Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions
[Display omitted] •Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows superior activities than its anatase counterpart, under visible light conditions.•CT–650–HCl catalyst shows the best performance in phenol photo...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 99; pp. 352 - 363 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.07.2021
한국공업화학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-086X 1876-794X |
DOI | 10.1016/j.jiec.2021.04.045 |
Cover
Abstract | [Display omitted]
•Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows superior activities than its anatase counterpart, under visible light conditions.•CT–650–HCl catalyst shows the best performance in phenol photo-degradation.
We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible light responsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol–gel coating of TiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acid leaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase, even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out and Cu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observed while uniformly distributed Cu species is detected in acid treated CT–X–HCl samples indicating the Cu2+ ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT–650–HCl catalyst that was prepared by calcination at 650°C, followed by HCl leaching, showed beneficial physio-chemical properties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2 surface with high surface area, resulting in the best photocatalytic performance towards phenol degradation under visible light conditions. |
---|---|
AbstractList | We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible lightresponsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol–gel coating ofTiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acidleaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase,even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out andCu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observedwhile uniformly distributed Cu species is detected in acid treated CT–X–HCl samples indicating the Cu2+ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT–650–HCl catalystthat was prepared by calcination at 650 C, followed by HCl leaching, showed beneficial physio-chemicalproperties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2surface with high surface area, resulting in the best photocatalytic performance towards phenoldegradation under visible light conditions. KCI Citation Count: 13 [Display omitted] •Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows superior activities than its anatase counterpart, under visible light conditions.•CT–650–HCl catalyst shows the best performance in phenol photo-degradation. We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible light responsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol–gel coating of TiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acid leaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase, even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out and Cu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observed while uniformly distributed Cu species is detected in acid treated CT–X–HCl samples indicating the Cu2+ ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT–650–HCl catalyst that was prepared by calcination at 650°C, followed by HCl leaching, showed beneficial physio-chemical properties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2 surface with high surface area, resulting in the best photocatalytic performance towards phenol degradation under visible light conditions. |
Author | Joo, Ji Bong Jang, Hyun Sung Kim, Na Yeon Lee, Hyeonkyeong |
Author_xml | – sequence: 1 givenname: Hyeonkyeong orcidid: 0000-0001-6430-7210 surname: Lee fullname: Lee, Hyeonkyeong – sequence: 2 givenname: Hyun Sung surname: Jang fullname: Jang, Hyun Sung – sequence: 3 givenname: Na Yeon surname: Kim fullname: Kim, Na Yeon – sequence: 4 givenname: Ji Bong surname: Joo fullname: Joo, Ji Bong email: jbjoo@konkuk.ac.kr |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002742554$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtLLDEUhIMo-Lj-AVfZuugxj04mDW5k8AWCcJmFu5BOn7bP2CZDklH893Y7d3UXQkGdRX0Hqk7JYYgBCLngbMEZ11ebxQbBLwQTfMHqSeqAnHCz1NWyqV8Op1sIXTGjX47Jac4bxjSTRp-QdrWruriFjq7xWdAhjmP8pMGFmEva-bJLkGkfEy0DUAiDC37KbodYonfFjV8ZM92FDhL9wIztCHTE16FQH0OHBWPIf8hR78YM5__8jKzvbterh-rp-f5xdfNUeSnrUrVtrZd9JzrjG1CNkr3woHrXSMd1rYxctopzKVrQTmvHa-mMVA24fkJMK8_I5f5tSL1982ijwx9_jfYt2Zu_60fbmNo0SkxZsc_6FHNO0NttwneXvixndh7Ubuw8qJ0HtayepCbI_Ad5LG6uWJLD8Xf0eo_C1P8DIdnsEeYpMYEvtov4G_4N41yVPQ |
CitedBy_id | crossref_primary_10_1007_s11144_024_02594_1 crossref_primary_10_1016_j_apsusc_2023_157881 crossref_primary_10_3390_catal12101218 crossref_primary_10_1039_D3RA04049F crossref_primary_10_1021_acsanm_3c03452 crossref_primary_10_1016_j_jclepro_2024_143992 crossref_primary_10_1007_s11356_023_31236_7 crossref_primary_10_1007_s10562_023_04395_y crossref_primary_10_1016_j_ceramint_2025_01_132 crossref_primary_10_1007_s11144_023_02367_2 crossref_primary_10_1007_s11581_025_06178_4 crossref_primary_10_1021_acsomega_4c07853 crossref_primary_10_1186_s44147_023_00178_9 crossref_primary_10_1039_D1NR08349J crossref_primary_10_3390_catal11070763 crossref_primary_10_1080_10426507_2021_1989684 crossref_primary_10_1016_j_jece_2023_110602 crossref_primary_10_1016_j_jallcom_2022_165781 crossref_primary_10_1016_j_jece_2024_112766 crossref_primary_10_1016_j_jmrt_2023_01_159 crossref_primary_10_1039_D4CE00852A crossref_primary_10_3390_ma16072858 crossref_primary_10_1016_j_jenvman_2022_114806 crossref_primary_10_3390_coatings13081422 crossref_primary_10_1039_D3NJ00848G crossref_primary_10_1016_j_jcis_2025_137365 crossref_primary_10_1016_j_jallcom_2022_166848 crossref_primary_10_1016_j_diamond_2023_110245 crossref_primary_10_1016_j_molliq_2024_125830 crossref_primary_10_3390_molecules26175363 crossref_primary_10_1016_j_ijhydene_2023_11_126 crossref_primary_10_3390_ma15175820 crossref_primary_10_1080_23249676_2022_2116116 crossref_primary_10_9767_bcrec_20347 crossref_primary_10_1039_D1NJ02825A crossref_primary_10_1016_j_jiec_2023_01_003 crossref_primary_10_5004_dwt_2022_28652 crossref_primary_10_1016_j_jclepro_2022_131061 crossref_primary_10_1016_j_ceramint_2022_09_138 crossref_primary_10_1016_j_rineng_2024_102296 crossref_primary_10_1007_s12598_024_02654_4 crossref_primary_10_1007_s12613_022_2559_4 crossref_primary_10_1021_acsomega_3c09308 crossref_primary_10_1007_s13762_022_04361_y crossref_primary_10_2139_ssrn_4100227 crossref_primary_10_1016_j_jclepro_2022_132523 crossref_primary_10_3390_ma15113859 crossref_primary_10_1039_D4EN00156G crossref_primary_10_1007_s10904_022_02312_1 crossref_primary_10_1016_j_ceramint_2022_05_343 crossref_primary_10_1016_j_colsurfa_2023_131804 crossref_primary_10_1016_j_jphotochem_2023_115016 crossref_primary_10_1016_j_arabjc_2023_104749 crossref_primary_10_1039_D3MH01298K |
Cites_doi | 10.1016/j.apcatb.2009.11.014 10.1039/c3ra23347b 10.1016/S0043-1354(01)00032-X 10.1016/j.apt.2021.02.037 10.1021/cr00017a016 10.1016/j.apcata.2017.12.004 10.1039/C3TA14052K 10.1016/j.cattod.2015.09.008 10.1016/j.jhazmat.2008.03.076 10.1016/j.apcatb.2012.05.036 10.1002/adfm.201300255 10.1002/cssc.201300416 10.1016/0013-4686(93)80008-N 10.1016/S0269-7491(99)00173-6 10.1021/acscatal.6b02296 10.1016/j.jwpe.2015.04.011 10.1016/j.jhazmat.2014.11.038 10.1007/s10853-010-5113-0 10.1021/cr00035a013 10.1007/s11051-015-3093-3 10.1021/ie020344t 10.1016/j.elecom.2010.03.029 10.1016/j.arabjc.2017.02.002 10.3390/catal9060491 10.1016/0021-9797(68)90272-5 10.1016/j.apsusc.2016.04.126 10.3762/bjnano.9.163 10.1021/jp906937e 10.1021/cm052047v 10.1039/c3ee41155a 10.1021/acs.chemrev.5b00731 10.1007/s11164-015-2179-y 10.1016/j.apcatb.2019.01.058 10.1016/j.apcatb.2006.09.018 10.1016/S1001-0742(08)60001-7 10.1021/jp0273934 10.1016/0022-4596(91)90255-G 10.1016/j.surfrep.2008.10.001 10.1016/j.apcatb.2015.05.040 10.1002/adfm.201303214 10.1021/acs.jpcc.5b11923 10.1016/j.jcis.2010.08.012 10.1039/C5EE03100A 10.1021/ja504802q 10.1002/adfm.201101927 10.1016/j.cej.2013.10.027 10.3390/app8112067 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2021.04.045 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 363 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9848952 10_1016_j_jiec_2021_04_045 S1226086X21002471 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ABNUV ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP BNPGV CITATION EJD HZ~ MZR OK1 RIG SSH ZY4 ZZE 85H AAIAV ABPIF ABTAH ABYKQ ACYCR AFKWA AJBFU AJOXV AMFUW |
ID | FETCH-LOGICAL-c334t-bb467fd2d8c9e5953f2ce5fa93a1645837b51132be6a66a143a8359eaf2d88b3 |
IEDL.DBID | AIKHN |
ISSN | 1226-086X |
IngestDate | Wed Feb 07 01:48:22 EST 2024 Thu Apr 24 22:52:00 EDT 2025 Tue Jul 01 03:34:21 EDT 2025 Tue Mar 11 03:40:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photodegradation Visible light responsive Hollow nanostructure Cu-doped TiO2 Photocatalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-bb467fd2d8c9e5953f2ce5fa93a1645837b51132be6a66a143a8359eaf2d88b3 |
ORCID | 0000-0001-6430-7210 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9848952 crossref_primary_10_1016_j_jiec_2021_04_045 crossref_citationtrail_10_1016_j_jiec_2021_04_045 elsevier_sciencedirect_doi_10_1016_j_jiec_2021_04_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-25 |
PublicationDateYYYYMMDD | 2021-07-25 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2021 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Khan, Ansari, Pradhan, Ansari, Han, Lee, Cho (bib0060) 2014; 2 Karunakaran, Abiramasundari, Gomathisankar, Manikandan, Anandi (bib0165) 2010; 352 Sajjad, Leghari, Zhang (bib0235) 2013; 3 Lin, Pan, Chen, Cheng, Xu (bib0015) 2009; 161 Hanaor, Sorrell (bib0070) 2011; 46 Lin, Yang (bib0105) 2014; 237 Joo, Vu, Zhang, Dahl, Gu, Zaera, Yin (bib0130) 2013; 6 Moon, Lee, Joo (bib0160) 2018; 9 Augustynski (bib0190) 1993; 38 Kaur, Kaur, Kaur, Singh, Bhatti, Umar, Baskoutas, Kansal (bib0215) 2021; 32 Adán, Bahamonde, Fernández-García, Martínez-Arias (bib0050) 2007; 72 Byrne, Moran, Hermosilla, Merayo, Blanco, Rhatigan, Hinder, Ganguly, Nolan, Pillai (bib0115) 2019; 246 Quesada, Arreola-Sánchez, Faba, Díaz, Rentería-Tapia, Ordóñez (bib0080) 2018; 551 Bhuyan, Khanuja, Sharma, Patel, Reddy, Anand, Varma (bib0220) 2015; 17 Fujishima, Zhang, Tryk (bib0205) 2008; 63 Fox, Dulay (bib0195) 1993; 93 Murcia, Hidalgo, Navío, Araña, Doña-Rodríguez (bib0055) 2015; 179 Joo, Lee, Dahl, Moon, Zaera, Yin (bib0140) 2013; 23 Joo, Dahl, Li, Zaera, Yin (bib0135) 2013; 6 Zhou, Li, Wang, Qu, Yang, Xie, Zhang, Wang, Fu, Zhao (bib0065) 2014; 136 Wang, Feng, Bai, Zhang, Yin (bib0120) 2016; 116 Guo, Al-Dahhan (bib0025) 2003; 42 Yun, Lee, Joo, Kim, Yi (bib0210) 2010; 12 Banat, Al-Bashir, Al-Asheh, Hayajneh (bib0010) 2000; 107 Yamagishi, Leite, Ueda, Yamaguchi, Suwa (bib0040) 2001; 35 Zagklis, Vavouraki, Kornaros, Paraskeva (bib0035) 2015; 285 Joo, Liu, Lee, Dahl, Yu, Zaera, Yin (bib0155) 2016; 264 Singh, Song, Gutiérrez, Camaioni, Campbell, Lercher (bib0030) 2016; 6 Sathish, Viswanathan, Viswanath, Gopinath (bib0100) 2005; 17 Xiong, Xu (bib0045) 2016; 120 Yun, Lee, Joo, Kim, Kang, Yi (bib0095) 2010; 94 Reda, Khairy, Mousa (bib0230) 2020; 13 Mathew, Ganguly, Rhatigan, Kumaravel, Byrne, Hinder, Bartlett, Nolan, Pillai (bib0110) 2018; 8 Hurum, Agrios, Gray, Rajh, Thurnauer (bib0175) 2003; 107 Joo, Zhang, Lee, Dahl, Zaera, Yin (bib0150) 2012; 22 Zhang, Wang, Kim, Ma, Veerappan, Lee, Kong, Lee, Park (bib0085) 2016; 9 Kim, Lee, Moon, Joo (bib0090) 2019; 9 Marschall (bib0180) 2014; 24 Bickley, Gonzalez-Carreno, Lees, Palmisano, Tilley (bib0185) 1991; 92 Peng, Meng, Tang, Ren, Chen, Ren (bib0125) 2009; 113 Suzuki, Araki, Yamamoto (bib0020) 2015; 7 Pelaez, Nolan, Pillai, Seery, Falaras, Kontos, Dunlop, Hamilton, Byrne, O’Shea, Entezari, Dionysiou (bib0075) 2012; 125 Pongwan, Wetchakun, Phanichphant, Wetchakun (bib0225) 2016; 42 Linsebigler, Lu, Yates (bib0200) 1995; 95 Qu (bib0005) 2008; 20 Hu, Huang, Li, Jiang, Lan, Guo, Cao (bib0170) 2016; 382 Stöber, Fink, Bohn (bib0145) 1968; 26 Banat (10.1016/j.jiec.2021.04.045_bib0010) 2000; 107 Hanaor (10.1016/j.jiec.2021.04.045_bib0070) 2011; 46 Karunakaran (10.1016/j.jiec.2021.04.045_bib0165) 2010; 352 Stöber (10.1016/j.jiec.2021.04.045_bib0145) 1968; 26 Kim (10.1016/j.jiec.2021.04.045_bib0090) 2019; 9 Byrne (10.1016/j.jiec.2021.04.045_bib0115) 2019; 246 Khan (10.1016/j.jiec.2021.04.045_bib0060) 2014; 2 Wang (10.1016/j.jiec.2021.04.045_bib0120) 2016; 116 Suzuki (10.1016/j.jiec.2021.04.045_bib0020) 2015; 7 Guo (10.1016/j.jiec.2021.04.045_bib0025) 2003; 42 Augustynski (10.1016/j.jiec.2021.04.045_bib0190) 1993; 38 Murcia (10.1016/j.jiec.2021.04.045_bib0055) 2015; 179 Marschall (10.1016/j.jiec.2021.04.045_bib0180) 2014; 24 Sajjad (10.1016/j.jiec.2021.04.045_bib0235) 2013; 3 Adán (10.1016/j.jiec.2021.04.045_bib0050) 2007; 72 Pelaez (10.1016/j.jiec.2021.04.045_bib0075) 2012; 125 Lin (10.1016/j.jiec.2021.04.045_bib0015) 2009; 161 Moon (10.1016/j.jiec.2021.04.045_bib0160) 2018; 9 Hurum (10.1016/j.jiec.2021.04.045_bib0175) 2003; 107 Linsebigler (10.1016/j.jiec.2021.04.045_bib0200) 1995; 95 Sathish (10.1016/j.jiec.2021.04.045_bib0100) 2005; 17 Lin (10.1016/j.jiec.2021.04.045_bib0105) 2014; 237 Joo (10.1016/j.jiec.2021.04.045_bib0130) 2013; 6 Joo (10.1016/j.jiec.2021.04.045_bib0150) 2012; 22 Zhang (10.1016/j.jiec.2021.04.045_bib0085) 2016; 9 Yun (10.1016/j.jiec.2021.04.045_bib0210) 2010; 12 Xiong (10.1016/j.jiec.2021.04.045_bib0045) 2016; 120 Qu (10.1016/j.jiec.2021.04.045_bib0005) 2008; 20 Joo (10.1016/j.jiec.2021.04.045_bib0140) 2013; 23 Fujishima (10.1016/j.jiec.2021.04.045_bib0205) 2008; 63 Pongwan (10.1016/j.jiec.2021.04.045_bib0225) 2016; 42 Reda (10.1016/j.jiec.2021.04.045_bib0230) 2020; 13 Zagklis (10.1016/j.jiec.2021.04.045_bib0035) 2015; 285 Yun (10.1016/j.jiec.2021.04.045_bib0095) 2010; 94 Joo (10.1016/j.jiec.2021.04.045_bib0135) 2013; 6 Hu (10.1016/j.jiec.2021.04.045_bib0170) 2016; 382 Yamagishi (10.1016/j.jiec.2021.04.045_bib0040) 2001; 35 Quesada (10.1016/j.jiec.2021.04.045_bib0080) 2018; 551 Fox (10.1016/j.jiec.2021.04.045_bib0195) 1993; 93 Joo (10.1016/j.jiec.2021.04.045_bib0155) 2016; 264 Singh (10.1016/j.jiec.2021.04.045_bib0030) 2016; 6 Bickley (10.1016/j.jiec.2021.04.045_bib0185) 1991; 92 Peng (10.1016/j.jiec.2021.04.045_bib0125) 2009; 113 Bhuyan (10.1016/j.jiec.2021.04.045_bib0220) 2015; 17 Mathew (10.1016/j.jiec.2021.04.045_bib0110) 2018; 8 Kaur (10.1016/j.jiec.2021.04.045_bib0215) 2021; 32 Zhou (10.1016/j.jiec.2021.04.045_bib0065) 2014; 136 |
References_xml | – volume: 46 start-page: 855 year: 2011 ident: bib0070 publication-title: J. Mater. Sci. – volume: 2 start-page: 637 year: 2014 ident: bib0060 publication-title: J. Mater. Chem. A – volume: 113 start-page: 20240 year: 2009 ident: bib0125 publication-title: J. Phys. Chem. C – volume: 237 start-page: 131 year: 2014 ident: bib0105 publication-title: Chem. Eng. J. – volume: 125 start-page: 331 year: 2012 ident: bib0075 publication-title: Appl. Catal. B: Environ. – volume: 161 start-page: 231 year: 2009 ident: bib0015 publication-title: J. Hazard. Mater. – volume: 42 start-page: 2815 year: 2016 ident: bib0225 publication-title: Res. Chem. Intermed. – volume: 107 start-page: 391 year: 2000 ident: bib0010 publication-title: Environ. Pollut. – volume: 136 start-page: 9280 year: 2014 ident: bib0065 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 491 year: 2019 ident: bib0090 publication-title: Catalysts – volume: 92 start-page: 178 year: 1991 ident: bib0185 publication-title: J. Solid State Chem. – volume: 3 start-page: 12678 year: 2013 ident: bib0235 publication-title: RSC Adv. – volume: 23 start-page: 4246 year: 2013 ident: bib0140 publication-title: Adv. Funct. Mater. – volume: 352 start-page: 68 year: 2010 ident: bib0165 publication-title: J. Colloid Interface Sci. – volume: 63 start-page: 515 year: 2008 ident: bib0205 publication-title: Surf. Sci. Rep. – volume: 12 start-page: 769 year: 2010 ident: bib0210 publication-title: Electrochem. Commun. – volume: 551 start-page: 23 year: 2018 ident: bib0080 publication-title: Appl. Catal. A: Gen. – volume: 32 start-page: 1350 year: 2021 ident: bib0215 publication-title: Adv. Powder Technol. – volume: 20 start-page: 1 year: 2008 ident: bib0005 publication-title: J. Environ. Sci. – volume: 179 start-page: 305 year: 2015 ident: bib0055 publication-title: Appl. Catal. B: Environ. – volume: 38 start-page: 43 year: 1993 ident: bib0190 publication-title: Electrochim. Acta – volume: 382 start-page: 170 year: 2016 ident: bib0170 publication-title: Appl. Surf. Sci. – volume: 17 start-page: 288 year: 2015 ident: bib0220 publication-title: J. Nanopart. Res. – volume: 24 start-page: 2421 year: 2014 ident: bib0180 publication-title: Adv. Funct. Mater. – volume: 116 start-page: 10983 year: 2016 ident: bib0120 publication-title: Chem. Rev. – volume: 35 start-page: 3089 year: 2001 ident: bib0040 publication-title: Water Res. – volume: 6 start-page: 2001 year: 2013 ident: bib0130 publication-title: ChemSusChem – volume: 107 start-page: 4545 year: 2003 ident: bib0175 publication-title: J. Phys. Chem. B – volume: 93 start-page: 341 year: 1993 ident: bib0195 publication-title: Chem. Rev. – volume: 13 start-page: 86 year: 2020 ident: bib0230 publication-title: Arab. J. Chem. – volume: 95 start-page: 735 year: 1995 ident: bib0200 publication-title: Chem. Rev. – volume: 9 start-page: 499 year: 2016 ident: bib0085 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2067 year: 2018 ident: bib0110 publication-title: Appl. Sci. – volume: 42 start-page: 2450 year: 2003 ident: bib0025 publication-title: Ind. Eng. Chem. Res. – volume: 246 start-page: 266 year: 2019 ident: bib0115 publication-title: Appl. Catal. B: Environ. – volume: 72 start-page: 11 year: 2007 ident: bib0050 publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 54 year: 2015 ident: bib0020 publication-title: J. Water Process Eng. – volume: 6 start-page: 7466 year: 2016 ident: bib0030 publication-title: ACS Catal. – volume: 285 start-page: 69 year: 2015 ident: bib0035 publication-title: J. Hazard. Mater. – volume: 264 start-page: 261 year: 2016 ident: bib0155 publication-title: Catal. Today – volume: 120 start-page: 3906 year: 2016 ident: bib0045 publication-title: J. Phys. Chem. C – volume: 94 start-page: 241 year: 2010 ident: bib0095 publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 1715 year: 2018 ident: bib0160 publication-title: Beilstein J. Nanotechnol. – volume: 17 start-page: 6349 year: 2005 ident: bib0100 publication-title: Chem. Mater. – volume: 6 start-page: 2082 year: 2013 ident: bib0135 publication-title: Energy Environ. Sci. – volume: 22 start-page: 166 year: 2012 ident: bib0150 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 62 year: 1968 ident: bib0145 publication-title: J. Colloid Interface Sci. – volume: 94 start-page: 241 year: 2010 ident: 10.1016/j.jiec.2021.04.045_bib0095 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2009.11.014 – volume: 3 start-page: 12678 year: 2013 ident: 10.1016/j.jiec.2021.04.045_bib0235 publication-title: RSC Adv. doi: 10.1039/c3ra23347b – volume: 35 start-page: 3089 year: 2001 ident: 10.1016/j.jiec.2021.04.045_bib0040 publication-title: Water Res. doi: 10.1016/S0043-1354(01)00032-X – volume: 32 start-page: 1350 year: 2021 ident: 10.1016/j.jiec.2021.04.045_bib0215 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2021.02.037 – volume: 93 start-page: 341 year: 1993 ident: 10.1016/j.jiec.2021.04.045_bib0195 publication-title: Chem. Rev. doi: 10.1021/cr00017a016 – volume: 551 start-page: 23 year: 2018 ident: 10.1016/j.jiec.2021.04.045_bib0080 publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2017.12.004 – volume: 2 start-page: 637 year: 2014 ident: 10.1016/j.jiec.2021.04.045_bib0060 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14052K – volume: 264 start-page: 261 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0155 publication-title: Catal. Today doi: 10.1016/j.cattod.2015.09.008 – volume: 161 start-page: 231 year: 2009 ident: 10.1016/j.jiec.2021.04.045_bib0015 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.03.076 – volume: 125 start-page: 331 year: 2012 ident: 10.1016/j.jiec.2021.04.045_bib0075 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.05.036 – volume: 23 start-page: 4246 year: 2013 ident: 10.1016/j.jiec.2021.04.045_bib0140 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300255 – volume: 6 start-page: 2001 year: 2013 ident: 10.1016/j.jiec.2021.04.045_bib0130 publication-title: ChemSusChem doi: 10.1002/cssc.201300416 – volume: 38 start-page: 43 year: 1993 ident: 10.1016/j.jiec.2021.04.045_bib0190 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(93)80008-N – volume: 107 start-page: 391 year: 2000 ident: 10.1016/j.jiec.2021.04.045_bib0010 publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(99)00173-6 – volume: 6 start-page: 7466 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0030 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02296 – volume: 7 start-page: 54 year: 2015 ident: 10.1016/j.jiec.2021.04.045_bib0020 publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2015.04.011 – volume: 285 start-page: 69 year: 2015 ident: 10.1016/j.jiec.2021.04.045_bib0035 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.11.038 – volume: 46 start-page: 855 year: 2011 ident: 10.1016/j.jiec.2021.04.045_bib0070 publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-5113-0 – volume: 95 start-page: 735 year: 1995 ident: 10.1016/j.jiec.2021.04.045_bib0200 publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – volume: 17 start-page: 288 year: 2015 ident: 10.1016/j.jiec.2021.04.045_bib0220 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-3093-3 – volume: 42 start-page: 2450 year: 2003 ident: 10.1016/j.jiec.2021.04.045_bib0025 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020344t – volume: 12 start-page: 769 year: 2010 ident: 10.1016/j.jiec.2021.04.045_bib0210 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.03.029 – volume: 13 start-page: 86 year: 2020 ident: 10.1016/j.jiec.2021.04.045_bib0230 publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2017.02.002 – volume: 9 start-page: 491 year: 2019 ident: 10.1016/j.jiec.2021.04.045_bib0090 publication-title: Catalysts doi: 10.3390/catal9060491 – volume: 26 start-page: 62 year: 1968 ident: 10.1016/j.jiec.2021.04.045_bib0145 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 382 start-page: 170 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0170 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.126 – volume: 9 start-page: 1715 year: 2018 ident: 10.1016/j.jiec.2021.04.045_bib0160 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.163 – volume: 113 start-page: 20240 year: 2009 ident: 10.1016/j.jiec.2021.04.045_bib0125 publication-title: J. Phys. Chem. C doi: 10.1021/jp906937e – volume: 17 start-page: 6349 year: 2005 ident: 10.1016/j.jiec.2021.04.045_bib0100 publication-title: Chem. Mater. doi: 10.1021/cm052047v – volume: 6 start-page: 2082 year: 2013 ident: 10.1016/j.jiec.2021.04.045_bib0135 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41155a – volume: 116 start-page: 10983 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0120 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00731 – volume: 42 start-page: 2815 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0225 publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-015-2179-y – volume: 246 start-page: 266 year: 2019 ident: 10.1016/j.jiec.2021.04.045_bib0115 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.01.058 – volume: 72 start-page: 11 year: 2007 ident: 10.1016/j.jiec.2021.04.045_bib0050 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2006.09.018 – volume: 20 start-page: 1 year: 2008 ident: 10.1016/j.jiec.2021.04.045_bib0005 publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)60001-7 – volume: 107 start-page: 4545 year: 2003 ident: 10.1016/j.jiec.2021.04.045_bib0175 publication-title: J. Phys. Chem. B doi: 10.1021/jp0273934 – volume: 92 start-page: 178 year: 1991 ident: 10.1016/j.jiec.2021.04.045_bib0185 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(91)90255-G – volume: 63 start-page: 515 year: 2008 ident: 10.1016/j.jiec.2021.04.045_bib0205 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2008.10.001 – volume: 179 start-page: 305 year: 2015 ident: 10.1016/j.jiec.2021.04.045_bib0055 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.05.040 – volume: 24 start-page: 2421 year: 2014 ident: 10.1016/j.jiec.2021.04.045_bib0180 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303214 – volume: 120 start-page: 3906 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0045 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11923 – volume: 352 start-page: 68 year: 2010 ident: 10.1016/j.jiec.2021.04.045_bib0165 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.08.012 – volume: 9 start-page: 499 year: 2016 ident: 10.1016/j.jiec.2021.04.045_bib0085 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03100A – volume: 136 start-page: 9280 year: 2014 ident: 10.1016/j.jiec.2021.04.045_bib0065 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504802q – volume: 22 start-page: 166 year: 2012 ident: 10.1016/j.jiec.2021.04.045_bib0150 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101927 – volume: 237 start-page: 131 year: 2014 ident: 10.1016/j.jiec.2021.04.045_bib0105 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.027 – volume: 8 start-page: 2067 year: 2018 ident: 10.1016/j.jiec.2021.04.045_bib0110 publication-title: Appl. Sci. doi: 10.3390/app8112067 |
SSID | ssj0060386 ssib009049966 ssib053391666 |
Score | 2.5098877 |
Snippet | [Display omitted]
•Cu doped TiO2 hollow nanostructures were synthesized for visible light responsive photocatalysis.•The Cu-doped TiO2 photocatalysts shows... We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible lightresponsive photocatalysis. Hollow Cu-doped TiO2... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 352 |
SubjectTerms | Cu-doped TiO2 Hollow nanostructure Photocatalyst Photodegradation Visible light responsive 화학공학 |
Title | Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions |
URI | https://dx.doi.org/10.1016/j.jiec.2021.04.045 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002742554 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2021, 99(0), , pp.352-363 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze9EH8RO_CeKb1LVpUtNHGY6pMB-csLeQtKlWSzvGxDf_du_aVCbIHoRCaciVcgl3v0vvfkfIRZQIJLbKvDiD2IRHvvHMdRJ7kU5DyTNf2ibbYhyNnvn9VEw7ZNDWwmBapbP9jU2vrbUb6Ttt9md53n8KADkAIJ8yZBHlWEfeY-DtZZf0bu4eRuPWIEd-WDd8xPkeCrjamSbN6y23yGTIgprxFKua_vZPa-U8W_I8wy2y6SAjvWm-apt0bLlDNpaIBHeJGXx4aTWzKZ3kj4yCRSuqT1rqsmr4YT8gqKYATynAPWrL1_q3P529VouqPr9BWhKK5WRzisXmprC0wKidQrScNklde2QyvJ0MRp7rnuAlYcgXnjFgA7OUpTKJrYhFmLHEikzHoYYQSUBgagS2mTc20lGkATdpQGOx1RmISBPuk25ZlfaA0JT7GgwDs1ozbqTR0teGCRjwAwve7pAErcpU4pjFscFFodoUsjeFalaoZuVzuMQhufyRmTW8Gitni3Yl1K_docDwr5Q7h2VT70mukEYb7y-Vep8rCBbuVCy5jAU7-ufLj8k6PuFBLxMnpAvraU8BoSzMGVm7-grO3D78Bmvl5Sc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze1AfxCvOaxDfpKxLk9o-juHY3JwPTthbSNrUdSvtGBv-fc_pRSaID0KhkCalnIQv30nP-Q4h924gUNgqsvwIfBPu2trSj4FvuSp0PB7ZnimiLcZu_50_T8W0RrpVLgyGVZbYX2B6jtZlS6u0ZmsZx623NjAHIORThiqiHPPIGxyLWtdJozMY9scVILu2kxd8xP4WDihzZ4owr3lsUMmQtXPFU8xq-n1_2klX0dbO0zskByVlpJ3iq45IzaTHZH9LSPCE6O7GCrOlCekkfmUUEC3JPmmq0qzQh92AU02BnlKge9Sks_y3P13OsnWWn9-gLAnFdLIVxWRznRiaoNdOwVsOi6CuUzLpPU26fausnmAFjsPXltaAgVHIQi_wjfCFE7HAiEj5jgIXSYBjqgWWmdfGVa6rgDcpYGO-UREM8bRzRupplppzQkNuKwAGZpRiXHtaebbSTECD3Taw2zVJuzKZDEplcSxwkcgqhGwu0cwSzSxtDpdokofvMctCV-PP3qKaCfljdUgA_j_H3cG0yUUQS5TRxvtHJhcrCc7CQPoe93zBLv758luy25-8jORoMB5ekj18goe-TFyROsytuQa2stY35Wr8AtRC5w0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-doped+TiO2+hollow+nanostructures+for+the+enhanced+photocatalysis+under+visible+light+conditions&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Lee%2C+Hyeonkyeong&rft.au=Jang%2C+Hyun+Sung&rft.au=Kim%2C+Na+Yeon&rft.au=Joo%2C+Ji+Bong&rft.date=2021-07-25&rft.pub=Elsevier+B.V&rft.issn=1226-086X&rft.volume=99&rft.spage=352&rft.epage=363&rft_id=info:doi/10.1016%2Fj.jiec.2021.04.045&rft.externalDocID=S1226086X21002471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |