462daef19010c07c2fb98b9d7c7f192b79ad23f1c741f5c33 |
IEDL.DBID | AGYKE |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 23:28:05 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Tue Jul 01 02:42:22 EDT 2025 Fri Feb 21 02:48:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-c09f8f4364cdc16d462daef19010c07c2fb98b9d7c7f192b79ad23f1c741f5c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6145-8195 |
PQID | 2919598639 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919598639 crossref_citationtrail_10_1140_epjp_s13360_021_01394_z crossref_primary_10_1140_epjp_s13360_021_01394_z springer_journals_10_1140_epjp_s13360_021_01394_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Rathish KumarBVShaliniGCombined influence of mass and thermal stratification on double diffusion non-Darcian natural convection from a wavy vertical wall to porous mediaJ. Heat Transf.200512763764710.1115/1.1863258 WaqasMKhanMIHayatTGulzarMMAlsaediATransportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditionsChaos Solitons Fractals2020130109415400352910.1016/j.chaos.2019.109415 AmanullaCWakifASaleemSNumerical study of a Williamson fluid past a semi-infinite vertical plate with convective heating and radiation effectsDiffus. Found.20202811510.4028/www.scientific.net/DF.28.1 AbelMSJayashreeSMelting heat transfer in MHD boundary layer stagnation-point flow towards a stretching sheetIOSR J. Math.2015119198 Mebarek-OudinaFBessaihRMahantheshBChamkhaAJRazaJMagneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metalInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-05-2020-0321 HimasekharKJaluriaYLaminar buoyancy-induced axisymmetric free boundary flows in a thermally stratified mediumInt. J. Heat Mass Transf.1982252132210496.7610510.1016/0017-9310(82)90007-2 RasoolGZhangTShafiqASecond grade nanofluidic flow past a convectively heated vertical Riga platePhys. Scr.2019941212521210.1088/1402-4896/ab3990 HayatTQayyumSAlsaediAWaqasMSimultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surfaceJ. Mol. Liq.201622481181710.1016/j.molliq.2016.09.126 WakifAChamkhaAThummaTAnimasaunILSehaquiRThermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’snanofluid modelJ. Therm. Anal. Calorim.20211431201122010.1007/s10973-020-09488-z RehmanKUKhanAAMalikMYAliUMutual effects of stratification and mixed convection on Williamson fluid flow under stagnation region towards an inclined cylindrical surfaceMethods X20174429444 MahmoudMAAWaheedSEMelting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)Appl. Math. Mech.-Engl. Ed.20143597999232422771298.7607010.1007/s10483-014-1840-7 GanesanPSuganthiRKLoganathanPThermophoresis particle deposition effects in a free convective doubly stratified medium over a vertical plateMeccanica20144965967231714431337.7606810.1007/s11012-013-9818-4 KhanUZaibAMebarek-OudinaFMixed convective magneto flow of SiO2–MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: stability analysisArab. J. Sci. Eng.2020459061907310.1007/s13369-020-04680-7 GanesanPSuganthiRKFree convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effectsKorean J. Chem. Eng.20133081382210.1007/s11814-012-0201-2 PantokratorasAMagyariEEMHD free-convection boundary-layer flow from a Riga-plateJ. Eng. Math.2009643033151168.7638410.1007/s10665-008-9259-6 JavedMFarooqMAhmadSMelting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous mediumJ. Cent. South Univ.2018252701271110.1007/s11771-018-3947-9 ArmenioVSarkarSEnvironmental stratified flows2005New YorkSpringer1092.7600310.1007/3-211-38078-7 HayatTQayyumSWaqasMAlsaediAThermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surfaceJ. Mol. Liq.201622480181010.1016/j.molliq.2016.10.055 SwainKMebarek-OudinaFAbo-DahabSMInfluence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with variable magnetic field and chemical reactionJ. Therm. Anal. Calorim.202010.1007/s10973-020-10432-4 Mebarek-OudinaFConvective heat transfer of titaniananofluids of different base fluids in cylindrical annulus with discreteHeat Source Heat Transf.2019481135147 WaqasMJabeenSHayatTShehzadSAAlsaediANumerical simulation for nonlinear radiated Eyring–Powell nanofluid considering magnetic dipole and activation energyInt. Commun. Heat Mass Transf.202011210440110.1016/j.icheatmasstransfer.2019.104401 PantokratorasASome exact solutions of boundary layer flows along a vertical plate with buoyancy forces combined with Lorentz forces under uniform suctionMath. Probl. Eng.2008200814927224488171353.7608210.1155/2008/149272 ShafiqAZariIKhanIKhanTSSherifSMSheikhAHMarangoni driven boundary layer flow of carbon nanotubes towards a Riga plateFront. Phys.2020721510.3389/fphy.2019.00215 Mebarek-OudinaFKeerthi ReddyNSankarMRushi KumarBSivarajRPrakashJHeat source location effects on buoyant convection of nanofluids in an annulusAdvances in Fluid Dynamics, Lecture Notes in Mechanical Engineering2021Springer92393710.1007/978-981-15-4308-1_70 FaresRMebarek-OudinaFAissaABilalSMÖztopHFOptimal entropy generation in Darcy–Forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquidJ. Therm. Anal. Calorim.202110.1007/s10973-020-10518-z ZaimAAissaAMebarek-OudinaFMahantheshBLorenziniGSahnounMGalerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosurePropuls. Power Res.20209438339310.1016/j.jppr.2020.10.002 Mebarek-OudinaFAissaAMahantheshBÖztopFHHeat transport of magnetized newtoniannanoliquids in an annular space between porous vertical cylinders with discrete heat sourceInt. Commun. Heat Mass Transf.202011710473710.1016/j.icheatmasstransfer.2020.104737 SrinivasanJAngirasaDNumerical study of double-diffusive free convection from a vertical surfaceInt. J. Heat Mass Transf.1988312033203810.1016/0017-9310(88)90114-7 HayatTMumtazMShafiqAAlsaediAThermal stratified three-dimensional flow with inclined magnetic field and Joule heatingJ. Braz. Soc. Mech. Sci. Eng.2017391607162110.1007/s40430-016-0697-1 HayatTShafiqAImtiazMAlsaediAImpact of melting phenomenon in the Falkner–Skan wedge flow of second grade nanofluid: a revised modelJ. Mol. Liq.201621566467010.1016/j.molliq.2016.01.004 ShankerBReddyBPAnandRJRadiation and mass transfer effects on unsteady MHD free convective fluid flow embedded in a porous medium with heat generation/absorptionIndian J. Pure Appl. Phys.201048157165 ShafiqARashidiMMHammouchZKhanIAnalytical investigation of stagnation point flow of Williamson liquid with melting phenomenonPhys. Scr.20199430352042019PhyS...94c5204S10.1088/1402-4896/aaf548 MarzouguiSBouabidMMebarek-OudinaFAbu-HamdehNMagherbiMRameshKA computational analysis of heat transport irreversibility phenomenon in a magnetized porous channelInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-07-2020-0418 G. Rasool, A. Shafiq, and C.M. Khalique, Marangoni forced convective casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete Contin. Dyn. Syst. pp 1–18 (2019) RasoolGWakifANumerical spectral examination of EMHD mixed convective flow of second grade nanofluid towards a vertical Riga plate using an advanced version of the revised buongiorno'snanofluid modelJ. Therm. Anal. Calorim.20211432379239310.1007/s10973-020-09865-8 MagyariEPantokratorasAAiding and opposing mixed convection flows over the Riga-plateCommun. Nonlinear Sci.2011163158316727830061419.7660110.1016/j.cnsns.2010.12.003 KannanRMPullepuBShehzadSANumerical solutions of dissipative natural convective flow from a vertical cone with heat absorption, generation, MHD and radiated surface heat fluxInt. J. Appl. Comput. Math.2019512439056330704607310.1007/s40819-019-0608-0 WaqasMDiffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convectionSurf. Interfaces20212310078310.1016/j.surfin.2020.100783 Abo-DahabSMAbdelhafezMAMebarek-OudinaFBilalSMMHD Cassonnanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injectionIndian J Phys.202110.1007/s12648-020-01923-z WaqasMA mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactionsJ. Magn. Magn. Mater.202049316564610.1016/j.jmmm.2019.165646 NaseemAShafiqAZhaoLFarooqMUAnalytical investigation of third grade nanofluidic flow over a Riga plate using Cattaneo–Christov modelResult Phys.201899619692018ResPh...9..961N10.1016/j.rinp.2018.01.013 PopSRGrosanTPopIRadiation effects on the flow near the stagnation point of a stretching sheetTechn. Mech.200425100106 MahapatraTGuptaAHeat transfer in stagnation-point flow towards a stretching sheetHeat Mass Transf.2002385175212002HMT....38..517M10.1007/s002310100215 TakharHSChamkhaAJNathGNatural convection on a vertical cylinder embedded in a thermally stratified high-porosity mediumInt. J. Therm. Sci.202041839310.1016/S1290-0729(01)01306-0 HayatTMumtazMShafiqAAlsaediAStratified MHD flow of Tangent hyperbolic nanofluid induced by inclined sheetApp. Math. Mechanics-Engl. Ed.201738227128810.1007/s10483-017-2168-9 ShafiqAHammouchZTurabAImpact of radiation in a stagnation point flow of Walters' B fluid towards a Riga plateTherm. Sci. Eng. Prog.20186273310.1016/j.tsep.2017.11.005 HayatTAsadSAlsaediANon-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified mediumJ. Appl. Fluid Mech.201610915924 AliUAlqahtaniASRehmanKUMalikMYOn Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat generation effects in a Carreaunanofluid over a stretching sheetRev. Mex. Fis.201965547948810.31349/RevMexFis.65.479 HayatTFarooqMAlsaediAMelting heat transfer in the stagnation point flow of Maxwell fluid with double diffusive convectionInt. J. Numer. Methods Heat Fluid Flow20142476077432227731356.7632110.1108/HFF-09-2012-0219 SwainKMahantheshBMebarek-OudinaFHeat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspectsHeat Transf.202010.1002/htj.21902 SharmaPRSinghGEffects of variable thermal T Hayat (1394_CR50) 2016; 215 A Shafiq (1394_CR24) 2020; 7 U Khan (1394_CR32) 2020; 45 G Rasool (1394_CR22) 2021; 143 G Rasool (1394_CR26) 2019; 94 K Swain (1394_CR33) 2020 J Raza (1394_CR61) 2020; 401 E Magyari (1394_CR23) 2011; 16 T Hayat (1394_CR58) 2016; 224 SM Abo-Dahab (1394_CR30) 2021 C Amanulla (1394_CR56) 2020; 28 A Pantokratoras (1394_CR21) 2009; 64 A Naseem (1394_CR29) 2018; 9 A Shafiq (1394_CR47) 2019; 94 T Hayat (1394_CR60) 2016; 224 NA Abukhshim (1394_CR12) 2006; 46 A Shafiq (1394_CR28) 2018; 6 C Rajashekhar (1394_CR27) 2021 K Himasekhar (1394_CR3) 1982; 25 B Shanker (1394_CR16) 2010; 48 A Pantokratoras (1394_CR20) 2008; 2008 T Mahapatra (1394_CR51) 2002; 38 M Waqas (1394_CR62) 2021; 23 M Javed (1394_CR46) 2018; 25 MAA Mahmoud (1394_CR43) 2014; 35 KU Rehman (1394_CR6) 2017; 4 U Ali (1394_CR15) 2019; 65 K Swain (1394_CR34) 2020 R Fares (1394_CR40) 2021 F Mabood (1394_CR45) 2016; 3 P Ganesan (1394_CR11) 2014; 49 J Raza (1394_CR36) 2019; 15 CC Chen (1394_CR2) 1976; 98 M Waqas (1394_CR35) 2019; 30 A Zaim (1394_CR37) 2020; 9 F Mebarek-Oudina (1394_CR49) 2020 T Hayat (1394_CR18) 2016; 10 PR Sharma (1394_CR52) 2009; 2 HS Takhar (1394_CR5) 2020; 41 F Mebarek-Oudina (1394_CR39) 2021 SK Adegbie (1394_CR41) 2016; 35 A Shafiq (1394_CR19) 2019; 7 T Hayat (1394_CR9) 2017; 39 T Hayat (1394_CR42) 2014; 24 KU Rehman (1394_CR13) 2018; 12 BV Rathish Kumar (1394_CR10) 2005; 127 RM Kannan (1394_CR14) 2019; 5 F Mabood (1394_CR48) 2017; 7 A Wakif (1394_CR57) 2021; 143 MS Abel (1394_CR44) 2015; 11 P Ganesan (1394_CR17) 2013; 30 M Waqas (1394_CR55) 2020; 130 M Waqas (1394_CR59) 2020; 112 SR Pop (1394_CR53) 2004; 25 F Mebarek-Oudina (1394_CR31) 2019; 48 J Srinivasan (1394_CR4) 1988; 31 M Waqas (1394_CR54) 2020; 493 S Marzougui (1394_CR7) 2020 T Hayat (1394_CR8) 2017; 38 1394_CR25 V Armenio (1394_CR1) 2005 F Mebarek-Oudina (1394_CR38) 2020; 117 |
References_xml | – reference: AdegbieSKKorikoOKAnimasaunILMelting heat transfer effects on stagnation point flow of micropolar fluid with variable dynamic viscosity and thermal conductivity at constant vortex viscosityJ. Nig. Math. Soc.2016353435126751360.8000510.1016/j.jnnms.2015.06.004 – reference: HayatTShafiqAImtiazMAlsaediAImpact of melting phenomenon in the Falkner–Skan wedge flow of second grade nanofluid: a revised modelJ. Mol. Liq.201621566467010.1016/j.molliq.2016.01.004 – reference: HayatTAsadSAlsaediANon-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified mediumJ. Appl. Fluid Mech.201610915924 – reference: KannanRMPullepuBShehzadSANumerical solutions of dissipative natural convective flow from a vertical cone with heat absorption, generation, MHD and radiated surface heat fluxInt. J. Appl. Comput. Math.2019512439056330704607310.1007/s40819-019-0608-0 – reference: WaqasMKhanMIHayatTGulzarMMAlsaediATransportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditionsChaos Solitons Fractals2020130109415400352910.1016/j.chaos.2019.109415 – reference: HayatTQayyumSWaqasMAlsaediAThermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surfaceJ. Mol. Liq.201622480181010.1016/j.molliq.2016.10.055 – reference: ZaimAAissaAMebarek-OudinaFMahantheshBLorenziniGSahnounMGalerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosurePropuls. Power Res.20209438339310.1016/j.jppr.2020.10.002 – reference: MahapatraTGuptaAHeat transfer in stagnation-point flow towards a stretching sheetHeat Mass Transf.2002385175212002HMT....38..517M10.1007/s002310100215 – reference: PantokratorasASome exact solutions of boundary layer flows along a vertical plate with buoyancy forces combined with Lorentz forces under uniform suctionMath. Probl. Eng.2008200814927224488171353.7608210.1155/2008/149272 – reference: G. Rasool, A. Shafiq, and C.M. Khalique, Marangoni forced convective casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete Contin. Dyn. Syst. pp 1–18 (2019) – reference: AliUAlqahtaniASRehmanKUMalikMYOn Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat generation effects in a Carreaunanofluid over a stretching sheetRev. Mex. Fis.201965547948810.31349/RevMexFis.65.479 – reference: Mebarek-OudinaFKeerthi ReddyNSankarMRushi KumarBSivarajRPrakashJHeat source location effects on buoyant convection of nanofluids in an annulusAdvances in Fluid Dynamics, Lecture Notes in Mechanical Engineering2021Springer92393710.1007/978-981-15-4308-1_70 – reference: SwainKMebarek-OudinaFAbo-DahabSMInfluence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with variable magnetic field and chemical reactionJ. Therm. Anal. Calorim.202010.1007/s10973-020-10432-4 – reference: AbelMSJayashreeSMelting heat transfer in MHD boundary layer stagnation-point flow towards a stretching sheetIOSR J. Math.2015119198 – reference: AbukhshimNAMativengaPTSheikhMAHeat generation and temperature prediction in metal cutting: a review and implications for high speed machiningInt. J. Mach. Tools Manuf.20064678280010.1016/j.ijmachtools.2005.07.024 – reference: JavedMFarooqMAhmadSMelting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous mediumJ. Cent. South Univ.2018252701271110.1007/s11771-018-3947-9 – reference: SwainKMahantheshBMebarek-OudinaFHeat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspectsHeat Transf.202010.1002/htj.21902 – reference: GanesanPSuganthiRKFree convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effectsKorean J. Chem. Eng.20133081382210.1007/s11814-012-0201-2 – reference: MaboodFShafiqAHayatTAbelmanSRadiation effects on stagnation point flow with melting heat transfer and second order slipResults Phys.2017731422017ResPh...7...31M10.1016/j.rinp.2016.11.051 – reference: WaqasMSimulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinderInt. J. Numer. Methods Heat Fluid Flow20193042193220510.1108/HFF-12-2018-0797 – reference: HayatTMumtazMShafiqAAlsaediAThermal stratified three-dimensional flow with inclined magnetic field and Joule heatingJ. Braz. Soc. Mech. Sci. Eng.2017391607162110.1007/s40430-016-0697-1 – reference: MagyariEPantokratorasAAiding and opposing mixed convection flows over the Riga-plateCommun. Nonlinear Sci.2011163158316727830061419.7660110.1016/j.cnsns.2010.12.003 – reference: PantokratorasAMagyariEEMHD free-convection boundary-layer flow from a Riga-plateJ. Eng. Math.2009643033151168.7638410.1007/s10665-008-9259-6 – reference: ShafiqARashidiMMHammouchZKhanIAnalytical investigation of stagnation point flow of Williamson liquid with melting phenomenonPhys. Scr.20199430352042019PhyS...94c5204S10.1088/1402-4896/aaf548 – reference: HayatTMumtazMShafiqAAlsaediAStratified MHD flow of Tangent hyperbolic nanofluid induced by inclined sheetApp. Math. Mechanics-Engl. Ed.201738227128810.1007/s10483-017-2168-9 – reference: RazaJMebarek-OudinaFRamPSharmaSMHD flow of non-newtonian molybdenum disulfidenanofluid in a converging/diverging channel with rosseland radiationDefect Diffus. Forum20204019210610.4028/www.scientific.net/DDF.401.92 – reference: ShankerBReddyBPAnandRJRadiation and mass transfer effects on unsteady MHD free convective fluid flow embedded in a porous medium with heat generation/absorptionIndian J. Pure Appl. Phys.201048157165 – reference: WaqasMA mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactionsJ. Magn. Magn. Mater.202049316564610.1016/j.jmmm.2019.165646 – reference: Abo-DahabSMAbdelhafezMAMebarek-OudinaFBilalSMMHD Cassonnanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injectionIndian J Phys.202110.1007/s12648-020-01923-z – reference: GanesanPSuganthiRKLoganathanPThermophoresis particle deposition effects in a free convective doubly stratified medium over a vertical plateMeccanica20144965967231714431337.7606810.1007/s11012-013-9818-4 – reference: ShafiqAKhanIRasoolGSeikhAHEl-SayedMSSignificance of double stratification in stagnation point flow of third-grade fluid towards a radiative stretching cylinderMathematics2019711110310.3390/math7111103 – reference: RehmanKUAlshomraniASMalikMYZehraINaseerMThermo-physical aspects in tangent hyperbolic fluid flow regime: a short communicationCase Stud. Therm. Eng.20181220321210.1016/j.csite.2018.04.014 – reference: NaseemAShafiqAZhaoLFarooqMUAnalytical investigation of third grade nanofluidic flow over a Riga plate using Cattaneo–Christov modelResult Phys.201899619692018ResPh...9..961N10.1016/j.rinp.2018.01.013 – reference: ChenCCEichhornRNatural convection from a vertical surface to a thermally stratified fluidJ. Heat Transf.19769844645110.1115/1.3450574 – reference: RehmanKUKhanAAMalikMYAliUMutual effects of stratification and mixed convection on Williamson fluid flow under stagnation region towards an inclined cylindrical surfaceMethods X20174429444 – reference: SharmaPRSinghGEffects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheetJ. Appl. Fluid Mech.2009211321 – reference: Rathish KumarBVShaliniGCombined influence of mass and thermal stratification on double diffusion non-Darcian natural convection from a wavy vertical wall to porous mediaJ. Heat Transf.200512763764710.1115/1.1863258 – reference: RasoolGWakifANumerical spectral examination of EMHD mixed convective flow of second grade nanofluid towards a vertical Riga plate using an advanced version of the revised buongiorno'snanofluid modelJ. Therm. Anal. Calorim.20211432379239310.1007/s10973-020-09865-8 – reference: AmanullaCWakifASaleemSNumerical study of a Williamson fluid past a semi-infinite vertical plate with convective heating and radiation effectsDiffus. Found.20202811510.4028/www.scientific.net/DF.28.1 – reference: ShafiqAHammouchZTurabAImpact of radiation in a stagnation point flow of Walters' B fluid towards a Riga plateTherm. Sci. Eng. Prog.20186273310.1016/j.tsep.2017.11.005 – reference: MarzouguiSBouabidMMebarek-OudinaFAbu-HamdehNMagherbiMRameshKA computational analysis of heat transport irreversibility phenomenon in a magnetized porous channelInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-07-2020-0418 – reference: TakharHSChamkhaAJNathGNatural convection on a vertical cylinder embedded in a thermally stratified high-porosity mediumInt. J. Therm. Sci.202041839310.1016/S1290-0729(01)01306-0 – reference: WakifAChamkhaAThummaTAnimasaunILSehaquiRThermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’snanofluid modelJ. Therm. Anal. Calorim.20211431201122010.1007/s10973-020-09488-z – reference: WaqasMDiffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convectionSurf. Interfaces20212310078310.1016/j.surfin.2020.100783 – reference: MaboodFDasKMelting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slipEur. Phys. J. Plus20163131138 – reference: HimasekharKJaluriaYLaminar buoyancy-induced axisymmetric free boundary flows in a thermally stratified mediumInt. J. Heat Mass Transf.1982252132210496.7610510.1016/0017-9310(82)90007-2 – reference: WaqasMJabeenSHayatTShehzadSAAlsaediANumerical simulation for nonlinear radiated Eyring–Powell nanofluid considering magnetic dipole and activation energyInt. Commun. Heat Mass Transf.202011210440110.1016/j.icheatmasstransfer.2019.104401 – reference: ArmenioVSarkarSEnvironmental stratified flows2005New YorkSpringer1092.7600310.1007/3-211-38078-7 – reference: KhanUZaibAMebarek-OudinaFMixed convective magneto flow of SiO2–MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: stability analysisArab. J. Sci. Eng.2020459061907310.1007/s13369-020-04680-7 – reference: HayatTFarooqMAlsaediAMelting heat transfer in the stagnation point flow of Maxwell fluid with double diffusive convectionInt. J. Numer. Methods Heat Fluid Flow20142476077432227731356.7632110.1108/HFF-09-2012-0219 – reference: RazaJMebarek-OudinaFChamkhaAJMagnetohydrodynamic flow of molybdenum disulfidenanofluid in a channel with shape effectsMultidiscip. Model. Mater. Struct.201915473775710.1108/MMMS-07-2018-0133 – reference: MahmoudMAAWaheedSEMelting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)Appl. Math. Mech.-Engl. Ed.20143597999232422771298.7607010.1007/s10483-014-1840-7 – reference: RajashekharCMebarek-OudinaFVaidyaHPrasadKVManjunathaGBalachandraHMass and heat transport impact on the peristaltic flow of Ree-Eyring liquid whit variable properties for hemodynamic flowHeat Transf.202110.1002/htj.22117 – reference: RasoolGZhangTShafiqASecond grade nanofluidic flow past a convectively heated vertical Riga platePhys. Scr.2019941212521210.1088/1402-4896/ab3990 – reference: SrinivasanJAngirasaDNumerical study of double-diffusive free convection from a vertical surfaceInt. J. Heat Mass Transf.1988312033203810.1016/0017-9310(88)90114-7 – reference: FaresRMebarek-OudinaFAissaABilalSMÖztopHFOptimal entropy generation in Darcy–Forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquidJ. Therm. Anal. Calorim.202110.1007/s10973-020-10518-z – reference: Mebarek-OudinaFConvective heat transfer of titaniananofluids of different base fluids in cylindrical annulus with discreteHeat Source Heat Transf.2019481135147 – reference: Mebarek-OudinaFAissaAMahantheshBÖztopFHHeat transport of magnetized newtoniannanoliquids in an annular space between porous vertical cylinders with discrete heat sourceInt. Commun. Heat Mass Transf.202011710473710.1016/j.icheatmasstransfer.2020.104737 – reference: PopSRGrosanTPopIRadiation effects on the flow near the stagnation point of a stretching sheetTechn. Mech.200425100106 – reference: ShafiqAZariIKhanIKhanTSSherifSMSheikhAHMarangoni driven boundary layer flow of carbon nanotubes towards a Riga plateFront. Phys.2020721510.3389/fphy.2019.00215 – reference: Mebarek-OudinaFBessaihRMahantheshBChamkhaAJRazaJMagneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metalInt. J. Numer. Methods Heat Fluid Flow202010.1108/HFF-05-2020-0321 – reference: HayatTQayyumSAlsaediAWaqasMSimultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surfaceJ. Mol. Liq.201622481181710.1016/j.molliq.2016.09.126 – volume: 12 start-page: 203 year: 2018 ident: 1394_CR13 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2018.04.014 – volume: 2008 start-page: 149272 year: 2008 ident: 1394_CR20 publication-title: Math. Probl. Eng. doi: 10.1155/2008/149272 – volume: 117 start-page: 104737 year: 2020 ident: 1394_CR38 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104737 – volume: 6 start-page: 27 year: 2018 ident: 1394_CR28 publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2017.11.005 – volume: 143 start-page: 1201 year: 2021 ident: 1394_CR57 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09488-z – year: 2020 ident: 1394_CR7 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-07-2020-0418 – volume: 38 start-page: 271 issue: 2 year: 2017 ident: 1394_CR8 publication-title: App. Math. Mechanics-Engl. Ed. doi: 10.1007/s10483-017-2168-9 – volume: 49 start-page: 659 year: 2014 ident: 1394_CR11 publication-title: Meccanica doi: 10.1007/s11012-013-9818-4 – volume: 30 start-page: 813 year: 2013 ident: 1394_CR17 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-012-0201-2 – volume: 28 start-page: 1 year: 2020 ident: 1394_CR56 publication-title: Diffus. Found. doi: 10.4028/www.scientific.net/DF.28.1 – volume: 143 start-page: 2379 year: 2021 ident: 1394_CR22 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09865-8 – volume: 38 start-page: 517 year: 2002 ident: 1394_CR51 publication-title: Heat Mass Transf. doi: 10.1007/s002310100215 – volume: 401 start-page: 92 year: 2020 ident: 1394_CR61 publication-title: Defect Diffus. Forum doi: 10.4028/www.scientific.net/DDF.401.92 – volume: 25 start-page: 2701 year: 2018 ident: 1394_CR46 publication-title: J. Cent. South Univ. doi: 10.1007/s11771-018-3947-9 – volume: 98 start-page: 446 year: 1976 ident: 1394_CR2 publication-title: J. Heat Transf. doi: 10.1115/1.3450574 – volume: 48 start-page: 135 issue: 1 year: 2019 ident: 1394_CR31 publication-title: Heat Source Heat Transf. – volume: 25 start-page: 213 year: 1982 ident: 1394_CR3 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(82)90007-2 – year: 2021 ident: 1394_CR30 publication-title: Indian J Phys. doi: 10.1007/s12648-020-01923-z – year: 2021 ident: 1394_CR40 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10518-z – volume: 94 start-page: 035204 issue: 3 year: 2019 ident: 1394_CR47 publication-title: Phys. Scr. doi: 10.1088/1402-4896/aaf548 – year: 2020 ident: 1394_CR49 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-05-2020-0321 – start-page: 923 volume-title: Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering year: 2021 ident: 1394_CR39 doi: 10.1007/978-981-15-4308-1_70 – volume: 7 start-page: 31 year: 2017 ident: 1394_CR48 publication-title: Results Phys. doi: 10.1016/j.rinp.2016.11.051 – volume: 94 start-page: 125 issue: 12 year: 2019 ident: 1394_CR26 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab3990 – ident: 1394_CR25 – volume: 112 start-page: 104401 year: 2020 ident: 1394_CR59 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104401 – volume: 64 start-page: 303 year: 2009 ident: 1394_CR21 publication-title: J. Eng. Math. doi: 10.1007/s10665-008-9259-6 – volume: 23 start-page: 100783 year: 2021 ident: 1394_CR62 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2020.100783 – volume: 7 start-page: 215 year: 2020 ident: 1394_CR24 publication-title: Front. Phys. doi: 10.3389/fphy.2019.00215 – volume: 5 start-page: 24 issue: 1 year: 2019 ident: 1394_CR14 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-019-0608-0 – volume: 4 start-page: 429 year: 2017 ident: 1394_CR6 publication-title: Methods X – volume: 48 start-page: 157 year: 2010 ident: 1394_CR16 publication-title: Indian J. Pure Appl. Phys. – volume-title: Environmental stratified flows year: 2005 ident: 1394_CR1 doi: 10.1007/3-211-38078-7 – year: 2020 ident: 1394_CR34 publication-title: Heat Transf. doi: 10.1002/htj.21902 – volume: 35 start-page: 979 year: 2014 ident: 1394_CR43 publication-title: Appl. Math. Mech.-Engl. Ed. doi: 10.1007/s10483-014-1840-7 – volume: 3 start-page: 131 year: 2016 ident: 1394_CR45 publication-title: Eur. Phys. J. Plus – volume: 15 start-page: 737 issue: 4 year: 2019 ident: 1394_CR36 publication-title: Multidiscip. Model. Mater. Struct. doi: 10.1108/MMMS-07-2018-0133 – volume: 24 start-page: 760 year: 2014 ident: 1394_CR42 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-09-2012-0219 – volume: 127 start-page: 637 year: 2005 ident: 1394_CR10 publication-title: J. Heat Transf. doi: 10.1115/1.1863258 – volume: 215 start-page: 664 year: 2016 ident: 1394_CR50 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.004 – volume: 25 start-page: 100 year: 2004 ident: 1394_CR53 publication-title: Techn. Mech. – year: 2020 ident: 1394_CR33 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10432-4 – volume: 46 start-page: 782 year: 2006 ident: 1394_CR12 publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2005.07.024 – volume: 45 start-page: 9061 year: 2020 ident: 1394_CR32 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04680-7 – volume: 224 start-page: 801 year: 2016 ident: 1394_CR60 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.10.055 – volume: 9 start-page: 383 issue: 4 year: 2020 ident: 1394_CR37 publication-title: Propuls. Power Res. doi: 10.1016/j.jppr.2020.10.002 – volume: 2 start-page: 13 issue: 1 year: 2009 ident: 1394_CR52 publication-title: J. Appl. Fluid Mech. – volume: 130 start-page: 109415 year: 2020 ident: 1394_CR55 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.109415 – volume: 39 start-page: 1607 year: 2017 ident: 1394_CR9 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-016-0697-1 – volume: 35 start-page: 34 year: 2016 ident: 1394_CR41 publication-title: J. Nig. Math. Soc. doi: 10.1016/j.jnnms.2015.06.004 – year: 2021 ident: 1394_CR27 publication-title: Heat Transf. doi: 10.1002/htj.22117 – volume: 31 start-page: 2033 year: 1988 ident: 1394_CR4 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(88)90114-7 – volume: 493 start-page: 165646 year: 2020 ident: 1394_CR54 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165646 – volume: 65 start-page: 479 issue: 5 year: 2019 ident: 1394_CR15 publication-title: Rev. Mex. Fis. doi: 10.31349/RevMexFis.65.479 – volume: 41 start-page: 83 year: 2020 ident: 1394_CR5 publication-title: Int. J. Therm. Sci. doi: 10.1016/S1290-0729(01)01306-0 – volume: 30 start-page: 2193 issue: 4 year: 2019 ident: 1394_CR35 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-12-2018-0797 – volume: 7 start-page: 1103 issue: 11 year: 2019 ident: 1394_CR19 publication-title: Mathematics doi: 10.3390/math7111103 – volume: 10 start-page: 915 year: 2016 ident: 1394_CR18 publication-title: J. Appl. Fluid Mech. – volume: 9 start-page: 961 year: 2018 ident: 1394_CR29 publication-title: Result Phys. doi: 10.1016/j.rinp.2018.01.013 – volume: 224 start-page: 811 year: 2016 ident: 1394_CR58 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.09.126 – volume: 16 start-page: 3158 year: 2011 ident: 1394_CR23 publication-title: Commun. Nonlinear Sci. doi: 10.1016/j.cnsns.2010.12.003 – volume: 11 start-page: 91 year: 2015 ident: 1394_CR44 publication-title: IOSR J. Math. |
SSID | ssj0000491494 |
Score | 2.5526683 |
Snippet | Features of double stratification on stagnation point flow of Walter's B nanoliquid driven through Riga surface are examined in the current study. Via solutal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 407 |
SubjectTerms | Applied and Technical Physics Approximation Atomic Coefficient of friction Complex Systems Condensed Matter Physics Differential equations Dimensionless numbers Error analysis Fluid flow Hartmann number Heat generation Heat transfer Heat transport Homotopy theory Investigations Liquid flow Lorentz force Magnetic fields Mass transport Mathematical and Computational Physics Molecular Nanofluids Optical and Plasma Physics Optimization Parameters Particle deposition Physics Physics and Astronomy Probable error Radiation Regular Article Rheological properties Rheology Skin friction Solidification Stagnation point Temperature effects Theoretical Thermal stratification Thermophoresis Transport equations Transport rate |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSyQxEA6uIuxFdHfFWR_UYWFPYfoR--FFRnFWBD3IynoL6aQjI0N3r90qDPjfrUqnHdbDCn3qkGroSlJf6vEVYz_iJAtjmytulIi50KUiDkjD0ZYYtDg2sDlVI19eJec34uL28NY73FqfVjmcie6gNrUmH_k4yokGJUODetz85dQ1iqKrvoXGJ7YWRjhEleLTX28-FkS_eAEQPq0LrxLjsrlvxi3ey5KAU3ICASDBF_8apSXSfBccdTZnusk2PFiESa_dLbZSVl_Yukva1O1X9jIBxw4LtQUqqYKeA9d6Nxzgg9jvrvf3QVPPqg7-uPB4-xNOoFJVbeePMwN2Xj_D00zBAzEV0AEI17M7Bc0ckegRKBLTOUZn_MjAQv6N3UzPfp-ec99Oges4Fh3XQW4zK-JEaKPDxIgkMqq0hAgCHaQ6skWeFblJdYovoyLNlYliG2oEHfYQZWyz1aquyh0GxmSC4pUpEfjhXBSbCJVlOizLIsj1iCXD_5Tac41Ty4u57OugA0mKkL0iJCpCOkXIxYgFbxObnm7j4yl7g8Kk33-tXK6WEQsHJS6HPxD5_f8id9nnyC0eyt_ZY6vdw2O5j9CkKw7c-nsFa9DjNA priority: 102 providerName: ProQuest |
Title | A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach |
URI | https://link.springer.com/article/10.1140/epjp/s13360-021-01394-z https://www.proquest.com/docview/2919598639 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB90RfDlTr0T905lHgSfqmmb7ce97YqrKIqIy-m9hDRpZHVpi9u9g4X735304_bOhxOEQiFlpu1kkvklmfwCsO8HkeubWDpact_hKpWWA1I7FEs0RRzDTGx3I19eBWcjfn7Xu_v7qC-b7d4uSVY9dc1ny47S4rE4mtKQKmCOzSuw2IU782VY6dEohdrkSv_0_mIxwULQl9A_b3K6_qPh34i0gJmvVkargDP8CD_aT63zTJ4OZ2VyqOavWBzf9S_r8KGBodiv_WYDltJsE1ardFA1_QS_-1jxzmJu0G7Wwppd1zQTfEgXocqHeiYRi3yclfi9WnifHuAAM5nlZjIbazST_Bf-HEt8thwItmvFm_GDxGJCGPcbSqumrLii6SUtv_lnGA1Pbo_PnOagBkf5Pi8dxWITGe4HXGnlBpoHnpapsViDKRYqzyRxlMQ6VCEVekkYS-35xlUEZ0yPdGxBJ8uzdBtQ64jbldDQUgOSLKkNuIwi5aZpwmLVhaCtLKEaFnN7mMZE1DusmbC2FbVtBdlWVLYV8y6wP4JFTeTxtshO6w2iadlT4cWWjiciYNcFt63cxeM3VH55h8xXWPMqJ7HpQjvQKZ9n6S4hoTLZg-VoeLrXeD7dBydX1zdUOvL6L-s-Bvg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEF5KRfRFvOLRqvOg-LScJLvNRRCpl-OpvTxIi31bN3spRw5JbFKLBf-Sv9GZTdKDPtinQp4SdgKZydznG8aeizSPhS80t1oKLo3ThAFpOdoSixbHR76gaeS9_XR-KD8dbR6tsd_jLAy1VY46MShqWxvKkU-TgmBQcjSob5rvnLZGUXV1XKHRi8WO-3mGIVv7evs98vdFksw-HLyb82GrADdCyI6bqPC5lyKVxpo4tTJNrHaeDGNkoswkvizysrCZyfBmUmaFtonwsUHb6zcNJUBR5V-TQghqIcxnHy9yOuhtY8AhhzYyDF2mrvnWTFuMA9OIUzMEOVySn_9tBFee7T_F2GDjZrfZrcE5ha1emu6wNVfdZddDk6hp77FfWxDQaKH2QCNc0GPu-iHtB3ihr3nc5xehqRdVB19COb59CW-h0lXtl6cLC35Zn8GPhYYTQkYghQufF8camiV6vq9AE5kuIEjjS0bU8_vs8Eo-9AO2XtWVe8jA2lxSfTQjwEA8i2RTqfPcxM6VUWEmLB2_pzIDtjmt2Fiqfu46UsQI1TNCISNUYIQ6n7Do4mDTw3tcfmRjZJga_vdWraRzwuKRiavHl5B89H-Sz9iN-cHertrd3t95zG4mQZCod2iDrXcnp-4JukVd-TTIIrCvVy38fwDMqyCv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB7qieKLaG3xtOo8FPoUbpNs88O3q_ao2pYiHvZt2exmy8mRhF6uhYL_e2c2SYs-WBDylDATyLeb-XZn5luA3TjJwtjlOrBaxoE0pWYNSBtQLLEUcZxwOXcjn5wmR3P59Xz_fAMOh14YX-0-pCS7ngZWaaraSWNdr20rJmXzq5msaHmViIBrDJjHyODmETyWFLC5smseTe-2WogE0zpA9tVd_7D_MzbdE86_cqQ-9MxewPOeM-K0A_klbJTVJjzxtZtm9Qp-T9GLxGLtkDursJPCdf1uHNJFFPCi2_bDpl5ULf70WfLVHh5gpavaLdcLi25ZX-PVQuMlCxbwfxC_Ly40NksipB9Rs5vWCzvTSwYx8i2Yzw5_fDoK-lMVAhPHsg2MyF3mZJxIY02YWJlEVpeOiYEwIjWRK_KsyG1qUroZFWmubRS70BD3cPvkYxtGVV2VrwGtzSSnLVPW8SNbcptInWUmLMtC5GYMyfA9leklx_nki6Xq2qGFYiBUB4QiIJQHQt2MQdwZNp3qxsMmOwNgqp-GKxXlrJ2TEQsbQziAeP_4AZdv_sPmAzw9-zxTx19Ov72FZ5EfXFzmswOj9nJdviMG0xbv_fi8BRiT65k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+dual+stratification+on+stagnation+point+Walters%27+B+nanofluid+flow+via+radiative+Riga+plate%3A+a+statistical+approach&rft.jtitle=European+physical+journal+plus&rft.au=Shafiq%2C+Anum&rft.au=Mebarek-Oudina%2C+Fateh&rft.au=Sindhu%2C+Tabassum+Naz&rft.au=Abidi%2C+Awatef&rft.date=2021-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=136&rft.issue=4&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-021-01394-z&rft.externalDocID=10_1140_epjp_s13360_021_01394_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |