Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions

[Display omitted] •Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows superior activities than its anatase counterpart, under visible light conditions.•CT–650–HCl catalyst shows the best performance in phenol photo...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 99; pp. 352 - 363
Main Authors Lee, Hyeonkyeong, Jang, Hyun Sung, Kim, Na Yeon, Joo, Ji Bong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.07.2021
한국공업화학회
Subjects
Online AccessGet full text
ISSN1226-086X
1876-794X
DOI10.1016/j.jiec.2021.04.045

Cover

Abstract [Display omitted] •Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows superior activities than its anatase counterpart, under visible light conditions.•CT–650–HCl catalyst shows the best performance in phenol photo-degradation. We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible light responsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol–gel coating of TiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acid leaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase, even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out and Cu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observed while uniformly distributed Cu species is detected in acid treated CT–X–HCl samples indicating the Cu2+ ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT–650–HCl catalyst that was prepared by calcination at 650°C, followed by HCl leaching, showed beneficial physio-chemical properties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2 surface with high surface area, resulting in the best photocatalytic performance towards phenol degradation under visible light conditions.
AbstractList We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible lightresponsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol–gel coating ofTiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acidleaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase,even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out andCu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observedwhile uniformly distributed Cu species is detected in acid treated CT–X–HCl samples indicating the Cu2+ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT–650–HCl catalystthat was prepared by calcination at 650 C, followed by HCl leaching, showed beneficial physio-chemicalproperties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2surface with high surface area, resulting in the best photocatalytic performance towards phenoldegradation under visible light conditions. KCI Citation Count: 13
[Display omitted] •Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows superior activities than its anatase counterpart, under visible light conditions.•CT–650–HCl catalyst shows the best performance in phenol photo-degradation. We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible light responsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol–gel coating of TiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acid leaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase, even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out and Cu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observed while uniformly distributed Cu species is detected in acid treated CT–X–HCl samples indicating the Cu2+ ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT–650–HCl catalyst that was prepared by calcination at 650°C, followed by HCl leaching, showed beneficial physio-chemical properties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2 surface with high surface area, resulting in the best photocatalytic performance towards phenol degradation under visible light conditions.
Author Joo, Ji Bong
Jang, Hyun Sung
Kim, Na Yeon
Lee, Hyeonkyeong
Author_xml – sequence: 1
  givenname: Hyeonkyeong
  orcidid: 0000-0001-6430-7210
  surname: Lee
  fullname: Lee, Hyeonkyeong
– sequence: 2
  givenname: Hyun Sung
  surname: Jang
  fullname: Jang, Hyun Sung
– sequence: 3
  givenname: Na Yeon
  surname: Kim
  fullname: Kim, Na Yeon
– sequence: 4
  givenname: Ji Bong
  surname: Joo
  fullname: Joo, Ji Bong
  email: jbjoo@konkuk.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002742554$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtLLDEUhIMo-Lj-AVfZuugxj04mDW5k8AWCcJmFu5BOn7bP2CZDklH893Y7d3UXQkGdRX0Hqk7JYYgBCLngbMEZ11ebxQbBLwQTfMHqSeqAnHCz1NWyqV8Op1sIXTGjX47Jac4bxjSTRp-QdrWruriFjq7xWdAhjmP8pMGFmEva-bJLkGkfEy0DUAiDC37KbodYonfFjV8ZM92FDhL9wIztCHTE16FQH0OHBWPIf8hR78YM5__8jKzvbterh-rp-f5xdfNUeSnrUrVtrZd9JzrjG1CNkr3woHrXSMd1rYxctopzKVrQTmvHa-mMVA24fkJMK8_I5f5tSL1982ijwx9_jfYt2Zu_60fbmNo0SkxZsc_6FHNO0NttwneXvixndh7Ubuw8qJ0HtayepCbI_Ad5LG6uWJLD8Xf0eo_C1P8DIdnsEeYpMYEvtov4G_4N41yVPQ
CitedBy_id crossref_primary_10_1007_s11144_024_02594_1
crossref_primary_10_1016_j_apsusc_2023_157881
crossref_primary_10_3390_catal12101218
crossref_primary_10_1039_D3RA04049F
crossref_primary_10_1021_acsanm_3c03452
crossref_primary_10_1016_j_jclepro_2024_143992
crossref_primary_10_1007_s11356_023_31236_7
crossref_primary_10_1007_s10562_023_04395_y
crossref_primary_10_1016_j_ceramint_2025_01_132
crossref_primary_10_1007_s11144_023_02367_2
crossref_primary_10_1007_s11581_025_06178_4
crossref_primary_10_1021_acsomega_4c07853
crossref_primary_10_1186_s44147_023_00178_9
crossref_primary_10_1039_D1NR08349J
crossref_primary_10_3390_catal11070763
crossref_primary_10_1080_10426507_2021_1989684
crossref_primary_10_1016_j_jece_2023_110602
crossref_primary_10_1016_j_jallcom_2022_165781
crossref_primary_10_1016_j_jece_2024_112766
crossref_primary_10_1016_j_jmrt_2023_01_159
crossref_primary_10_1039_D4CE00852A
crossref_primary_10_3390_ma16072858
crossref_primary_10_1016_j_jenvman_2022_114806
crossref_primary_10_3390_coatings13081422
crossref_primary_10_1039_D3NJ00848G
crossref_primary_10_1016_j_jcis_2025_137365
crossref_primary_10_1016_j_jallcom_2022_166848
crossref_primary_10_1016_j_diamond_2023_110245
crossref_primary_10_1016_j_molliq_2024_125830
crossref_primary_10_3390_molecules26175363
crossref_primary_10_1016_j_ijhydene_2023_11_126
crossref_primary_10_3390_ma15175820
crossref_primary_10_1080_23249676_2022_2116116
crossref_primary_10_9767_bcrec_20347
crossref_primary_10_1039_D1NJ02825A
crossref_primary_10_1016_j_jiec_2023_01_003
crossref_primary_10_5004_dwt_2022_28652
crossref_primary_10_1016_j_jclepro_2022_131061
crossref_primary_10_1016_j_ceramint_2022_09_138
crossref_primary_10_1016_j_rineng_2024_102296
crossref_primary_10_1007_s12598_024_02654_4
crossref_primary_10_1007_s12613_022_2559_4
crossref_primary_10_1021_acsomega_3c09308
crossref_primary_10_1007_s13762_022_04361_y
crossref_primary_10_2139_ssrn_4100227
crossref_primary_10_1016_j_jclepro_2022_132523
crossref_primary_10_3390_ma15113859
crossref_primary_10_1039_D4EN00156G
crossref_primary_10_1007_s10904_022_02312_1
crossref_primary_10_1016_j_ceramint_2022_05_343
crossref_primary_10_1016_j_colsurfa_2023_131804
crossref_primary_10_1016_j_jphotochem_2023_115016
crossref_primary_10_1016_j_arabjc_2023_104749
crossref_primary_10_1039_D3MH01298K
Cites_doi 10.1016/j.apcatb.2009.11.014
10.1039/c3ra23347b
10.1016/S0043-1354(01)00032-X
10.1016/j.apt.2021.02.037
10.1021/cr00017a016
10.1016/j.apcata.2017.12.004
10.1039/C3TA14052K
10.1016/j.cattod.2015.09.008
10.1016/j.jhazmat.2008.03.076
10.1016/j.apcatb.2012.05.036
10.1002/adfm.201300255
10.1002/cssc.201300416
10.1016/0013-4686(93)80008-N
10.1016/S0269-7491(99)00173-6
10.1021/acscatal.6b02296
10.1016/j.jwpe.2015.04.011
10.1016/j.jhazmat.2014.11.038
10.1007/s10853-010-5113-0
10.1021/cr00035a013
10.1007/s11051-015-3093-3
10.1021/ie020344t
10.1016/j.elecom.2010.03.029
10.1016/j.arabjc.2017.02.002
10.3390/catal9060491
10.1016/0021-9797(68)90272-5
10.1016/j.apsusc.2016.04.126
10.3762/bjnano.9.163
10.1021/jp906937e
10.1021/cm052047v
10.1039/c3ee41155a
10.1021/acs.chemrev.5b00731
10.1007/s11164-015-2179-y
10.1016/j.apcatb.2019.01.058
10.1016/j.apcatb.2006.09.018
10.1016/S1001-0742(08)60001-7
10.1021/jp0273934
10.1016/0022-4596(91)90255-G
10.1016/j.surfrep.2008.10.001
10.1016/j.apcatb.2015.05.040
10.1002/adfm.201303214
10.1021/acs.jpcc.5b11923
10.1016/j.jcis.2010.08.012
10.1039/C5EE03100A
10.1021/ja504802q
10.1002/adfm.201101927
10.1016/j.cej.2013.10.027
10.3390/app8112067
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2021.04.045
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 363
ExternalDocumentID oai_kci_go_kr_ARTI_9848952
10_1016_j_jiec_2021_04_045
S1226086X21002471
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ABNUV
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
BNPGV
CITATION
EJD
HZ~
MZR
OK1
RIG
SSH
ZY4
ZZE
85H
AAIAV
ABPIF
ABTAH
ABYKQ
ACYCR
AFKWA
AJBFU
AJOXV
AMFUW
ID FETCH-LOGICAL-c334t-bb467fd2d8c9e5953f2ce5fa93a1645837b51132be6a66a143a8359eaf2d88b3
IEDL.DBID AIKHN
ISSN 1226-086X
IngestDate Wed Feb 07 01:48:22 EST 2024
Thu Apr 24 22:52:00 EDT 2025
Tue Jul 01 03:34:21 EDT 2025
Tue Mar 11 03:40:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Photodegradation
Visible light responsive
Hollow nanostructure
Cu-doped TiO2
Photocatalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-bb467fd2d8c9e5953f2ce5fa93a1645837b51132be6a66a143a8359eaf2d88b3
ORCID 0000-0001-6430-7210
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9848952
crossref_primary_10_1016_j_jiec_2021_04_045
crossref_citationtrail_10_1016_j_jiec_2021_04_045
elsevier_sciencedirect_doi_10_1016_j_jiec_2021_04_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-25
PublicationDateYYYYMMDD 2021-07-25
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-25
  day: 25
PublicationDecade 2020
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2021
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Khan, Ansari, Pradhan, Ansari, Han, Lee, Cho (bib0060) 2014; 2
Karunakaran, Abiramasundari, Gomathisankar, Manikandan, Anandi (bib0165) 2010; 352
Sajjad, Leghari, Zhang (bib0235) 2013; 3
Lin, Pan, Chen, Cheng, Xu (bib0015) 2009; 161
Hanaor, Sorrell (bib0070) 2011; 46
Lin, Yang (bib0105) 2014; 237
Joo, Vu, Zhang, Dahl, Gu, Zaera, Yin (bib0130) 2013; 6
Moon, Lee, Joo (bib0160) 2018; 9
Augustynski (bib0190) 1993; 38
Kaur, Kaur, Kaur, Singh, Bhatti, Umar, Baskoutas, Kansal (bib0215) 2021; 32
Adán, Bahamonde, Fernández-García, Martínez-Arias (bib0050) 2007; 72
Byrne, Moran, Hermosilla, Merayo, Blanco, Rhatigan, Hinder, Ganguly, Nolan, Pillai (bib0115) 2019; 246
Quesada, Arreola-Sánchez, Faba, Díaz, Rentería-Tapia, Ordóñez (bib0080) 2018; 551
Bhuyan, Khanuja, Sharma, Patel, Reddy, Anand, Varma (bib0220) 2015; 17
Fujishima, Zhang, Tryk (bib0205) 2008; 63
Fox, Dulay (bib0195) 1993; 93
Murcia, Hidalgo, Navío, Araña, Doña-Rodríguez (bib0055) 2015; 179
Joo, Lee, Dahl, Moon, Zaera, Yin (bib0140) 2013; 23
Joo, Dahl, Li, Zaera, Yin (bib0135) 2013; 6
Zhou, Li, Wang, Qu, Yang, Xie, Zhang, Wang, Fu, Zhao (bib0065) 2014; 136
Wang, Feng, Bai, Zhang, Yin (bib0120) 2016; 116
Guo, Al-Dahhan (bib0025) 2003; 42
Yun, Lee, Joo, Kim, Yi (bib0210) 2010; 12
Banat, Al-Bashir, Al-Asheh, Hayajneh (bib0010) 2000; 107
Yamagishi, Leite, Ueda, Yamaguchi, Suwa (bib0040) 2001; 35
Zagklis, Vavouraki, Kornaros, Paraskeva (bib0035) 2015; 285
Joo, Liu, Lee, Dahl, Yu, Zaera, Yin (bib0155) 2016; 264
Singh, Song, Gutiérrez, Camaioni, Campbell, Lercher (bib0030) 2016; 6
Sathish, Viswanathan, Viswanath, Gopinath (bib0100) 2005; 17
Xiong, Xu (bib0045) 2016; 120
Yun, Lee, Joo, Kim, Kang, Yi (bib0095) 2010; 94
Reda, Khairy, Mousa (bib0230) 2020; 13
Mathew, Ganguly, Rhatigan, Kumaravel, Byrne, Hinder, Bartlett, Nolan, Pillai (bib0110) 2018; 8
Hurum, Agrios, Gray, Rajh, Thurnauer (bib0175) 2003; 107
Joo, Zhang, Lee, Dahl, Zaera, Yin (bib0150) 2012; 22
Zhang, Wang, Kim, Ma, Veerappan, Lee, Kong, Lee, Park (bib0085) 2016; 9
Kim, Lee, Moon, Joo (bib0090) 2019; 9
Marschall (bib0180) 2014; 24
Bickley, Gonzalez-Carreno, Lees, Palmisano, Tilley (bib0185) 1991; 92
Peng, Meng, Tang, Ren, Chen, Ren (bib0125) 2009; 113
Suzuki, Araki, Yamamoto (bib0020) 2015; 7
Pelaez, Nolan, Pillai, Seery, Falaras, Kontos, Dunlop, Hamilton, Byrne, O’Shea, Entezari, Dionysiou (bib0075) 2012; 125
Pongwan, Wetchakun, Phanichphant, Wetchakun (bib0225) 2016; 42
Linsebigler, Lu, Yates (bib0200) 1995; 95
Qu (bib0005) 2008; 20
Hu, Huang, Li, Jiang, Lan, Guo, Cao (bib0170) 2016; 382
Stöber, Fink, Bohn (bib0145) 1968; 26
Banat (10.1016/j.jiec.2021.04.045_bib0010) 2000; 107
Hanaor (10.1016/j.jiec.2021.04.045_bib0070) 2011; 46
Karunakaran (10.1016/j.jiec.2021.04.045_bib0165) 2010; 352
Stöber (10.1016/j.jiec.2021.04.045_bib0145) 1968; 26
Kim (10.1016/j.jiec.2021.04.045_bib0090) 2019; 9
Byrne (10.1016/j.jiec.2021.04.045_bib0115) 2019; 246
Khan (10.1016/j.jiec.2021.04.045_bib0060) 2014; 2
Wang (10.1016/j.jiec.2021.04.045_bib0120) 2016; 116
Suzuki (10.1016/j.jiec.2021.04.045_bib0020) 2015; 7
Guo (10.1016/j.jiec.2021.04.045_bib0025) 2003; 42
Augustynski (10.1016/j.jiec.2021.04.045_bib0190) 1993; 38
Murcia (10.1016/j.jiec.2021.04.045_bib0055) 2015; 179
Marschall (10.1016/j.jiec.2021.04.045_bib0180) 2014; 24
Sajjad (10.1016/j.jiec.2021.04.045_bib0235) 2013; 3
Adán (10.1016/j.jiec.2021.04.045_bib0050) 2007; 72
Pelaez (10.1016/j.jiec.2021.04.045_bib0075) 2012; 125
Lin (10.1016/j.jiec.2021.04.045_bib0015) 2009; 161
Moon (10.1016/j.jiec.2021.04.045_bib0160) 2018; 9
Hurum (10.1016/j.jiec.2021.04.045_bib0175) 2003; 107
Linsebigler (10.1016/j.jiec.2021.04.045_bib0200) 1995; 95
Sathish (10.1016/j.jiec.2021.04.045_bib0100) 2005; 17
Lin (10.1016/j.jiec.2021.04.045_bib0105) 2014; 237
Joo (10.1016/j.jiec.2021.04.045_bib0130) 2013; 6
Joo (10.1016/j.jiec.2021.04.045_bib0150) 2012; 22
Zhang (10.1016/j.jiec.2021.04.045_bib0085) 2016; 9
Yun (10.1016/j.jiec.2021.04.045_bib0210) 2010; 12
Xiong (10.1016/j.jiec.2021.04.045_bib0045) 2016; 120
Qu (10.1016/j.jiec.2021.04.045_bib0005) 2008; 20
Joo (10.1016/j.jiec.2021.04.045_bib0140) 2013; 23
Fujishima (10.1016/j.jiec.2021.04.045_bib0205) 2008; 63
Pongwan (10.1016/j.jiec.2021.04.045_bib0225) 2016; 42
Reda (10.1016/j.jiec.2021.04.045_bib0230) 2020; 13
Zagklis (10.1016/j.jiec.2021.04.045_bib0035) 2015; 285
Yun (10.1016/j.jiec.2021.04.045_bib0095) 2010; 94
Joo (10.1016/j.jiec.2021.04.045_bib0135) 2013; 6
Hu (10.1016/j.jiec.2021.04.045_bib0170) 2016; 382
Yamagishi (10.1016/j.jiec.2021.04.045_bib0040) 2001; 35
Quesada (10.1016/j.jiec.2021.04.045_bib0080) 2018; 551
Fox (10.1016/j.jiec.2021.04.045_bib0195) 1993; 93
Joo (10.1016/j.jiec.2021.04.045_bib0155) 2016; 264
Singh (10.1016/j.jiec.2021.04.045_bib0030) 2016; 6
Bickley (10.1016/j.jiec.2021.04.045_bib0185) 1991; 92
Peng (10.1016/j.jiec.2021.04.045_bib0125) 2009; 113
Bhuyan (10.1016/j.jiec.2021.04.045_bib0220) 2015; 17
Mathew (10.1016/j.jiec.2021.04.045_bib0110) 2018; 8
Kaur (10.1016/j.jiec.2021.04.045_bib0215) 2021; 32
Zhou (10.1016/j.jiec.2021.04.045_bib0065) 2014; 136
References_xml – volume: 46
  start-page: 855
  year: 2011
  ident: bib0070
  publication-title: J. Mater. Sci.
– volume: 2
  start-page: 637
  year: 2014
  ident: bib0060
  publication-title: J. Mater. Chem. A
– volume: 113
  start-page: 20240
  year: 2009
  ident: bib0125
  publication-title: J. Phys. Chem. C
– volume: 237
  start-page: 131
  year: 2014
  ident: bib0105
  publication-title: Chem. Eng. J.
– volume: 125
  start-page: 331
  year: 2012
  ident: bib0075
  publication-title: Appl. Catal. B: Environ.
– volume: 161
  start-page: 231
  year: 2009
  ident: bib0015
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 2815
  year: 2016
  ident: bib0225
  publication-title: Res. Chem. Intermed.
– volume: 107
  start-page: 391
  year: 2000
  ident: bib0010
  publication-title: Environ. Pollut.
– volume: 136
  start-page: 9280
  year: 2014
  ident: bib0065
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 491
  year: 2019
  ident: bib0090
  publication-title: Catalysts
– volume: 92
  start-page: 178
  year: 1991
  ident: bib0185
  publication-title: J. Solid State Chem.
– volume: 3
  start-page: 12678
  year: 2013
  ident: bib0235
  publication-title: RSC Adv.
– volume: 23
  start-page: 4246
  year: 2013
  ident: bib0140
  publication-title: Adv. Funct. Mater.
– volume: 352
  start-page: 68
  year: 2010
  ident: bib0165
  publication-title: J. Colloid Interface Sci.
– volume: 63
  start-page: 515
  year: 2008
  ident: bib0205
  publication-title: Surf. Sci. Rep.
– volume: 12
  start-page: 769
  year: 2010
  ident: bib0210
  publication-title: Electrochem. Commun.
– volume: 551
  start-page: 23
  year: 2018
  ident: bib0080
  publication-title: Appl. Catal. A: Gen.
– volume: 32
  start-page: 1350
  year: 2021
  ident: bib0215
  publication-title: Adv. Powder Technol.
– volume: 20
  start-page: 1
  year: 2008
  ident: bib0005
  publication-title: J. Environ. Sci.
– volume: 179
  start-page: 305
  year: 2015
  ident: bib0055
  publication-title: Appl. Catal. B: Environ.
– volume: 38
  start-page: 43
  year: 1993
  ident: bib0190
  publication-title: Electrochim. Acta
– volume: 382
  start-page: 170
  year: 2016
  ident: bib0170
  publication-title: Appl. Surf. Sci.
– volume: 17
  start-page: 288
  year: 2015
  ident: bib0220
  publication-title: J. Nanopart. Res.
– volume: 24
  start-page: 2421
  year: 2014
  ident: bib0180
  publication-title: Adv. Funct. Mater.
– volume: 116
  start-page: 10983
  year: 2016
  ident: bib0120
  publication-title: Chem. Rev.
– volume: 35
  start-page: 3089
  year: 2001
  ident: bib0040
  publication-title: Water Res.
– volume: 6
  start-page: 2001
  year: 2013
  ident: bib0130
  publication-title: ChemSusChem
– volume: 107
  start-page: 4545
  year: 2003
  ident: bib0175
  publication-title: J. Phys. Chem. B
– volume: 93
  start-page: 341
  year: 1993
  ident: bib0195
  publication-title: Chem. Rev.
– volume: 13
  start-page: 86
  year: 2020
  ident: bib0230
  publication-title: Arab. J. Chem.
– volume: 95
  start-page: 735
  year: 1995
  ident: bib0200
  publication-title: Chem. Rev.
– volume: 9
  start-page: 499
  year: 2016
  ident: bib0085
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2067
  year: 2018
  ident: bib0110
  publication-title: Appl. Sci.
– volume: 42
  start-page: 2450
  year: 2003
  ident: bib0025
  publication-title: Ind. Eng. Chem. Res.
– volume: 246
  start-page: 266
  year: 2019
  ident: bib0115
  publication-title: Appl. Catal. B: Environ.
– volume: 72
  start-page: 11
  year: 2007
  ident: bib0050
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  start-page: 54
  year: 2015
  ident: bib0020
  publication-title: J. Water Process Eng.
– volume: 6
  start-page: 7466
  year: 2016
  ident: bib0030
  publication-title: ACS Catal.
– volume: 285
  start-page: 69
  year: 2015
  ident: bib0035
  publication-title: J. Hazard. Mater.
– volume: 264
  start-page: 261
  year: 2016
  ident: bib0155
  publication-title: Catal. Today
– volume: 120
  start-page: 3906
  year: 2016
  ident: bib0045
  publication-title: J. Phys. Chem. C
– volume: 94
  start-page: 241
  year: 2010
  ident: bib0095
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 1715
  year: 2018
  ident: bib0160
  publication-title: Beilstein J. Nanotechnol.
– volume: 17
  start-page: 6349
  year: 2005
  ident: bib0100
  publication-title: Chem. Mater.
– volume: 6
  start-page: 2082
  year: 2013
  ident: bib0135
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 166
  year: 2012
  ident: bib0150
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 62
  year: 1968
  ident: bib0145
  publication-title: J. Colloid Interface Sci.
– volume: 94
  start-page: 241
  year: 2010
  ident: 10.1016/j.jiec.2021.04.045_bib0095
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2009.11.014
– volume: 3
  start-page: 12678
  year: 2013
  ident: 10.1016/j.jiec.2021.04.045_bib0235
  publication-title: RSC Adv.
  doi: 10.1039/c3ra23347b
– volume: 35
  start-page: 3089
  year: 2001
  ident: 10.1016/j.jiec.2021.04.045_bib0040
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00032-X
– volume: 32
  start-page: 1350
  year: 2021
  ident: 10.1016/j.jiec.2021.04.045_bib0215
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2021.02.037
– volume: 93
  start-page: 341
  year: 1993
  ident: 10.1016/j.jiec.2021.04.045_bib0195
  publication-title: Chem. Rev.
  doi: 10.1021/cr00017a016
– volume: 551
  start-page: 23
  year: 2018
  ident: 10.1016/j.jiec.2021.04.045_bib0080
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/j.apcata.2017.12.004
– volume: 2
  start-page: 637
  year: 2014
  ident: 10.1016/j.jiec.2021.04.045_bib0060
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14052K
– volume: 264
  start-page: 261
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0155
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.09.008
– volume: 161
  start-page: 231
  year: 2009
  ident: 10.1016/j.jiec.2021.04.045_bib0015
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.03.076
– volume: 125
  start-page: 331
  year: 2012
  ident: 10.1016/j.jiec.2021.04.045_bib0075
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.05.036
– volume: 23
  start-page: 4246
  year: 2013
  ident: 10.1016/j.jiec.2021.04.045_bib0140
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300255
– volume: 6
  start-page: 2001
  year: 2013
  ident: 10.1016/j.jiec.2021.04.045_bib0130
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300416
– volume: 38
  start-page: 43
  year: 1993
  ident: 10.1016/j.jiec.2021.04.045_bib0190
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(93)80008-N
– volume: 107
  start-page: 391
  year: 2000
  ident: 10.1016/j.jiec.2021.04.045_bib0010
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(99)00173-6
– volume: 6
  start-page: 7466
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0030
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02296
– volume: 7
  start-page: 54
  year: 2015
  ident: 10.1016/j.jiec.2021.04.045_bib0020
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2015.04.011
– volume: 285
  start-page: 69
  year: 2015
  ident: 10.1016/j.jiec.2021.04.045_bib0035
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.11.038
– volume: 46
  start-page: 855
  year: 2011
  ident: 10.1016/j.jiec.2021.04.045_bib0070
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-5113-0
– volume: 95
  start-page: 735
  year: 1995
  ident: 10.1016/j.jiec.2021.04.045_bib0200
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a013
– volume: 17
  start-page: 288
  year: 2015
  ident: 10.1016/j.jiec.2021.04.045_bib0220
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-015-3093-3
– volume: 42
  start-page: 2450
  year: 2003
  ident: 10.1016/j.jiec.2021.04.045_bib0025
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020344t
– volume: 12
  start-page: 769
  year: 2010
  ident: 10.1016/j.jiec.2021.04.045_bib0210
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.03.029
– volume: 13
  start-page: 86
  year: 2020
  ident: 10.1016/j.jiec.2021.04.045_bib0230
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2017.02.002
– volume: 9
  start-page: 491
  year: 2019
  ident: 10.1016/j.jiec.2021.04.045_bib0090
  publication-title: Catalysts
  doi: 10.3390/catal9060491
– volume: 26
  start-page: 62
  year: 1968
  ident: 10.1016/j.jiec.2021.04.045_bib0145
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 382
  start-page: 170
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0170
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.04.126
– volume: 9
  start-page: 1715
  year: 2018
  ident: 10.1016/j.jiec.2021.04.045_bib0160
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.163
– volume: 113
  start-page: 20240
  year: 2009
  ident: 10.1016/j.jiec.2021.04.045_bib0125
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906937e
– volume: 17
  start-page: 6349
  year: 2005
  ident: 10.1016/j.jiec.2021.04.045_bib0100
  publication-title: Chem. Mater.
  doi: 10.1021/cm052047v
– volume: 6
  start-page: 2082
  year: 2013
  ident: 10.1016/j.jiec.2021.04.045_bib0135
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41155a
– volume: 116
  start-page: 10983
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0120
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00731
– volume: 42
  start-page: 2815
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0225
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-015-2179-y
– volume: 246
  start-page: 266
  year: 2019
  ident: 10.1016/j.jiec.2021.04.045_bib0115
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.01.058
– volume: 72
  start-page: 11
  year: 2007
  ident: 10.1016/j.jiec.2021.04.045_bib0050
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2006.09.018
– volume: 20
  start-page: 1
  year: 2008
  ident: 10.1016/j.jiec.2021.04.045_bib0005
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)60001-7
– volume: 107
  start-page: 4545
  year: 2003
  ident: 10.1016/j.jiec.2021.04.045_bib0175
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0273934
– volume: 92
  start-page: 178
  year: 1991
  ident: 10.1016/j.jiec.2021.04.045_bib0185
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(91)90255-G
– volume: 63
  start-page: 515
  year: 2008
  ident: 10.1016/j.jiec.2021.04.045_bib0205
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2008.10.001
– volume: 179
  start-page: 305
  year: 2015
  ident: 10.1016/j.jiec.2021.04.045_bib0055
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.05.040
– volume: 24
  start-page: 2421
  year: 2014
  ident: 10.1016/j.jiec.2021.04.045_bib0180
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303214
– volume: 120
  start-page: 3906
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0045
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11923
– volume: 352
  start-page: 68
  year: 2010
  ident: 10.1016/j.jiec.2021.04.045_bib0165
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.08.012
– volume: 9
  start-page: 499
  year: 2016
  ident: 10.1016/j.jiec.2021.04.045_bib0085
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03100A
– volume: 136
  start-page: 9280
  year: 2014
  ident: 10.1016/j.jiec.2021.04.045_bib0065
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504802q
– volume: 22
  start-page: 166
  year: 2012
  ident: 10.1016/j.jiec.2021.04.045_bib0150
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101927
– volume: 237
  start-page: 131
  year: 2014
  ident: 10.1016/j.jiec.2021.04.045_bib0105
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.027
– volume: 8
  start-page: 2067
  year: 2018
  ident: 10.1016/j.jiec.2021.04.045_bib0110
  publication-title: Appl. Sci.
  doi: 10.3390/app8112067
SSID ssj0060386
ssib009049966
ssib053391666
Score 2.5098877
Snippet [Display omitted] •Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows...
We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible lightresponsive photocatalysis. Hollow Cu-doped TiO2...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 352
SubjectTerms Cu-doped TiO2
Hollow nanostructure
Photocatalyst
Photodegradation
Visible light responsive
화학공학
Title Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions
URI https://dx.doi.org/10.1016/j.jiec.2021.04.045
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002742554
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2021, 99(0), , pp.352-363
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze9EH8RO_CeKb1LVpUtNHGY6pMB-csLeQtKlWSzvGxDf_du_aVCbIHoRCaciVcgl3v0vvfkfIRZQIJLbKvDiD2IRHvvHMdRJ7kU5DyTNf2ibbYhyNnvn9VEw7ZNDWwmBapbP9jU2vrbUb6Ttt9md53n8KADkAIJ8yZBHlWEfeY-DtZZf0bu4eRuPWIEd-WDd8xPkeCrjamSbN6y23yGTIgprxFKua_vZPa-U8W_I8wy2y6SAjvWm-apt0bLlDNpaIBHeJGXx4aTWzKZ3kj4yCRSuqT1rqsmr4YT8gqKYATynAPWrL1_q3P529VouqPr9BWhKK5WRzisXmprC0wKidQrScNklde2QyvJ0MRp7rnuAlYcgXnjFgA7OUpTKJrYhFmLHEikzHoYYQSUBgagS2mTc20lGkATdpQGOx1RmISBPuk25ZlfaA0JT7GgwDs1ozbqTR0teGCRjwAwve7pAErcpU4pjFscFFodoUsjeFalaoZuVzuMQhufyRmTW8Gitni3Yl1K_docDwr5Q7h2VT70mukEYb7y-Vep8rCBbuVCy5jAU7-ufLj8k6PuFBLxMnpAvraU8BoSzMGVm7-grO3D78Bmvl5Sc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze1AfxCvOaxDfpKxLk9o-juHY3JwPTthbSNrUdSvtGBv-fc_pRSaID0KhkCalnIQv30nP-Q4h924gUNgqsvwIfBPu2trSj4FvuSp0PB7ZnimiLcZu_50_T8W0RrpVLgyGVZbYX2B6jtZlS6u0ZmsZx623NjAHIORThiqiHPPIGxyLWtdJozMY9scVILu2kxd8xP4WDihzZ4owr3lsUMmQtXPFU8xq-n1_2klX0dbO0zskByVlpJ3iq45IzaTHZH9LSPCE6O7GCrOlCekkfmUUEC3JPmmq0qzQh92AU02BnlKge9Sks_y3P13OsnWWn9-gLAnFdLIVxWRznRiaoNdOwVsOi6CuUzLpPU26fausnmAFjsPXltaAgVHIQi_wjfCFE7HAiEj5jgIXSYBjqgWWmdfGVa6rgDcpYGO-UREM8bRzRupplppzQkNuKwAGZpRiXHtaebbSTECD3Taw2zVJuzKZDEplcSxwkcgqhGwu0cwSzSxtDpdokofvMctCV-PP3qKaCfljdUgA_j_H3cG0yUUQS5TRxvtHJhcrCc7CQPoe93zBLv758luy25-8jORoMB5ekj18goe-TFyROsytuQa2stY35Wr8AtRC5w0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-doped+TiO2+hollow+nanostructures+for+the+enhanced+photocatalysis+under+visible+light+conditions&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Lee%2C+Hyeonkyeong&rft.au=Jang%2C+Hyun+Sung&rft.au=Kim%2C+Na+Yeon&rft.au=Joo%2C+Ji+Bong&rft.date=2021-07-25&rft.pub=Elsevier+B.V&rft.issn=1226-086X&rft.volume=99&rft.spage=352&rft.epage=363&rft_id=info:doi/10.1016%2Fj.jiec.2021.04.045&rft.externalDocID=S1226086X21002471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon