LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system

Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious content generated from different types of cyber-attacks. Though NIDSs can classify frequent attacks correctly, their performance declines on i...

Full description

Saved in:
Bibliographic Details
Published inComputer networks (Amsterdam, Netherlands : 1999) Vol. 192; p. 108076
Main Authors Gupta, Neha, Jindal, Vinita, Bedi, Punam
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 19.06.2021
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN1389-1286
1872-7069
DOI10.1016/j.comnet.2021.108076

Cover

Abstract Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious content generated from different types of cyber-attacks. Though NIDSs can classify frequent attacks correctly, their performance declines on infrequent network intrusions. This paper proposes LIO-IDS based on Long Short-Term Memory (LSTM) classifier and Improved One-vs-One technique for handling both frequent and infrequent network intrusions. LIO-IDS is a two-layer Anomaly-based NIDS (A-NIDS) that detects different network intrusions with high Accuracy and low computational time. Layer 1 of LIO-IDS identifies intrusions from normal network traffic by using the LSTM classifier. Layer 2 uses ensemble algorithms to classify the detected intrusions into different attack classes. This paper also proposes an Improved One-vs-One (I-OVO) technique for performing multi-class classification at the second layer of the proposed LIO-IDS. In contrast to the traditional OVO technique, the proposed I-OVO technique uses only three classifiers to test each sample, thereby reducing the testing time significantly. Also, oversampling techniques have been used at Layer 2 to enhance the detection ability of the proposed LIO-IDS. The performance of the proposed system has been evaluated in terms of Accuracy, Recall, Precision, F1-score, Receiver Characteristics Operating (ROC) curve, Area Under ROC (AUC) values, training time and testing time for the NSL-KDD, CIDDS-001, and CICIDS2017 datasets. The proposed LIO-IDS shows significant improvement in the results as compared to its counterparts. High attack detection rates and short computational times make the proposed LIO-IDS suitable to be deployed in the real-world for network-based intrusion detection.
AbstractList Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious content generated from different types of cyber-attacks. Though NIDSs can classify frequent attacks correctly, their performance declines on infrequent network intrusions. This paper proposes LIO-IDS based on Long Short-Term Memory (LSTM) classifier and Improved One-vs-One technique for handling both frequent and infrequent network intrusions. LIO-IDS is a two-layer Anomaly-based NIDS (A-NIDS) that detects different network intrusions with high Accuracy and low computational time. Layer 1 of LIO-IDS identifies intrusions from normal network traffic by using the LSTM classifier. Layer 2 uses ensemble algorithms to classify the detected intrusions into different attack classes. This paper also proposes an Improved One-vs-One (I-OVO) technique for performing multi-class classification at the second layer of the proposed LIO-IDS. In contrast to the traditional OVO technique, the proposed I-OVO technique uses only three classifiers to test each sample, thereby reducing the testing time significantly. Also, oversampling techniques have been used at Layer 2 to enhance the detection ability of the proposed LIO-IDS. The performance of the proposed system has been evaluated in terms of Accuracy, Recall, Precision, F1-score, Receiver Characteristics Operating (ROC) curve, Area Under ROC (AUC) values, training time and testing time for the NSL-KDD, CIDDS-001, and CICIDS2017 datasets. The proposed LIO-IDS shows significant improvement in the results as compared to its counterparts. High attack detection rates and short computational times make the proposed LIO-IDS suitable to be deployed in the real-world for network-based intrusion detection.
ArticleNumber 108076
Author Bedi, Punam
Jindal, Vinita
Gupta, Neha
Author_xml – sequence: 1
  givenname: Neha
  surname: Gupta
  fullname: Gupta, Neha
  email: neha.phd.2018@gmail.com
  organization: Department of Computer Science, University of Delhi, India
– sequence: 2
  givenname: Vinita
  surname: Jindal
  fullname: Jindal, Vinita
  email: vjindal@keshav.du.ac.in
  organization: Keshav Mahavidyalaya, University of Delhi, India
– sequence: 3
  givenname: Punam
  surname: Bedi
  fullname: Bedi, Punam
  email: pbedi@cs.du.ac.in
  organization: Department of Computer Science, University of Delhi, India
BookMark eNqFkE1LAzEQhoNUsK3-Aw8Bz1uzX9msB0HqRwsVD-o5ZJOppmyzNUkL_ffOsp48KARmmJl35s0zISPXOSDkMmWzlKX8ejPT3dZBnGUsS7EkWMVPyDgVVZZUjNcjzHNRJ2km-BmZhLBhjBVFJsakXS1fkuX96w1dKGda6z6oblUI1G4b1Sqnge5DX129vj1THMHGzncHMBQ9JIeQYKAR9KezX3ug1uGLHjWdowawEfssHEOE7Tk5Xas2wMVPnJL3x4e3-SJZvTwt53erROd5EZNGQMNVDkIZo0XOWJUaKCte1abmXK1rVjMQhQLDtG54IzJdQsmEqUpWl7rJp-Rq2ItO0VSIctPtvcOTMitLXuRCZBVO3QxT2ncheFhLbaPq7UavbCtTJnu6ciMHurKnKwe6KC5-iXfebpU__ie7HWSA3z9Y8DJoC0jZWI-opOns3wu-AaH-mPU
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124982
crossref_primary_10_3390_fi17010025
crossref_primary_10_1007_s10207_023_00718_7
crossref_primary_10_1016_j_jisa_2025_104013
crossref_primary_10_1016_j_neunet_2024_107064
crossref_primary_10_1371_journal_pone_0302294
crossref_primary_10_32604_cmc_2024_048431
crossref_primary_10_23939_mmc2024_04_930
crossref_primary_10_1007_s10115_025_02366_w
crossref_primary_10_1016_j_cose_2021_102499
crossref_primary_10_1007_s10207_023_00682_2
crossref_primary_10_1016_j_neucom_2023_126886
crossref_primary_10_1007_s11042_023_17864_8
crossref_primary_10_1155_2022_4748528
crossref_primary_10_37394_23209_2024_21_43
crossref_primary_10_1016_j_micpro_2022_104752
crossref_primary_10_1109_ACCESS_2024_3350197
crossref_primary_10_1016_j_seta_2022_102311
crossref_primary_10_1016_j_inffus_2023_101804
crossref_primary_10_1016_j_comnet_2025_111147
crossref_primary_10_1186_s13635_023_00139_y
crossref_primary_10_32604_cmc_2023_046237
crossref_primary_10_1115_1_4064375
crossref_primary_10_1109_JIOT_2024_3459015
crossref_primary_10_32604_cmc_2023_039733
crossref_primary_10_1016_j_asoc_2024_112282
crossref_primary_10_4018_IJISP_317113
crossref_primary_10_35940_ijitee_B1032_14020125
crossref_primary_10_1016_j_cose_2022_102748
crossref_primary_10_1007_s11042_022_14121_2
crossref_primary_10_1016_j_comnet_2023_109982
crossref_primary_10_1109_JIOT_2023_3342638
crossref_primary_10_1049_cps2_12085
crossref_primary_10_1007_s10462_024_10759_6
crossref_primary_10_3934_era_2023127
crossref_primary_10_1109_ACCESS_2024_3384528
crossref_primary_10_3390_sym16010042
crossref_primary_10_1007_s12083_024_01721_y
crossref_primary_10_1007_s12083_023_01510_z
crossref_primary_10_1016_j_future_2024_107531
crossref_primary_10_1016_j_jisa_2023_103434
crossref_primary_10_1007_s42979_023_01926_7
crossref_primary_10_1109_TII_2023_3314208
crossref_primary_10_3390_app12136645
crossref_primary_10_3390_info14020130
crossref_primary_10_1016_j_comnet_2024_110495
crossref_primary_10_4236_jcc_2022_1011004
crossref_primary_10_3390_app13042576
crossref_primary_10_1002_ett_4522
crossref_primary_10_1007_s11276_023_03495_2
Cites_doi 10.1016/j.asoc.2020.106301
10.1186/s40537-018-0151-6
10.1109/ACCESS.2017.2780250
10.1145/2716260
10.1109/COMST.2015.2494502
10.1162/neco.1997.9.8.1735
10.1023/A:1018054314350
10.1016/j.ins.2017.02.016
10.1109/ACCESS.2019.2909807
10.1109/ACCESS.2020.3000179
10.1016/j.comnet.2020.107315
10.1023/A:1010933404324
10.1016/j.engappai.2018.06.002
10.4310/SII.2009.v2.n3.a8
10.1016/j.jksuci.2018.03.011
10.1145/3313778
10.1504/IJKESDP.2011.039875
10.3390/app10030794
10.1016/j.patcog.2014.07.023
10.1109/ACCESS.2019.2895334
10.1145/2542049
10.3390/info9070149
10.1109/COMST.2019.2896380
10.1016/j.comnet.2018.11.010
10.1613/jair.953
10.1109/ACCESS.2020.2972627
10.1007/s13748-016-0094-0
10.1016/j.comnet.2020.107247
10.1016/j.eswa.2016.12.035
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jun 19, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jun 19, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.comnet.2021.108076
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7069
ExternalDocumentID 10_1016_j_comnet_2021_108076
S1389128621001675
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
77K
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
ZMT
~G-
29F
77I
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
ADJOM
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
F0J
FGOYB
HZ~
R2-
SEW
ZY4
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-b8eb6a3e8addc830071de57679d966af9090e84aed0ccb6b82c5e508d75095cb3
IEDL.DBID .~1
ISSN 1389-1286
IngestDate Fri Jul 25 03:33:16 EDT 2025
Wed Oct 29 21:12:11 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 23 02:46:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Network security
Cybersecurity
Network-based intrusion detection system (NIDS)
Long short-term memory (LSTM)
Class imbalance problem
Improved one-vs-one technique (I-OVO)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-b8eb6a3e8addc830071de57679d966af9090e84aed0ccb6b82c5e508d75095cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2556438827
PQPubID 47119
ParticipantIDs proquest_journals_2556438827
crossref_citationtrail_10_1016_j_comnet_2021_108076
crossref_primary_10_1016_j_comnet_2021_108076
elsevier_sciencedirect_doi_10_1016_j_comnet_2021_108076
PublicationCentury 2000
PublicationDate 2021-06-19
PublicationDateYYYYMMDD 2021-06-19
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-19
  day: 19
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer networks (Amsterdam, Netherlands : 1999)
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Salo, Nassif, Essex (bib0027) 2019; 148
Mikhail, Fossaceca, Iammartino (bib0041) 2019; 10
Zhang, Luo, Yu, Yuan, Tang (bib0043) 2018; 74
Rekha, Tyagi (bib0013) 2020
Tang, Mhamdi, McLernon, Zaidi, Ghogho (bib0022) 2016
Kaur (bib0030) 2020; 55
Bedi, Gupta, Jindal (bib0036) 2019
Alabdallah, Awad (bib0042) 2018; 12
Aldweesh, Derhab, Emam (bib0007) 2020; 189
Sharafaldin, Lashkari, Ghorbani (bib0049) 2018
Su, Sun, Zhu, Wang, Li (bib0031) 2020; 8
Nguyen, Cooper, Kamei (bib0015) 2011; 3
Mitchell, Chen (bib0033) 2014; 46
Bedi, Gupta, Jindal (bib0037) 2020
Zhang, Huang, Wu, Li (bib0038) 2020; 177
Liu, Bi, Fan (bib0044) 2017; 394
Zhu, Zou, Rosset, Hastie (bib0012) 2009; 2
M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, "NSL-KDD dataset," 2009. [Online]. Available
Han, Wang, Mao (bib0016) 2005
Fernández, García, Galar, Prati, Krawczyk, Herrera (bib0004) 2018
Hindy, Brosset, Bayne, Seeam, Tachtatzis, Atkinson, Bellekens (bib0035) 2020; 8
Radoglou-Grammatikis, Sarigiannidis (bib0034) 2019; 7
Chuan-long, Zhu, Fei, He (bib0020) 2017; 5
Al-Obeidat, El-Alfy (bib0029) 2017; 23
Aljbali, Roy (bib0018) 2020
Breiman (bib0010) October 2001; 45
Masdari, Khezri (bib0017) 2020; 92
Gonzalez-Cuautle, Hernandez-Suarez, Sanchez-Perez, Toscano-Medina, Portillo-Portillo, Olivares-Mercado, Perez-Meana, Sandoval-Orozco (bib0039) 2020; 10
Ring, Wunderlich, Grüdl, Landes, Hotho (bib0048) 2017
Lee, Park (bib0002) 2019
Breiman (bib0008) 1996; 24
Chawla, Bowyer, Hall, Kegelmeyer (bib0014) 2002; 16
Chou, Jiang (bib0047) 2020
Vasilomanolakis, Karuppayah, Mühlhäuser, Fischer (bib0001) 2015; 47
Wang, Sheng, Wang, Zeng, Ye, Huang, Zhou (bib0025) 2017; 6
Galar, Fernández, Barrenechea, Herrera (bib0045) 2015; 48
Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (bib0023) 2019; 7
Buczak, Guven (bib0009) 2015; 18
Mazini, Shirazi, Mahdavi (bib0028) 2019; 31
Ferrag, Maglaras, Moschoyiannis, Janicke (bib0005) 2020; 50
[Accessed 7 9 2019].
Hochreiter, Schmidhuber (bib0006) 1997; 9
Freund, Schapire (bib0011) 1999; 14
Sun, Liu, Li, Liu, Lu, Hao, Chen (bib0024) 2020; 2020
Zhou, Cheng, Jiang, Dai (bib0026) 2020; 174
Bagui, Li (bib0050) 2021; 8
Dhaliwal, Nahid, Abbas (bib0021) 2018; 9
Pavan Kumar, Jayagopal (bib0040) 2019
Chaabouni, Mosbah, Zemmari, Sauvignac, Faruki (bib0032) 2019; 21
Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (bib0003) 2017; 73
Althubiti, Jones, Roy (bib0019) 2018
Bartosz (bib0051) 2016; 5
Leevy, Khoshgoftaar, Bauder, Seliya (bib0052) 2018; 5
Mitchell (10.1016/j.comnet.2021.108076_bib0033) 2014; 46
Nguyen (10.1016/j.comnet.2021.108076_bib0015) 2011; 3
Bagui (10.1016/j.comnet.2021.108076_bib0050) 2021; 8
Alabdallah (10.1016/j.comnet.2021.108076_bib0042) 2018; 12
Hindy (10.1016/j.comnet.2021.108076_bib0035) 2020; 8
Freund (10.1016/j.comnet.2021.108076_bib0011) 1999; 14
Tang (10.1016/j.comnet.2021.108076_bib0022) 2016
Fernández (10.1016/j.comnet.2021.108076_bib0004) 2018
Chuan-long (10.1016/j.comnet.2021.108076_bib0020) 2017; 5
Aljbali (10.1016/j.comnet.2021.108076_bib0018) 2020
Kaur (10.1016/j.comnet.2021.108076_bib0030) 2020; 55
Lee (10.1016/j.comnet.2021.108076_bib0002) 2019
Chaabouni (10.1016/j.comnet.2021.108076_bib0032) 2019; 21
Ferrag (10.1016/j.comnet.2021.108076_bib0005) 2020; 50
Breiman (10.1016/j.comnet.2021.108076_bib0010) 2001; 45
Zhou (10.1016/j.comnet.2021.108076_bib0026) 2020; 174
Al-Obeidat (10.1016/j.comnet.2021.108076_bib0029) 2017; 23
Mazini (10.1016/j.comnet.2021.108076_bib0028) 2019; 31
Bedi (10.1016/j.comnet.2021.108076_bib0036) 2019
Su (10.1016/j.comnet.2021.108076_bib0031) 2020; 8
Bartosz (10.1016/j.comnet.2021.108076_bib0051) 2016; 5
Gonzalez-Cuautle (10.1016/j.comnet.2021.108076_bib0039) 2020; 10
Hochreiter (10.1016/j.comnet.2021.108076_bib0006) 1997; 9
Mikhail (10.1016/j.comnet.2021.108076_bib0041) 2019; 10
Zhang (10.1016/j.comnet.2021.108076_bib0038) 2020; 177
Masdari (10.1016/j.comnet.2021.108076_bib0017) 2020; 92
Vinayakumar (10.1016/j.comnet.2021.108076_bib0023) 2019; 7
Breiman (10.1016/j.comnet.2021.108076_bib0008) 1996; 24
Bedi (10.1016/j.comnet.2021.108076_bib0037) 2020
Zhang (10.1016/j.comnet.2021.108076_bib0043) 2018; 74
Radoglou-Grammatikis (10.1016/j.comnet.2021.108076_bib0034) 2019; 7
Ring (10.1016/j.comnet.2021.108076_bib0048) 2017
Dhaliwal (10.1016/j.comnet.2021.108076_bib0021) 2018; 9
Pavan Kumar (10.1016/j.comnet.2021.108076_bib0040) 2019
Galar (10.1016/j.comnet.2021.108076_bib0045) 2015; 48
Aldweesh (10.1016/j.comnet.2021.108076_bib0007) 2020; 189
10.1016/j.comnet.2021.108076_bib0046
Leevy (10.1016/j.comnet.2021.108076_bib0052) 2018; 5
Chawla (10.1016/j.comnet.2021.108076_bib0014) 2002; 16
Althubiti (10.1016/j.comnet.2021.108076_bib0019) 2018
Vasilomanolakis (10.1016/j.comnet.2021.108076_bib0001) 2015; 47
Chou (10.1016/j.comnet.2021.108076_bib0047) 2020
Zhu (10.1016/j.comnet.2021.108076_bib0012) 2009; 2
Salo (10.1016/j.comnet.2021.108076_bib0027) 2019; 148
Haixiang (10.1016/j.comnet.2021.108076_bib0003) 2017; 73
Sun (10.1016/j.comnet.2021.108076_bib0024) 2020; 2020
Liu (10.1016/j.comnet.2021.108076_bib0044) 2017; 394
Rekha (10.1016/j.comnet.2021.108076_bib0013) 2020
Sharafaldin (10.1016/j.comnet.2021.108076_bib0049) 2018
Han (10.1016/j.comnet.2021.108076_bib0016) 2005
Wang (10.1016/j.comnet.2021.108076_bib0025) 2017; 6
Buczak (10.1016/j.comnet.2021.108076_bib0009) 2015; 18
References_xml – volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0014
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 23
  start-page: 777
  year: 2017
  end-page: 791
  ident: bib0029
  article-title: Hybrid multicriteria fuzzy classification of network traffic patterns, anomalies, and protocols
  publication-title: Pers Ubiquit Comput.
– volume: 7
  start-page: 41525
  year: 2019
  end-page: 41550
  ident: bib0023
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
– volume: 31
  start-page: 541
  year: 2019
  end-page: 553
  ident: bib0028
  article-title: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– year: 2018
  ident: bib0049
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018)
– volume: 5
  start-page: 1
  year: 2018
  end-page: 30
  ident: bib0052
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: J. Big Data
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0002
  article-title: GAN-based Imbalanced Data Intrusion Detection System
– volume: 9
  start-page: 149
  year: 2018
  ident: bib0021
  article-title: Effective intrusion detection system using XGBoost
  publication-title: Information
– start-page: 1
  year: 2020
  end-page: 38
  ident: bib0047
  article-title: Data-Driven Network Intrusion Detection: A Taxonomy of Challenges and Methods
– start-page: 1
  year: 2018
  end-page: 377
  ident: bib0004
  article-title: Learning from Imbalanced Data Sets
– volume: 92
  year: 2020
  ident: bib0017
  article-title: A survey and taxonomy of the fuzzy signature-based intrusion detection systems
  publication-title: Appl. Soft Comput. J.
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: bib0003
  article-title: Learning from class-imbalanced data: review of methods and applications
  publication-title: Expert. Syst. Appl.
– volume: 45
  start-page: 5
  year: October 2001
  end-page: 32
  ident: bib0010
  article-title: Random forests
  publication-title: Mach Learn
– volume: 8
  start-page: 29575
  year: 2020
  end-page: 29585
  ident: bib0031
  article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access
– volume: 394
  start-page: 38
  year: 2017
  end-page: 52
  ident: bib0044
  article-title: A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm
  publication-title: Inf Sci (Ny)
– volume: 189
  year: 2020
  ident: bib0007
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues
  publication-title: Knowl. Based Syst.
– volume: 7
  start-page: 46595
  year: 2019
  end-page: 46620
  ident: bib0034
  article-title: Securing the smart grid: a comprehensive compilation of intrusion detection and prevention systems
  publication-title: IEEE Access
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0024
  article-title: DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system
  publication-title: Sec. Commun. Netw.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0008
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 48
  start-page: 28
  year: 2015
  end-page: 42
  ident: bib0045
  article-title: DRCW-OVO: distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems
  publication-title: Pattern Recognit.
– volume: 5
  start-page: 21954
  year: 2017
  end-page: 21961
  ident: bib0020
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
– year: 2016
  ident: bib0022
  article-title: Deep learning approach for network intrusion detection in software defined networking
  publication-title: International Conference on Wireless Networks and Mobile Communications (WINCOM)
– year: 2020
  ident: bib0013
  article-title: Necessary information to know to solve class imbalance problem: from a user's perspective
  publication-title: Proceedings of International Conference on Recent Innovations in Computing 2019
– reference: M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, "NSL-KDD dataset," 2009. [Online]. Available:
– volume: 6
  start-page: 1792
  year: 2017
  end-page: 1806
  ident: bib0025
  article-title: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
– volume: 8
  start-page: 104650
  year: 2020
  end-page: 104675
  ident: bib0035
  article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 19
  ident: bib0037
  article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
– volume: 3
  start-page: 4
  year: 2011
  end-page: 21
  ident: bib0015
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: Int. J. Knowl. Eng.Soft Data Paradigms
– volume: 2
  start-page: 349
  year: 2009
  end-page: 360
  ident: bib0012
  article-title: Multi-class AdaBoost
  publication-title: Stat. Interface
– volume: 12
  start-page: 5143
  year: 2018
  end-page: 5158
  ident: bib0042
  article-title: Using weighted support vector machine to address the imbalanced classes problem of intrusion detection system
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
– volume: 8
  start-page: 1
  year: 2021
  end-page: 41
  ident: bib0050
  article-title: Resampling imbalanced data for network intrusion detection datasets
  publication-title: J Big Data
– volume: 18
  start-page: 1153
  year: 2015
  end-page: 1176
  ident: bib0009
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surveys Tutor.
– volume: 148
  start-page: 164
  year: 2019
  end-page: 175
  ident: bib0027
  article-title: Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection
  publication-title: Comput. Netw.
– volume: 174
  year: 2020
  ident: bib0026
  article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier
  publication-title: Comput. Netw.
– volume: 47
  start-page: 1
  year: 2015
  end-page: 33
  ident: bib0001
  article-title: Taxonomy and survey of collaborative intrusion detection
  publication-title: ACM Comput. Surv.
– volume: 5
  start-page: 221
  year: 2016
  end-page: 232
  ident: bib0051
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Prog. Artif. Intell.
– volume: 177
  year: 2020
  ident: bib0038
  article-title: An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset
  publication-title: Comput. Netw.
– year: 2020
  ident: bib0018
  article-title: Anomaly detection using bidirectional LSTM
  publication-title: Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing
– volume: 50
  year: 2020
  ident: bib0005
  article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study
  publication-title: J. Inf. Sec. Appl.
– volume: 55
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0030
  article-title: A comparison of two hybrid ensemble techniques for network anomaly detection in spark distributed environment
  publication-title: J. Inf. Sec. Appl.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0040
  article-title: A preprocessing method combined with an ensemble framework for the multiclass imbalanced data classification
  publication-title: Int. J. Comput. Appl.
– year: 2018
  ident: bib0019
  article-title: LSTM for anomaly-based network intrusion detection
  publication-title: 2018 28th International Telecommunication Networks and Applications Conference (ITNAC)
– year: 2019
  ident: bib0036
  article-title: Siam-IDS: handling class imbalance problem in intrusion detection systems using siamese neural network
  publication-title: Third International Conference on Computing and Network Communications
– volume: 14
  start-page: 771
  year: 1999
  end-page: 780
  ident: bib0011
  article-title: A short introduction to boosting
  publication-title: J. Japan. Soc. Artif. Intell.
– year: 2005
  ident: bib0016
  article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
  publication-title: Advances in Intelligent Computing (ICIC 2005)
– volume: 21
  start-page: 2671
  year: 2019
  end-page: 2701
  ident: bib0032
  article-title: Network intrusion detection for IoT security based on learning techniques
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib0039
  article-title: Synthetic minority oversampling technique for optimizing classification tasks in botnet and intrusion-detection-system datasets
  publication-title: Appl. Sci.
– volume: 74
  start-page: 43
  year: 2018
  end-page: 53
  ident: bib0043
  article-title: Integration of an improved dynamic ensemble selection approach to enhance one-vs-one scheme
  publication-title: Eng. Appl. Artif. Intell.
– reference: . [Accessed 7 9 2019].
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0006
  article-title: Long short-term memory
  publication-title: Neural. Comput.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 27
  ident: bib0041
  article-title: A semi-boosted nested model with sensitivity-based weighted Binarization for multi-domain network intrusion detection
  publication-title: ACM Trans. Intell. Syst. Technol.
– year: 2017
  ident: bib0048
  article-title: Flow-based benchmark data sets for intrusion detection
  publication-title: Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS)
– volume: 46
  year: 2014
  ident: bib0033
  article-title: A survey of intrusion detection techniques for cyber-physical systems
  publication-title: ACM Comput. Surv.
– volume: 92
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0017
  article-title: A survey and taxonomy of the fuzzy signature-based intrusion detection systems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2020.106301
– year: 2017
  ident: 10.1016/j.comnet.2021.108076_bib0048
  article-title: Flow-based benchmark data sets for intrusion detection
– year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0019
  article-title: LSTM for anomaly-based network intrusion detection
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0052
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-018-0151-6
– volume: 6
  start-page: 1792
  year: 2017
  ident: 10.1016/j.comnet.2021.108076_bib0025
  article-title: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780250
– volume: 47
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.comnet.2021.108076_bib0001
  article-title: Taxonomy and survey of collaborative intrusion detection
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2716260
– volume: 18
  start-page: 1153
  issue: 2
  year: 2015
  ident: 10.1016/j.comnet.2021.108076_bib0009
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surveys Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 12
  start-page: 5143
  issue: 10
  year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0042
  article-title: Using weighted support vector machine to address the imbalanced classes problem of intrusion detection system
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
– volume: 9
  start-page: 1735
  issue: 15 November (8)
  year: 1997
  ident: 10.1016/j.comnet.2021.108076_bib0006
  article-title: Long short-term memory
  publication-title: Neural. Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 50
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0005
  article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study
  publication-title: J. Inf. Sec. Appl.
– volume: 23
  start-page: 777
  issue: 16 November
  year: 2017
  ident: 10.1016/j.comnet.2021.108076_bib0029
  article-title: Hybrid multicriteria fuzzy classification of network traffic patterns, anomalies, and protocols
  publication-title: Pers Ubiquit Comput.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.comnet.2021.108076_bib0008
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– start-page: 1
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0040
  article-title: A preprocessing method combined with an ensemble framework for the multiclass imbalanced data classification
  publication-title: Int. J. Comput. Appl.
– ident: 10.1016/j.comnet.2021.108076_bib0046
– volume: 394
  start-page: 38
  issue: July 2017
  year: 2017
  ident: 10.1016/j.comnet.2021.108076_bib0044
  article-title: A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2017.02.016
– volume: 7
  start-page: 46595
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0034
  article-title: Securing the smart grid: a comprehensive compilation of intrusion detection and prevention systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909807
– year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0018
  article-title: Anomaly detection using bidirectional LSTM
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0024
  article-title: DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system
  publication-title: Sec. Commun. Netw.
– year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0036
  article-title: Siam-IDS: handling class imbalance problem in intrusion detection systems using siamese neural network
– start-page: 1
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0037
  article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
– volume: 14
  start-page: 771
  issue: September (5)
  year: 1999
  ident: 10.1016/j.comnet.2021.108076_bib0011
  article-title: A short introduction to boosting
  publication-title: J. Japan. Soc. Artif. Intell.
– volume: 8
  start-page: 104650
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0035
  article-title: A taxonomy of network threats and the effect of current datasets on intrusion detection systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000179
– volume: 177
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0038
  article-title: An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107315
– start-page: 1
  year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0004
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.comnet.2021.108076_bib0010
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 74
  start-page: 43
  year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0043
  article-title: Integration of an improved dynamic ensemble selection approach to enhance one-vs-one scheme
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.06.002
– volume: 2
  start-page: 349
  issue: 3
  year: 2009
  ident: 10.1016/j.comnet.2021.108076_bib0012
  article-title: Multi-class AdaBoost
  publication-title: Stat. Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 55
  start-page: 1
  issue: 102601
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0030
  article-title: A comparison of two hybrid ensemble techniques for network anomaly detection in spark distributed environment
  publication-title: J. Inf. Sec. Appl.
– year: 2016
  ident: 10.1016/j.comnet.2021.108076_bib0022
  article-title: Deep learning approach for network intrusion detection in software defined networking
– start-page: 1
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0002
– volume: 31
  start-page: 541
  issue: 4
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0028
  article-title: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2018.03.011
– volume: 10
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0041
  article-title: A semi-boosted nested model with sensitivity-based weighted Binarization for multi-domain network intrusion detection
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3313778
– volume: 3
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.comnet.2021.108076_bib0015
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: Int. J. Knowl. Eng.Soft Data Paradigms
  doi: 10.1504/IJKESDP.2011.039875
– volume: 8
  start-page: 1
  issue: 6 January (1)
  year: 2021
  ident: 10.1016/j.comnet.2021.108076_bib0050
  article-title: Resampling imbalanced data for network intrusion detection datasets
  publication-title: J Big Data
– volume: 10
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0039
  article-title: Synthetic minority oversampling technique for optimizing classification tasks in botnet and intrusion-detection-system datasets
  publication-title: Appl. Sci.
  doi: 10.3390/app10030794
– year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0013
  article-title: Necessary information to know to solve class imbalance problem: from a user's perspective
– volume: 48
  start-page: 28
  issue: 1
  year: 2015
  ident: 10.1016/j.comnet.2021.108076_bib0045
  article-title: DRCW-OVO: distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.07.023
– year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0049
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
– volume: 7
  start-page: 41525
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0023
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– volume: 46
  issue: 4
  year: 2014
  ident: 10.1016/j.comnet.2021.108076_bib0033
  article-title: A survey of intrusion detection techniques for cyber-physical systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2542049
– volume: 9
  start-page: 149
  issue: 21 June (7)
  year: 2018
  ident: 10.1016/j.comnet.2021.108076_bib0021
  article-title: Effective intrusion detection system using XGBoost
  publication-title: Information
  doi: 10.3390/info9070149
– volume: 189
  issue: 2020
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0007
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues
  publication-title: Knowl. Based Syst.
– start-page: 1
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0047
– volume: 21
  start-page: 2671
  issue: 3
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0032
  article-title: Network intrusion detection for IoT security based on learning techniques
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2896380
– volume: 148
  start-page: 164
  issue: 15 January
  year: 2019
  ident: 10.1016/j.comnet.2021.108076_bib0027
  article-title: Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.11.010
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.comnet.2021.108076_bib0014
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 8
  start-page: 29575
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0031
  article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– volume: 5
  start-page: 21954
  issue: 12 October
  year: 2017
  ident: 10.1016/j.comnet.2021.108076_bib0020
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
– volume: 5
  start-page: 221
  issue: 4
  year: 2016
  ident: 10.1016/j.comnet.2021.108076_bib0051
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– volume: 174
  year: 2020
  ident: 10.1016/j.comnet.2021.108076_bib0026
  article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107247
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.comnet.2021.108076_bib0003
  article-title: Learning from class-imbalanced data: review of methods and applications
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.035
– year: 2005
  ident: 10.1016/j.comnet.2021.108076_bib0016
  article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
SSID ssj0004428
Score 2.5501807
Snippet Network-based Intrusion Detection Systems (NIDSs) are deployed in computer networks to identify intrusions. NIDSs analyse network traffic to detect malicious...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108076
SubjectTerms Algorithms
Class imbalance problem
Classification
Classifiers
Communications traffic
Computer networks
Computing time
Cybersecurity
Improved one-vs-one technique (I-OVO)
Intrusion detection systems
Long short-term memory (LSTM)
Network security
Network-based intrusion detection system (NIDS)
Oversampling
Testing time
Title LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system
URI https://dx.doi.org/10.1016/j.comnet.2021.108076
https://www.proquest.com/docview/2556438827
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: ACRLP
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: .~1
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: AIKHN
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: AKRWK
  dateStart: 19990114
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvuiDeMXLHHnwNa5r0ptvYzo2dxHcRN9Cc5lMZh1s-Ohv95y0nRcEQSiEpkkI56QnX9ovXwg510kqbCIUC6b-lMGMHzAFMINx4SkNAH3qO4mN4Sjs3oubx-CxQtrlXhikVRaxP4_pLloXOY3Cmo3FbNYYu19sPiDypuPS40ZzISI8xeDi_ZPmIYQ7XxULMyxdbp9zHC9oO7PIqPSbjmyHyiO_T08_ArWbfTo7ZLuAjbSV92yXVGy2R7a-iAnuk_mgd8t6V-NL2kXlBMijGqExnb0o5C9qS5Hk_kQH48mQQhF4gB8UrKGvmWVvSwYJXWu60lkGF27JAM9RY1eOs5XRXPr5gNx3riftLivOUmCac7FiKrYqTLmNIZ7pmCOyMBbWGlFiYMGTThMv8WwsUms8rVWoYl8HFsCbQUQRaMUPSTWDbhwRmhjP6CDgJlahgOVIKlIVpXHggV9DYcQx4aUJpS6ExvG8i7ksGWXPMje8RMPL3PDHhK1rLXKhjT_KR6V35LcBI2Eu-KNmrXSmLF7YpUQlNsFhuRGd_LvhU7KJd0gkayY1UgUX2TOALCtVd2OyTjZavX53hGn_7qH_AZtV7Nc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5VD-pBXHE3B6-x00kyizepllbbemgLvYXJUqnoKFg8-tt9LzNTF4SCMDCQZQjvZV6-N_PlCyHnJs2ES4VmchJOGKz4kmmAGYyLQBsA6JPQS2z0-lF7JG7HclwjzWovDNIqy9hfxHQfrcuSemnN-ut0Wh_4X2whIPKG59LLJbIiZBhjBnbx8cXzEMIfsIqtGTav9s95khc8PHdIqQwbnm2H0iN_r0-_IrVfflqbZKPEjfSqGNoWqbl8m6x_UxPcIU_dzj3rXA8uaRulE6CMGsTGdPqskcBoHEWW-wPtDoY9Ck2gAr8oOEtfcsfe3xjc6FzUlU5zuHBPBriOWjfzpK2cFtrPu2TUuhk226w8TIEZzsWM6cTpKOMugYBmEo7QwjpINuLUQsaTTdIgDVwiMmcDY3Skk9BIB-jNIqSQRvM9spzDMPYJTW1gjZTcJjoSkI9kItNxlsgAHBsJKw4Ir0yoTKk0jgdePKmKUvaoCsMrNLwqDH9A2LzXa6G0saB9XHlH_ZgxChaDBT2PK2eq8o19UyjFJjjkG_Hhvx98Rlbbw15XdTv9uyOyhjXIKmukx2QZ3OVOAL_M9Kmfn5-44uzJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LIO-IDS%3A+Handling+class+imbalance+using+LSTM+and+improved+one-vs-one+technique+in+intrusion+detection+system&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Gupta%2C+Neha&rft.au=Jindal%2C+Vinita&rft.au=Bedi%2C+Punam&rft.date=2021-06-19&rft.pub=Elsevier+B.V&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=192&rft_id=info:doi/10.1016%2Fj.comnet.2021.108076&rft.externalDocID=S1389128621001675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon