LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system
Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious content generated from different types of cyber-attacks. Though NIDSs can classify frequent attacks correctly, their performance declines on i...
Saved in:
| Published in | Computer networks (Amsterdam, Netherlands : 1999) Vol. 192; p. 108076 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
19.06.2021
Elsevier Sequoia S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1389-1286 1872-7069 |
| DOI | 10.1016/j.comnet.2021.108076 |
Cover
| Abstract | Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious content generated from different types of cyber-attacks. Though NIDSs can classify frequent attacks correctly, their performance declines on infrequent network intrusions. This paper proposes LIO-IDS based on Long Short-Term Memory (LSTM) classifier and Improved One-vs-One technique for handling both frequent and infrequent network intrusions. LIO-IDS is a two-layer Anomaly-based NIDS (A-NIDS) that detects different network intrusions with high Accuracy and low computational time. Layer 1 of LIO-IDS identifies intrusions from normal network traffic by using the LSTM classifier. Layer 2 uses ensemble algorithms to classify the detected intrusions into different attack classes. This paper also proposes an Improved One-vs-One (I-OVO) technique for performing multi-class classification at the second layer of the proposed LIO-IDS. In contrast to the traditional OVO technique, the proposed I-OVO technique uses only three classifiers to test each sample, thereby reducing the testing time significantly. Also, oversampling techniques have been used at Layer 2 to enhance the detection ability of the proposed LIO-IDS. The performance of the proposed system has been evaluated in terms of Accuracy, Recall, Precision, F1-score, Receiver Characteristics Operating (ROC) curve, Area Under ROC (AUC) values, training time and testing time for the NSL-KDD, CIDDS-001, and CICIDS2017 datasets. The proposed LIO-IDS shows significant improvement in the results as compared to its counterparts. High attack detection rates and short computational times make the proposed LIO-IDS suitable to be deployed in the real-world for network-based intrusion detection. |
|---|---|
| AbstractList | Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious content generated from different types of cyber-attacks. Though NIDSs can classify frequent attacks correctly, their performance declines on infrequent network intrusions. This paper proposes LIO-IDS based on Long Short-Term Memory (LSTM) classifier and Improved One-vs-One technique for handling both frequent and infrequent network intrusions. LIO-IDS is a two-layer Anomaly-based NIDS (A-NIDS) that detects different network intrusions with high Accuracy and low computational time. Layer 1 of LIO-IDS identifies intrusions from normal network traffic by using the LSTM classifier. Layer 2 uses ensemble algorithms to classify the detected intrusions into different attack classes. This paper also proposes an Improved One-vs-One (I-OVO) technique for performing multi-class classification at the second layer of the proposed LIO-IDS. In contrast to the traditional OVO technique, the proposed I-OVO technique uses only three classifiers to test each sample, thereby reducing the testing time significantly. Also, oversampling techniques have been used at Layer 2 to enhance the detection ability of the proposed LIO-IDS. The performance of the proposed system has been evaluated in terms of Accuracy, Recall, Precision, F1-score, Receiver Characteristics Operating (ROC) curve, Area Under ROC (AUC) values, training time and testing time for the NSL-KDD, CIDDS-001, and CICIDS2017 datasets. The proposed LIO-IDS shows significant improvement in the results as compared to its counterparts. High attack detection rates and short computational times make the proposed LIO-IDS suitable to be deployed in the real-world for network-based intrusion detection. |
| ArticleNumber | 108076 |
| Author | Bedi, Punam Jindal, Vinita Gupta, Neha |
| Author_xml | – sequence: 1 givenname: Neha surname: Gupta fullname: Gupta, Neha email: neha.phd.2018@gmail.com organization: Department of Computer Science, University of Delhi, India – sequence: 2 givenname: Vinita surname: Jindal fullname: Jindal, Vinita email: vjindal@keshav.du.ac.in organization: Keshav Mahavidyalaya, University of Delhi, India – sequence: 3 givenname: Punam surname: Bedi fullname: Bedi, Punam email: pbedi@cs.du.ac.in organization: Department of Computer Science, University of Delhi, India |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw8Bz1uzX9msB0HqRwsVD-o5ZJOppmyzNUkL_ffOsp48KARmmJl35s0zISPXOSDkMmWzlKX8ejPT3dZBnGUsS7EkWMVPyDgVVZZUjNcjzHNRJ2km-BmZhLBhjBVFJsakXS1fkuX96w1dKGda6z6oblUI1G4b1Sqnge5DX129vj1THMHGzncHMBQ9JIeQYKAR9KezX3ug1uGLHjWdowawEfssHEOE7Tk5Xas2wMVPnJL3x4e3-SJZvTwt53erROd5EZNGQMNVDkIZo0XOWJUaKCte1abmXK1rVjMQhQLDtG54IzJdQsmEqUpWl7rJp-Rq2ItO0VSIctPtvcOTMitLXuRCZBVO3QxT2ncheFhLbaPq7UavbCtTJnu6ciMHurKnKwe6KC5-iXfebpU__ie7HWSA3z9Y8DJoC0jZWI-opOns3wu-AaH-mPU |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124982 crossref_primary_10_3390_fi17010025 crossref_primary_10_1007_s10207_023_00718_7 crossref_primary_10_1016_j_jisa_2025_104013 crossref_primary_10_1016_j_neunet_2024_107064 crossref_primary_10_1371_journal_pone_0302294 crossref_primary_10_32604_cmc_2024_048431 crossref_primary_10_23939_mmc2024_04_930 crossref_primary_10_1007_s10115_025_02366_w crossref_primary_10_1016_j_cose_2021_102499 crossref_primary_10_1007_s10207_023_00682_2 crossref_primary_10_1016_j_neucom_2023_126886 crossref_primary_10_1007_s11042_023_17864_8 crossref_primary_10_1155_2022_4748528 crossref_primary_10_37394_23209_2024_21_43 crossref_primary_10_1016_j_micpro_2022_104752 crossref_primary_10_1109_ACCESS_2024_3350197 crossref_primary_10_1016_j_seta_2022_102311 crossref_primary_10_1016_j_inffus_2023_101804 crossref_primary_10_1016_j_comnet_2025_111147 crossref_primary_10_1186_s13635_023_00139_y crossref_primary_10_32604_cmc_2023_046237 crossref_primary_10_1115_1_4064375 crossref_primary_10_1109_JIOT_2024_3459015 crossref_primary_10_32604_cmc_2023_039733 crossref_primary_10_1016_j_asoc_2024_112282 crossref_primary_10_4018_IJISP_317113 crossref_primary_10_35940_ijitee_B1032_14020125 crossref_primary_10_1016_j_cose_2022_102748 crossref_primary_10_1007_s11042_022_14121_2 crossref_primary_10_1016_j_comnet_2023_109982 crossref_primary_10_1109_JIOT_2023_3342638 crossref_primary_10_1049_cps2_12085 crossref_primary_10_1007_s10462_024_10759_6 crossref_primary_10_3934_era_2023127 crossref_primary_10_1109_ACCESS_2024_3384528 crossref_primary_10_3390_sym16010042 crossref_primary_10_1007_s12083_024_01721_y crossref_primary_10_1007_s12083_023_01510_z crossref_primary_10_1016_j_future_2024_107531 crossref_primary_10_1016_j_jisa_2023_103434 crossref_primary_10_1007_s42979_023_01926_7 crossref_primary_10_1109_TII_2023_3314208 crossref_primary_10_3390_app12136645 crossref_primary_10_3390_info14020130 crossref_primary_10_1016_j_comnet_2024_110495 crossref_primary_10_4236_jcc_2022_1011004 crossref_primary_10_3390_app13042576 crossref_primary_10_1002_ett_4522 crossref_primary_10_1007_s11276_023_03495_2 |
| Cites_doi | 10.1016/j.asoc.2020.106301 10.1186/s40537-018-0151-6 10.1109/ACCESS.2017.2780250 10.1145/2716260 10.1109/COMST.2015.2494502 10.1162/neco.1997.9.8.1735 10.1023/A:1018054314350 10.1016/j.ins.2017.02.016 10.1109/ACCESS.2019.2909807 10.1109/ACCESS.2020.3000179 10.1016/j.comnet.2020.107315 10.1023/A:1010933404324 10.1016/j.engappai.2018.06.002 10.4310/SII.2009.v2.n3.a8 10.1016/j.jksuci.2018.03.011 10.1145/3313778 10.1504/IJKESDP.2011.039875 10.3390/app10030794 10.1016/j.patcog.2014.07.023 10.1109/ACCESS.2019.2895334 10.1145/2542049 10.3390/info9070149 10.1109/COMST.2019.2896380 10.1016/j.comnet.2018.11.010 10.1613/jair.953 10.1109/ACCESS.2020.2972627 10.1007/s13748-016-0094-0 10.1016/j.comnet.2020.107247 10.1016/j.eswa.2016.12.035 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Sequoia S.A. Jun 19, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Jun 19, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.comnet.2021.108076 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7069 |
| ExternalDocumentID | 10_1016_j_comnet_2021_108076 S1389128621001675 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 77K 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TAE TN5 ZMT ~G- 29F 77I AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABXDB ACLOT ACNNM ACVFH ADCNI ADJOM AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS EJD F0J FGOYB HZ~ R2- SEW ZY4 ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV E3H F2A JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c334t-b8eb6a3e8addc830071de57679d966af9090e84aed0ccb6b82c5e508d75095cb3 |
| IEDL.DBID | .~1 |
| ISSN | 1389-1286 |
| IngestDate | Fri Jul 25 03:33:16 EDT 2025 Wed Oct 29 21:12:11 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 23 02:46:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Network security Cybersecurity Network-based intrusion detection system (NIDS) Long short-term memory (LSTM) Class imbalance problem Improved one-vs-one technique (I-OVO) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-b8eb6a3e8addc830071de57679d966af9090e84aed0ccb6b82c5e508d75095cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2556438827 |
| PQPubID | 47119 |
| ParticipantIDs | proquest_journals_2556438827 crossref_citationtrail_10_1016_j_comnet_2021_108076 crossref_primary_10_1016_j_comnet_2021_108076 elsevier_sciencedirect_doi_10_1016_j_comnet_2021_108076 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-19 |
| PublicationDateYYYYMMDD | 2021-06-19 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer networks (Amsterdam, Netherlands : 1999) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia S.A |
| References | Salo, Nassif, Essex (bib0027) 2019; 148 Mikhail, Fossaceca, Iammartino (bib0041) 2019; 10 Zhang, Luo, Yu, Yuan, Tang (bib0043) 2018; 74 Rekha, Tyagi (bib0013) 2020 Tang, Mhamdi, McLernon, Zaidi, Ghogho (bib0022) 2016 Kaur (bib0030) 2020; 55 Bedi, Gupta, Jindal (bib0036) 2019 Alabdallah, Awad (bib0042) 2018; 12 Aldweesh, Derhab, Emam (bib0007) 2020; 189 Sharafaldin, Lashkari, Ghorbani (bib0049) 2018 Su, Sun, Zhu, Wang, Li (bib0031) 2020; 8 Nguyen, Cooper, Kamei (bib0015) 2011; 3 Mitchell, Chen (bib0033) 2014; 46 Bedi, Gupta, Jindal (bib0037) 2020 Zhang, Huang, Wu, Li (bib0038) 2020; 177 Liu, Bi, Fan (bib0044) 2017; 394 Zhu, Zou, Rosset, Hastie (bib0012) 2009; 2 M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, "NSL-KDD dataset," 2009. [Online]. Available Han, Wang, Mao (bib0016) 2005 Fernández, García, Galar, Prati, Krawczyk, Herrera (bib0004) 2018 Hindy, Brosset, Bayne, Seeam, Tachtatzis, Atkinson, Bellekens (bib0035) 2020; 8 Radoglou-Grammatikis, Sarigiannidis (bib0034) 2019; 7 Chuan-long, Zhu, Fei, He (bib0020) 2017; 5 Al-Obeidat, El-Alfy (bib0029) 2017; 23 Aljbali, Roy (bib0018) 2020 Breiman (bib0010) October 2001; 45 Masdari, Khezri (bib0017) 2020; 92 Gonzalez-Cuautle, Hernandez-Suarez, Sanchez-Perez, Toscano-Medina, Portillo-Portillo, Olivares-Mercado, Perez-Meana, Sandoval-Orozco (bib0039) 2020; 10 Ring, Wunderlich, Grüdl, Landes, Hotho (bib0048) 2017 Lee, Park (bib0002) 2019 Breiman (bib0008) 1996; 24 Chawla, Bowyer, Hall, Kegelmeyer (bib0014) 2002; 16 Chou, Jiang (bib0047) 2020 Vasilomanolakis, Karuppayah, Mühlhäuser, Fischer (bib0001) 2015; 47 Wang, Sheng, Wang, Zeng, Ye, Huang, Zhou (bib0025) 2017; 6 Galar, Fernández, Barrenechea, Herrera (bib0045) 2015; 48 Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (bib0023) 2019; 7 Buczak, Guven (bib0009) 2015; 18 Mazini, Shirazi, Mahdavi (bib0028) 2019; 31 Ferrag, Maglaras, Moschoyiannis, Janicke (bib0005) 2020; 50 [Accessed 7 9 2019]. Hochreiter, Schmidhuber (bib0006) 1997; 9 Freund, Schapire (bib0011) 1999; 14 Sun, Liu, Li, Liu, Lu, Hao, Chen (bib0024) 2020; 2020 Zhou, Cheng, Jiang, Dai (bib0026) 2020; 174 Bagui, Li (bib0050) 2021; 8 Dhaliwal, Nahid, Abbas (bib0021) 2018; 9 Pavan Kumar, Jayagopal (bib0040) 2019 Chaabouni, Mosbah, Zemmari, Sauvignac, Faruki (bib0032) 2019; 21 Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (bib0003) 2017; 73 Althubiti, Jones, Roy (bib0019) 2018 Bartosz (bib0051) 2016; 5 Leevy, Khoshgoftaar, Bauder, Seliya (bib0052) 2018; 5 Mitchell (10.1016/j.comnet.2021.108076_bib0033) 2014; 46 Nguyen (10.1016/j.comnet.2021.108076_bib0015) 2011; 3 Bagui (10.1016/j.comnet.2021.108076_bib0050) 2021; 8 Alabdallah (10.1016/j.comnet.2021.108076_bib0042) 2018; 12 Hindy (10.1016/j.comnet.2021.108076_bib0035) 2020; 8 Freund (10.1016/j.comnet.2021.108076_bib0011) 1999; 14 Tang (10.1016/j.comnet.2021.108076_bib0022) 2016 Fernández (10.1016/j.comnet.2021.108076_bib0004) 2018 Chuan-long (10.1016/j.comnet.2021.108076_bib0020) 2017; 5 Aljbali (10.1016/j.comnet.2021.108076_bib0018) 2020 Kaur (10.1016/j.comnet.2021.108076_bib0030) 2020; 55 Lee (10.1016/j.comnet.2021.108076_bib0002) 2019 Chaabouni (10.1016/j.comnet.2021.108076_bib0032) 2019; 21 Ferrag (10.1016/j.comnet.2021.108076_bib0005) 2020; 50 Breiman (10.1016/j.comnet.2021.108076_bib0010) 2001; 45 Zhou (10.1016/j.comnet.2021.108076_bib0026) 2020; 174 Al-Obeidat (10.1016/j.comnet.2021.108076_bib0029) 2017; 23 Mazini (10.1016/j.comnet.2021.108076_bib0028) 2019; 31 Bedi (10.1016/j.comnet.2021.108076_bib0036) 2019 Su (10.1016/j.comnet.2021.108076_bib0031) 2020; 8 Bartosz (10.1016/j.comnet.2021.108076_bib0051) 2016; 5 Gonzalez-Cuautle (10.1016/j.comnet.2021.108076_bib0039) 2020; 10 Hochreiter (10.1016/j.comnet.2021.108076_bib0006) 1997; 9 Mikhail (10.1016/j.comnet.2021.108076_bib0041) 2019; 10 Zhang (10.1016/j.comnet.2021.108076_bib0038) 2020; 177 Masdari (10.1016/j.comnet.2021.108076_bib0017) 2020; 92 Vinayakumar (10.1016/j.comnet.2021.108076_bib0023) 2019; 7 Breiman (10.1016/j.comnet.2021.108076_bib0008) 1996; 24 Bedi (10.1016/j.comnet.2021.108076_bib0037) 2020 Zhang (10.1016/j.comnet.2021.108076_bib0043) 2018; 74 Radoglou-Grammatikis (10.1016/j.comnet.2021.108076_bib0034) 2019; 7 Ring (10.1016/j.comnet.2021.108076_bib0048) 2017 Dhaliwal (10.1016/j.comnet.2021.108076_bib0021) 2018; 9 Pavan Kumar (10.1016/j.comnet.2021.108076_bib0040) 2019 Galar (10.1016/j.comnet.2021.108076_bib0045) 2015; 48 Aldweesh (10.1016/j.comnet.2021.108076_bib0007) 2020; 189 10.1016/j.comnet.2021.108076_bib0046 Leevy (10.1016/j.comnet.2021.108076_bib0052) 2018; 5 Chawla (10.1016/j.comnet.2021.108076_bib0014) 2002; 16 Althubiti (10.1016/j.comnet.2021.108076_bib0019) 2018 Vasilomanolakis (10.1016/j.comnet.2021.108076_bib0001) 2015; 47 Chou (10.1016/j.comnet.2021.108076_bib0047) 2020 Zhu (10.1016/j.comnet.2021.108076_bib0012) 2009; 2 Salo (10.1016/j.comnet.2021.108076_bib0027) 2019; 148 Haixiang (10.1016/j.comnet.2021.108076_bib0003) 2017; 73 Sun (10.1016/j.comnet.2021.108076_bib0024) 2020; 2020 Liu (10.1016/j.comnet.2021.108076_bib0044) 2017; 394 Rekha (10.1016/j.comnet.2021.108076_bib0013) 2020 Sharafaldin (10.1016/j.comnet.2021.108076_bib0049) 2018 Han (10.1016/j.comnet.2021.108076_bib0016) 2005 Wang (10.1016/j.comnet.2021.108076_bib0025) 2017; 6 Buczak (10.1016/j.comnet.2021.108076_bib0009) 2015; 18 |
| References_xml | – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib0014 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – volume: 23 start-page: 777 year: 2017 end-page: 791 ident: bib0029 article-title: Hybrid multicriteria fuzzy classification of network traffic patterns, anomalies, and protocols publication-title: Pers Ubiquit Comput. – volume: 7 start-page: 41525 year: 2019 end-page: 41550 ident: bib0023 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access – volume: 31 start-page: 541 year: 2019 end-page: 553 ident: bib0028 article-title: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms publication-title: J. King Saud Univ. - Comput. Inf. Sci. – year: 2018 ident: bib0049 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018) – volume: 5 start-page: 1 year: 2018 end-page: 30 ident: bib0052 article-title: A survey on addressing high-class imbalance in big data publication-title: J. Big Data – start-page: 1 year: 2019 end-page: 8 ident: bib0002 article-title: GAN-based Imbalanced Data Intrusion Detection System – volume: 9 start-page: 149 year: 2018 ident: bib0021 article-title: Effective intrusion detection system using XGBoost publication-title: Information – start-page: 1 year: 2020 end-page: 38 ident: bib0047 article-title: Data-Driven Network Intrusion Detection: A Taxonomy of Challenges and Methods – start-page: 1 year: 2018 end-page: 377 ident: bib0004 article-title: Learning from Imbalanced Data Sets – volume: 92 year: 2020 ident: bib0017 article-title: A survey and taxonomy of the fuzzy signature-based intrusion detection systems publication-title: Appl. Soft Comput. J. – volume: 73 start-page: 220 year: 2017 end-page: 239 ident: bib0003 article-title: Learning from class-imbalanced data: review of methods and applications publication-title: Expert. Syst. Appl. – volume: 45 start-page: 5 year: October 2001 end-page: 32 ident: bib0010 article-title: Random forests publication-title: Mach Learn – volume: 8 start-page: 29575 year: 2020 end-page: 29585 ident: bib0031 article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset publication-title: IEEE Access – volume: 394 start-page: 38 year: 2017 end-page: 52 ident: bib0044 article-title: A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm publication-title: Inf Sci (Ny) – volume: 189 year: 2020 ident: bib0007 article-title: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues publication-title: Knowl. Based Syst. – volume: 7 start-page: 46595 year: 2019 end-page: 46620 ident: bib0034 article-title: Securing the smart grid: a comprehensive compilation of intrusion detection and prevention systems publication-title: IEEE Access – volume: 2020 start-page: 1 year: 2020 end-page: 11 ident: bib0024 article-title: DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system publication-title: Sec. Commun. Netw. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0008 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 48 start-page: 28 year: 2015 end-page: 42 ident: bib0045 article-title: DRCW-OVO: distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems publication-title: Pattern Recognit. – volume: 5 start-page: 21954 year: 2017 end-page: 21961 ident: bib0020 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access – year: 2016 ident: bib0022 article-title: Deep learning approach for network intrusion detection in software defined networking publication-title: International Conference on Wireless Networks and Mobile Communications (WINCOM) – year: 2020 ident: bib0013 article-title: Necessary information to know to solve class imbalance problem: from a user's perspective publication-title: Proceedings of International Conference on Recent Innovations in Computing 2019 – reference: M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, "NSL-KDD dataset," 2009. [Online]. Available: – volume: 6 start-page: 1792 year: 2017 end-page: 1806 ident: bib0025 article-title: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection publication-title: IEEE Access – volume: 8 start-page: 104650 year: 2020 end-page: 104675 ident: bib0035 article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 19 ident: bib0037 article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems publication-title: Appl. Intell. – volume: 3 start-page: 4 year: 2011 end-page: 21 ident: bib0015 article-title: Borderline over-sampling for imbalanced data classification publication-title: Int. J. Knowl. Eng.Soft Data Paradigms – volume: 2 start-page: 349 year: 2009 end-page: 360 ident: bib0012 article-title: Multi-class AdaBoost publication-title: Stat. Interface – volume: 12 start-page: 5143 year: 2018 end-page: 5158 ident: bib0042 article-title: Using weighted support vector machine to address the imbalanced classes problem of intrusion detection system publication-title: KSII Trans. Internet Inf. Syst. (TIIS) – volume: 8 start-page: 1 year: 2021 end-page: 41 ident: bib0050 article-title: Resampling imbalanced data for network intrusion detection datasets publication-title: J Big Data – volume: 18 start-page: 1153 year: 2015 end-page: 1176 ident: bib0009 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surveys Tutor. – volume: 148 start-page: 164 year: 2019 end-page: 175 ident: bib0027 article-title: Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection publication-title: Comput. Netw. – volume: 174 year: 2020 ident: bib0026 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Comput. Netw. – volume: 47 start-page: 1 year: 2015 end-page: 33 ident: bib0001 article-title: Taxonomy and survey of collaborative intrusion detection publication-title: ACM Comput. Surv. – volume: 5 start-page: 221 year: 2016 end-page: 232 ident: bib0051 article-title: Learning from imbalanced data: open challenges and future directions publication-title: Prog. Artif. Intell. – volume: 177 year: 2020 ident: bib0038 article-title: An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset publication-title: Comput. Netw. – year: 2020 ident: bib0018 article-title: Anomaly detection using bidirectional LSTM publication-title: Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing – volume: 50 year: 2020 ident: bib0005 article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study publication-title: J. Inf. Sec. Appl. – volume: 55 start-page: 1 year: 2020 end-page: 14 ident: bib0030 article-title: A comparison of two hybrid ensemble techniques for network anomaly detection in spark distributed environment publication-title: J. Inf. Sec. Appl. – start-page: 1 year: 2019 end-page: 8 ident: bib0040 article-title: A preprocessing method combined with an ensemble framework for the multiclass imbalanced data classification publication-title: Int. J. Comput. Appl. – year: 2018 ident: bib0019 article-title: LSTM for anomaly-based network intrusion detection publication-title: 2018 28th International Telecommunication Networks and Applications Conference (ITNAC) – year: 2019 ident: bib0036 article-title: Siam-IDS: handling class imbalance problem in intrusion detection systems using siamese neural network publication-title: Third International Conference on Computing and Network Communications – volume: 14 start-page: 771 year: 1999 end-page: 780 ident: bib0011 article-title: A short introduction to boosting publication-title: J. Japan. Soc. Artif. Intell. – year: 2005 ident: bib0016 article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning publication-title: Advances in Intelligent Computing (ICIC 2005) – volume: 21 start-page: 2671 year: 2019 end-page: 2701 ident: bib0032 article-title: Network intrusion detection for IoT security based on learning techniques publication-title: IEEE Commun. Surv. Tutor. – volume: 10 start-page: 1 year: 2020 end-page: 19 ident: bib0039 article-title: Synthetic minority oversampling technique for optimizing classification tasks in botnet and intrusion-detection-system datasets publication-title: Appl. Sci. – volume: 74 start-page: 43 year: 2018 end-page: 53 ident: bib0043 article-title: Integration of an improved dynamic ensemble selection approach to enhance one-vs-one scheme publication-title: Eng. Appl. Artif. Intell. – reference: . [Accessed 7 9 2019]. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0006 article-title: Long short-term memory publication-title: Neural. Comput. – volume: 10 start-page: 1 year: 2019 end-page: 27 ident: bib0041 article-title: A semi-boosted nested model with sensitivity-based weighted Binarization for multi-domain network intrusion detection publication-title: ACM Trans. Intell. Syst. Technol. – year: 2017 ident: bib0048 article-title: Flow-based benchmark data sets for intrusion detection publication-title: Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS) – volume: 46 year: 2014 ident: bib0033 article-title: A survey of intrusion detection techniques for cyber-physical systems publication-title: ACM Comput. Surv. – volume: 92 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0017 article-title: A survey and taxonomy of the fuzzy signature-based intrusion detection systems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2020.106301 – year: 2017 ident: 10.1016/j.comnet.2021.108076_bib0048 article-title: Flow-based benchmark data sets for intrusion detection – year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0019 article-title: LSTM for anomaly-based network intrusion detection – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0052 article-title: A survey on addressing high-class imbalance in big data publication-title: J. Big Data doi: 10.1186/s40537-018-0151-6 – volume: 6 start-page: 1792 year: 2017 ident: 10.1016/j.comnet.2021.108076_bib0025 article-title: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2780250 – volume: 47 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.comnet.2021.108076_bib0001 article-title: Taxonomy and survey of collaborative intrusion detection publication-title: ACM Comput. Surv. doi: 10.1145/2716260 – volume: 18 start-page: 1153 issue: 2 year: 2015 ident: 10.1016/j.comnet.2021.108076_bib0009 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surveys Tutor. doi: 10.1109/COMST.2015.2494502 – volume: 12 start-page: 5143 issue: 10 year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0042 article-title: Using weighted support vector machine to address the imbalanced classes problem of intrusion detection system publication-title: KSII Trans. Internet Inf. Syst. (TIIS) – volume: 9 start-page: 1735 issue: 15 November (8) year: 1997 ident: 10.1016/j.comnet.2021.108076_bib0006 article-title: Long short-term memory publication-title: Neural. Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 50 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0005 article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study publication-title: J. Inf. Sec. Appl. – volume: 23 start-page: 777 issue: 16 November year: 2017 ident: 10.1016/j.comnet.2021.108076_bib0029 article-title: Hybrid multicriteria fuzzy classification of network traffic patterns, anomalies, and protocols publication-title: Pers Ubiquit Comput. – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.comnet.2021.108076_bib0008 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – start-page: 1 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0040 article-title: A preprocessing method combined with an ensemble framework for the multiclass imbalanced data classification publication-title: Int. J. Comput. Appl. – ident: 10.1016/j.comnet.2021.108076_bib0046 – volume: 394 start-page: 38 issue: July 2017 year: 2017 ident: 10.1016/j.comnet.2021.108076_bib0044 article-title: A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2017.02.016 – volume: 7 start-page: 46595 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0034 article-title: Securing the smart grid: a comprehensive compilation of intrusion detection and prevention systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909807 – year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0018 article-title: Anomaly detection using bidirectional LSTM – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0024 article-title: DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system publication-title: Sec. Commun. Netw. – year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0036 article-title: Siam-IDS: handling class imbalance problem in intrusion detection systems using siamese neural network – start-page: 1 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0037 article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems publication-title: Appl. Intell. – volume: 14 start-page: 771 issue: September (5) year: 1999 ident: 10.1016/j.comnet.2021.108076_bib0011 article-title: A short introduction to boosting publication-title: J. Japan. Soc. Artif. Intell. – volume: 8 start-page: 104650 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0035 article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000179 – volume: 177 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0038 article-title: An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107315 – start-page: 1 year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0004 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.comnet.2021.108076_bib0010 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 74 start-page: 43 year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0043 article-title: Integration of an improved dynamic ensemble selection approach to enhance one-vs-one scheme publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.06.002 – volume: 2 start-page: 349 issue: 3 year: 2009 ident: 10.1016/j.comnet.2021.108076_bib0012 article-title: Multi-class AdaBoost publication-title: Stat. Interface doi: 10.4310/SII.2009.v2.n3.a8 – volume: 55 start-page: 1 issue: 102601 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0030 article-title: A comparison of two hybrid ensemble techniques for network anomaly detection in spark distributed environment publication-title: J. Inf. Sec. Appl. – year: 2016 ident: 10.1016/j.comnet.2021.108076_bib0022 article-title: Deep learning approach for network intrusion detection in software defined networking – start-page: 1 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0002 – volume: 31 start-page: 541 issue: 4 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0028 article-title: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms publication-title: J. King Saud Univ. - Comput. Inf. Sci. doi: 10.1016/j.jksuci.2018.03.011 – volume: 10 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0041 article-title: A semi-boosted nested model with sensitivity-based weighted Binarization for multi-domain network intrusion detection publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3313778 – volume: 3 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.comnet.2021.108076_bib0015 article-title: Borderline over-sampling for imbalanced data classification publication-title: Int. J. Knowl. Eng.Soft Data Paradigms doi: 10.1504/IJKESDP.2011.039875 – volume: 8 start-page: 1 issue: 6 January (1) year: 2021 ident: 10.1016/j.comnet.2021.108076_bib0050 article-title: Resampling imbalanced data for network intrusion detection datasets publication-title: J Big Data – volume: 10 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0039 article-title: Synthetic minority oversampling technique for optimizing classification tasks in botnet and intrusion-detection-system datasets publication-title: Appl. Sci. doi: 10.3390/app10030794 – year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0013 article-title: Necessary information to know to solve class imbalance problem: from a user's perspective – volume: 48 start-page: 28 issue: 1 year: 2015 ident: 10.1016/j.comnet.2021.108076_bib0045 article-title: DRCW-OVO: distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.07.023 – year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0049 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization – volume: 7 start-page: 41525 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0023 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – volume: 46 issue: 4 year: 2014 ident: 10.1016/j.comnet.2021.108076_bib0033 article-title: A survey of intrusion detection techniques for cyber-physical systems publication-title: ACM Comput. Surv. doi: 10.1145/2542049 – volume: 9 start-page: 149 issue: 21 June (7) year: 2018 ident: 10.1016/j.comnet.2021.108076_bib0021 article-title: Effective intrusion detection system using XGBoost publication-title: Information doi: 10.3390/info9070149 – volume: 189 issue: 2020 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0007 article-title: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues publication-title: Knowl. Based Syst. – start-page: 1 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0047 – volume: 21 start-page: 2671 issue: 3 year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0032 article-title: Network intrusion detection for IoT security based on learning techniques publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2019.2896380 – volume: 148 start-page: 164 issue: 15 January year: 2019 ident: 10.1016/j.comnet.2021.108076_bib0027 article-title: Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.11.010 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.comnet.2021.108076_bib0014 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 8 start-page: 29575 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0031 article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972627 – volume: 5 start-page: 21954 issue: 12 October year: 2017 ident: 10.1016/j.comnet.2021.108076_bib0020 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access – volume: 5 start-page: 221 issue: 4 year: 2016 ident: 10.1016/j.comnet.2021.108076_bib0051 article-title: Learning from imbalanced data: open challenges and future directions publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-016-0094-0 – volume: 174 year: 2020 ident: 10.1016/j.comnet.2021.108076_bib0026 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107247 – volume: 73 start-page: 220 year: 2017 ident: 10.1016/j.comnet.2021.108076_bib0003 article-title: Learning from class-imbalanced data: review of methods and applications publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2016.12.035 – year: 2005 ident: 10.1016/j.comnet.2021.108076_bib0016 article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning |
| SSID | ssj0004428 |
| Score | 2.5501807 |
| Snippet | Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108076 |
| SubjectTerms | Algorithms Class imbalance problem Classification Classifiers Communications traffic Computer networks Computing time Cybersecurity Improved one-vs-one technique (I-OVO) Intrusion detection systems Long short-term memory (LSTM) Network security Network-based intrusion detection system (NIDS) Oversampling Testing time |
| Title | LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system |
| URI | https://dx.doi.org/10.1016/j.comnet.2021.108076 https://www.proquest.com/docview/2556438827 |
| Volume | 192 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: ACRLP dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: .~1 dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: AIKHN dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: AKRWK dateStart: 19990114 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvuiDeMXLHHnwNa5r0ptvYzo2dxHcRN9Cc5lMZh1s-Ohv95y0nRcEQSiEpkkI56QnX9ovXwg510kqbCIUC6b-lMGMHzAFMINx4SkNAH3qO4mN4Sjs3oubx-CxQtrlXhikVRaxP4_pLloXOY3Cmo3FbNYYu19sPiDypuPS40ZzISI8xeDi_ZPmIYQ7XxULMyxdbp9zHC9oO7PIqPSbjmyHyiO_T08_ArWbfTo7ZLuAjbSV92yXVGy2R7a-iAnuk_mgd8t6V-NL2kXlBMijGqExnb0o5C9qS5Hk_kQH48mQQhF4gB8UrKGvmWVvSwYJXWu60lkGF27JAM9RY1eOs5XRXPr5gNx3riftLivOUmCac7FiKrYqTLmNIZ7pmCOyMBbWGlFiYMGTThMv8WwsUms8rVWoYl8HFsCbQUQRaMUPSTWDbhwRmhjP6CDgJlahgOVIKlIVpXHggV9DYcQx4aUJpS6ExvG8i7ksGWXPMje8RMPL3PDHhK1rLXKhjT_KR6V35LcBI2Eu-KNmrXSmLF7YpUQlNsFhuRGd_LvhU7KJd0gkayY1UgUX2TOALCtVd2OyTjZavX53hGn_7qH_AZtV7Nc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5VD-pBXHE3B6-x00kyizepllbbemgLvYXJUqnoKFg8-tt9LzNTF4SCMDCQZQjvZV6-N_PlCyHnJs2ES4VmchJOGKz4kmmAGYyLQBsA6JPQS2z0-lF7JG7HclwjzWovDNIqy9hfxHQfrcuSemnN-ut0Wh_4X2whIPKG59LLJbIiZBhjBnbx8cXzEMIfsIqtGTav9s95khc8PHdIqQwbnm2H0iN_r0-_IrVfflqbZKPEjfSqGNoWqbl8m6x_UxPcIU_dzj3rXA8uaRulE6CMGsTGdPqskcBoHEWW-wPtDoY9Ck2gAr8oOEtfcsfe3xjc6FzUlU5zuHBPBriOWjfzpK2cFtrPu2TUuhk226w8TIEZzsWM6cTpKOMugYBmEo7QwjpINuLUQsaTTdIgDVwiMmcDY3Skk9BIB-jNIqSQRvM9spzDMPYJTW1gjZTcJjoSkI9kItNxlsgAHBsJKw4Ir0yoTKk0jgdePKmKUvaoCsMrNLwqDH9A2LzXa6G0saB9XHlH_ZgxChaDBT2PK2eq8o19UyjFJjjkG_Hhvx98Rlbbw15XdTv9uyOyhjXIKmukx2QZ3OVOAL_M9Kmfn5-44uzJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LIO-IDS%3A+Handling+class+imbalance+using+LSTM+and+improved+one-vs-one+technique+in+intrusion+detection+system&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Gupta%2C+Neha&rft.au=Jindal%2C+Vinita&rft.au=Bedi%2C+Punam&rft.date=2021-06-19&rft.pub=Elsevier+B.V&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=192&rft_id=info:doi/10.1016%2Fj.comnet.2021.108076&rft.externalDocID=S1389128621001675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon |