A sub-pixel image registration algorithm based on SURF and M-estimator sample consensus
•Proposed the framework of the sub-pixel image registration.•Matching point pairs will be reduced.•Get more anti-interference matches than other methods. Due to the influence of various conditions and uncertain difficulties for remote sensing images, image registration is still a challenging task. C...
        Saved in:
      
    
          | Published in | Pattern recognition letters Vol. 140; pp. 261 - 266 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.12.2020
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-8655 1872-7344  | 
| DOI | 10.1016/j.patrec.2020.09.031 | 
Cover
| Abstract | •Proposed the framework of the sub-pixel image registration.•Matching point pairs will be reduced.•Get more anti-interference matches than other methods.
Due to the influence of various conditions and uncertain difficulties for remote sensing images, image registration is still a challenging task. Considering the registration accuracy of pixel level cannot satisfy the requirements of some related applications, we put forward a sub-pixel image registration method based on speeded up robust features and M-estimator sample consensus. It mainly involves four aspects. At first, extract sub-pixel level feature points based on SURF algorithm. Next, obtain the initial matching point pairs based on Sum of Squared Difference and Fast Library for Approximate Nearest Neighbors algorithms. And then, remove the mismatched pair of points based on M-estimator sample consensus algorithm. Finally, calculate geometric transformation matrix based on purified matching points to reach sub-pixel accuracy image registration. Experimental results for several remote sensing image pairs with displacement, noise added, rotation, and different sensors, times and sizes, show that the proposed method can get more anti-interference matches than other methods, and take smaller computational cost in registration process. | 
    
|---|---|
| AbstractList | •Proposed the framework of the sub-pixel image registration.•Matching point pairs will be reduced.•Get more anti-interference matches than other methods.
Due to the influence of various conditions and uncertain difficulties for remote sensing images, image registration is still a challenging task. Considering the registration accuracy of pixel level cannot satisfy the requirements of some related applications, we put forward a sub-pixel image registration method based on speeded up robust features and M-estimator sample consensus. It mainly involves four aspects. At first, extract sub-pixel level feature points based on SURF algorithm. Next, obtain the initial matching point pairs based on Sum of Squared Difference and Fast Library for Approximate Nearest Neighbors algorithms. And then, remove the mismatched pair of points based on M-estimator sample consensus algorithm. Finally, calculate geometric transformation matrix based on purified matching points to reach sub-pixel accuracy image registration. Experimental results for several remote sensing image pairs with displacement, noise added, rotation, and different sensors, times and sizes, show that the proposed method can get more anti-interference matches than other methods, and take smaller computational cost in registration process. Due to the influence of various conditions and uncertain difficulties for remote sensing images, image registration is still a challenging task. Considering the registration accuracy of pixel level cannot satisfy the requirements of some related applications, we put forward a sub-pixel image registration method based on speeded up robust features and M-estimator sample consensus. It mainly involves four aspects. At first, extract sub-pixel level feature points based on SURF algorithm. Next, obtain the initial matching point pairs based on Sum of Squared Difference and Fast Library for Approximate Nearest Neighbors algorithms. And then, remove the mismatched pair of points based on M-estimator sample consensus algorithm. Finally, calculate geometric transformation matrix based on purified matching points to reach sub-pixel accuracy image registration. Experimental results for several remote sensing image pairs with displacement, noise added, rotation, and different sensors, times and sizes, show that the proposed method can get more anti-interference matches than other methods, and take smaller computational cost in registration process.  | 
    
| Author | Wu, Shulei Zeng, Wankang Chen, Huandong  | 
    
| Author_xml | – sequence: 1 givenname: Shulei orcidid: 0000-0002-3884-3738 surname: Wu fullname: Wu, Shulei email: wsl@hainnu.edu.cn – sequence: 2 givenname: Wankang surname: Zeng fullname: Zeng, Wankang – sequence: 3 givenname: Huandong surname: Chen fullname: Chen, Huandong  | 
    
| BookMark | eNqFkEFLwzAYhoNMcJv-Aw8Bz61p0zapB2EMp4IiqMNjSNOvM6NrapKK_nsz68mDngLJ-3z5nneGJp3pAKHThMQJSYrzbdxLb0HFKUlJTMqY0OQATRPO0ojRLJugaYixiBd5foRmzm0JIQUt-RS9LLAbqqjXH9BivZMbwBY22nkrvTYdlu3GWO1fd7iSDmocrp7WjyssuxrfR-B8YLyx2Mld3wJWpnPQucEdo8NGtg5Ofs45Wq-unpc30d3D9e1ycRcpSjMfScIaqmSa0kqRPKNFnfGKKtYoXnDOFJEVTXhVc5BNCYyrrGG1LKumqPI044rO0dk4t7fmbQj7iK0ZbBe-FOGdBWvCi5C6GFPKGucsNEJp_y0YPHUrEiL2RYqtGIsU-yIFKUUoMsDZL7i3wdp-_oddjhgE_XcNVjiloVNQ6xD1ojb67wFfnsqSJA | 
    
| CitedBy_id | crossref_primary_10_1142_S0219691323500625 crossref_primary_10_1515_jisys_2022_0289 crossref_primary_10_3390_f15091512 crossref_primary_10_3390_s24206544 crossref_primary_10_1080_01431161_2023_2225713 crossref_primary_10_3390_s24206733 crossref_primary_10_1109_TIM_2024_3476620 crossref_primary_10_1088_1361_6501_ac632a crossref_primary_10_1109_JSTARS_2023_3244275 crossref_primary_10_3390_rs14236008 crossref_primary_10_1016_j_cmpb_2022_106782 crossref_primary_10_1117_1_JBO_27_9_096001 crossref_primary_10_1016_j_isprsjprs_2021_02_006 crossref_primary_10_1109_TIP_2024_3494555 crossref_primary_10_1049_cit2_12242 crossref_primary_10_1016_j_ijleo_2022_170158  | 
    
| Cites_doi | 10.1109/LSP.2015.2437881 10.1109/TGRS.2009.2034842 10.1016/S0262-8856(03)00137-9 10.1109/TGRS.2018.2820040 10.3390/rs9060581  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 2020  | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 2020  | 
    
| DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.patrec.2020.09.031 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1872-7344 | 
    
| EndPage | 266 | 
    
| ExternalDocumentID | 10_1016_j_patrec_2020_09_031 S0167865520303639  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TK 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c334t-a07f3ca223bc05436d48b3c7fc86887c0ab318bd8eaf9e78c4f7da9bf6b5248c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-8655 | 
    
| IngestDate | Fri Jul 25 02:17:39 EDT 2025 Thu Oct 02 04:31:05 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Fri Feb 23 02:46:57 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Sum of squared difference (SSD) Image registration Sub-pixel Speeded up robust features (SURF) Fast library for approximate nearest neighbors (FLANN) M-estimator sample consensus (MSAC)  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c334t-a07f3ca223bc05436d48b3c7fc86887c0ab318bd8eaf9e78c4f7da9bf6b5248c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3884-3738 | 
    
| PQID | 2487167086 | 
    
| PQPubID | 2047552 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | proquest_journals_2487167086 crossref_citationtrail_10_1016_j_patrec_2020_09_031 crossref_primary_10_1016_j_patrec_2020_09_031 elsevier_sciencedirect_doi_10_1016_j_patrec_2020_09_031  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2020 2020-12-00 20201201  | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Pattern recognition letters | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd  | 
    
| References | Foroosh, Zerubia (bib0010) 2002; 11 Kai, Chengjin, Xunjie (bib0012) 2013; 35 Thurman, Fienup, Guizar-Sicairos (bib0013) 2008; 33 Weiping (bib0009) 2009 Zitova, Flusser (bib0004) 2003; 21 Ma, Jiang, Zhou (bib0001) 2018; 56 Suri, Reinartz (bib0003) 2010; 48 Harris, Stephens (bib0006) 1988 Miao, HuiFang (bib0008) 2010; 40 Feng, Deng, Shu (bib0014) 2012 Argyriou, Tzimiropoulos (bib0007) 2016 Yang, Pan, Yang (bib0002) 2017; 9 Bay, Tuytelaars (bib0005) 2006 Yousef, Li, Karim (bib0011) 2015; 22 Bay (10.1016/j.patrec.2020.09.031_bib0005) 2006 Foroosh (10.1016/j.patrec.2020.09.031_bib0010) 2002; 11 Zitova (10.1016/j.patrec.2020.09.031_bib0004) 2003; 21 Miao (10.1016/j.patrec.2020.09.031_bib0008) 2010; 40 Thurman (10.1016/j.patrec.2020.09.031_bib0013) 2008; 33 Suri (10.1016/j.patrec.2020.09.031_bib0003) 2010; 48 Yousef (10.1016/j.patrec.2020.09.031_bib0011) 2015; 22 Kai (10.1016/j.patrec.2020.09.031_bib0012) 2013; 35 Weiping (10.1016/j.patrec.2020.09.031_bib0009) 2009 Harris (10.1016/j.patrec.2020.09.031_bib0006) 1988 Ma (10.1016/j.patrec.2020.09.031_bib0001) 2018; 56 Feng (10.1016/j.patrec.2020.09.031_bib0014) 2012 Yang (10.1016/j.patrec.2020.09.031_bib0002) 2017; 9 Argyriou (10.1016/j.patrec.2020.09.031_bib0007) 2016  | 
    
| References_xml | – year: 2006 ident: bib0005 article-title: Surf: Speeded up robust features publication-title: European Conference on Computer Vision – volume: 21 start-page: 977 year: 2003 end-page: 1000 ident: bib0004 article-title: Image registration methods: a survey publication-title: Image Vis. Comput. – volume: 48 start-page: 939 year: 2010 end-page: 949 ident: bib0003 article-title: Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas publication-title: Geosci. Remote Sens. IEEE Trans. – year: 2012 ident: bib0014 article-title: A subpixel registration algorithm for low PSNR images[C] publication-title: IEEE Fifth International Conference on Advanced Computational Intelligence – year: 2016 ident: bib0007 article-title: Frequency domain subpixel registration using HOG phase correlation publication-title: Comput. Vis. Image Underst. – volume: 22 start-page: 1796 year: 2015 end-page: 1800 ident: bib0011 article-title: High-speed image registration algorithm with subpixel accuracy publication-title: IEEE Signal Process Lett. – year: 1988 ident: bib0006 article-title: A combined corner and edge detector[C] publication-title: Alvey vision conference – volume: 40 start-page: 4 year: 2010 end-page: 6 ident: bib0008 article-title: Research on sub-pixel remote sensing image registration publication-title: Aeronaut. Comp. Tech. – year: 2009 ident: bib0009 article-title: Subpixel Displacement Algorithm and Experimental Research of Image Correlation Technology[D] – volume: 35 start-page: 27 year: 2013 end-page: 30 ident: bib0012 article-title: A fast sub-pixel image registration algorithm publication-title: Infrared Technol. – volume: 33 year: 2008 ident: bib0013 article-title: Efficient subpixel image registration algorithms publication-title: Ol/33/2/ol Pdf – volume: 9 start-page: 581 year: 2017 ident: bib0002 article-title: Remote sensing image registration using multiple image features publication-title: Remote Sens. – volume: 11 start-page: 188 year: 2002 end-page: 200 ident: bib0010 article-title: Extension of phase correlation to subpixel registration publication-title: IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society – volume: 56 start-page: 4435 year: 2018 end-page: 4447 ident: bib0001 article-title: Guided locality preserving feature matching for remote sensing image registration publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2016 ident: 10.1016/j.patrec.2020.09.031_bib0007 article-title: Frequency domain subpixel registration using HOG phase correlation publication-title: Comput. Vis. Image Underst. – year: 2006 ident: 10.1016/j.patrec.2020.09.031_bib0005 article-title: Surf: Speeded up robust features – volume: 40 start-page: 4 issue: 4 year: 2010 ident: 10.1016/j.patrec.2020.09.031_bib0008 article-title: Research on sub-pixel remote sensing image registration publication-title: Aeronaut. Comp. Tech. – volume: 11 start-page: 188 year: 2002 ident: 10.1016/j.patrec.2020.09.031_bib0010 article-title: Extension of phase correlation to subpixel registration – volume: 22 start-page: 1796 issue: 10 year: 2015 ident: 10.1016/j.patrec.2020.09.031_bib0011 article-title: High-speed image registration algorithm with subpixel accuracy publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2015.2437881 – volume: 35 start-page: 27 issue: 1 year: 2013 ident: 10.1016/j.patrec.2020.09.031_bib0012 article-title: A fast sub-pixel image registration algorithm publication-title: Infrared Technol. – volume: 48 start-page: 939 issue: 2 year: 2010 ident: 10.1016/j.patrec.2020.09.031_bib0003 article-title: Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/TGRS.2009.2034842 – volume: 21 start-page: 977 issue: 11 year: 2003 ident: 10.1016/j.patrec.2020.09.031_bib0004 article-title: Image registration methods: a survey publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(03)00137-9 – volume: 33 issue: 2 year: 2008 ident: 10.1016/j.patrec.2020.09.031_bib0013 article-title: Efficient subpixel image registration algorithms publication-title: Ol/33/2/ol Pdf – volume: 56 start-page: 4435 issue: 8 year: 2018 ident: 10.1016/j.patrec.2020.09.031_bib0001 article-title: Guided locality preserving feature matching for remote sensing image registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2820040 – year: 2009 ident: 10.1016/j.patrec.2020.09.031_bib0009 – volume: 9 start-page: 581 issue: 6 year: 2017 ident: 10.1016/j.patrec.2020.09.031_bib0002 article-title: Remote sensing image registration using multiple image features publication-title: Remote Sens. doi: 10.3390/rs9060581 – year: 1988 ident: 10.1016/j.patrec.2020.09.031_bib0006 article-title: A combined corner and edge detector[C] – year: 2012 ident: 10.1016/j.patrec.2020.09.031_bib0014 article-title: A subpixel registration algorithm for low PSNR images[C]  | 
    
| SSID | ssj0006398 | 
    
| Score | 2.4284155 | 
    
| Snippet | •Proposed the framework of the sub-pixel image registration.•Matching point pairs will be reduced.•Get more anti-interference matches than other methods.
Due... Due to the influence of various conditions and uncertain difficulties for remote sensing images, image registration is still a challenging task. Considering...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 261 | 
    
| SubjectTerms | Algorithms Computer applications Fast library for approximate nearest neighbors (FLANN) Feature extraction Geometric transformation Image registration M-estimator sample consensus (MSAC) Matching Pixels Point pairs Registration Remote sensing Remote sensors Speeded up robust features (SURF) Sub-pixel Sum of squared difference (SSD)  | 
    
| Title | A sub-pixel image registration algorithm based on SURF and M-estimator sample consensus | 
    
| URI | https://dx.doi.org/10.1016/j.patrec.2020.09.031 https://www.proquest.com/docview/2487167086  | 
    
| Volume | 140 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AKRWK dateStart: 19821001 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwKCDe8sBqmtZuHmOFqAqIDkAFm2WfbQhqQ0VaiYnfjq-JeUkIiTGOHSVn-7tz9N13hBxbk7UUtBVrAVgmNAimeYblXrzz8v5Ruw4mCl8N4v5QXNx37hfIaciFQVpljf0Vps_Rum5p1tZsTvK8eYMEekyrbEcIwxyT-IRIsIrBydsnzcPfSIO-N_YO6XNzjhf-b7YoZNiOKrXT1m_u6QdQz71Pb52s1mEj7VZvtkEWbNEga6EkA613aIOsfNEX3CR3XVrONJvkr3ZE87GHDoqFGIJULlWjh-eXfPo4pujMDPVNN8PrHlWFoVcM9TfGeCanpUINYQrIvC7KWblFhr2z29M-qyspMOBcTJmKEsdB-VBAg4_ReGxEqjkkDtLYowxESvu9rU1qlctskoJwiVGZdrHutEUKfJssFs-F3SFUC4hbBrTQPpixmctcAlkMYAwIEym3S3gwoIRaZhyrXYxk4JM9ycrsEs0uo0x6s-8S9jFqUsls_NE_CXMjvy0X6T3BHyMPwlTKeruW0n-jPzcm_ni39-8H75NlvKqoLgdkcfoys4c-YJnqo_mKPCJL3fPL_uAd1PfswA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a4wA7MBggBhv4wNU0jd0kPk4TVQfrDmwVu1n2sz2C2qxaWmkn_nb8mhgYEprE1R9R8uz3Ff3e7wG8904NDeaGDxE9lxYlt0JRu5fovKJ_tGFEhcLTs2Iyk58uR5dbcJxqYQhW2dv-zqZvrHU_MuilOVjW9eCcAPRUVplnZIaFegAP5SgvKQP78OM3ziPOVIngm5an-rkNyIt-OHtiMsyzju50-C__9Jel3rif8VN40seN7Kh7tWew5Zs92E09GVivonuw8wfB4HP4esTateXL-tbPWb2ItoNRJ4bElcvM_Or6pl59WzDyZo7FofPZlzEzjWNTTgQcC0rKWWuIRJghQa-bdt2-gNn448XxhPetFDgKIVfcZGUQaGIsYDEGaaJwsrICy4BVEc0MZsZG5bau8iYoX1YoQ-mMsqGwo1xWKF7CdnPd-FfArMRi6NBKG6MZr4IKJaoC0TmULjNhH0QSoMaeZ5zaXcx1ApR9153YNYldZ0pHse8D_7Vr2fFs3LO-TGej79wXHV3BPTsP0lHqXl9bHb8xJo5lzO9e__eD38GjycX0VJ-enH1-A49ppsO9HMD26mbtD2P0srJvN7fzJ1kW7lU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sub-pixel+image+registration+algorithm+based+on+SURF+and+M-estimator+sample+consensus&rft.jtitle=Pattern+recognition+letters&rft.au=Wu%2C+Shulei&rft.au=Zeng%2C+Wankang&rft.au=Chen%2C+Huandong&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=140&rft.spage=261&rft.epage=266&rft_id=info:doi/10.1016%2Fj.patrec.2020.09.031&rft.externalDocID=S0167865520303639 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |