Graph algorithms with neutral atom quantum processors
Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from s...
        Saved in:
      
    
          | Published in | The European physical journal. A, Hadrons and nuclei Vol. 60; no. 9; p. 177 | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        06.09.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1434-601X 1434-6001 1434-601X  | 
| DOI | 10.1140/epja/s10050-024-01385-5 | 
Cover
| Abstract | Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs. | 
    
|---|---|
| AbstractList | Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs. | 
    
| ArticleNumber | 177 | 
    
| Author | Djellabi, Mehdi Henriet, Loïc Ximenez, Bruno Dareau, Alexandre Dalyac, Constantin Leclerc, Lucas Vignoli, Louis Signoles, Adrien Dreon, Davide Elfving, Vincent E. Coelho, Wesley da Silva Henry, Louis-Paul  | 
    
| Author_xml | – sequence: 1 givenname: Constantin orcidid: 0000-0002-0339-6421 surname: Dalyac fullname: Dalyac, Constantin email: constantin@pasqal.com organization: PASQAL – sequence: 2 givenname: Lucas orcidid: 0000-0003-0581-9165 surname: Leclerc fullname: Leclerc, Lucas organization: PASQAL, Laboratoire Charles Fabry, Institut d’Optique Graduate School – sequence: 3 givenname: Louis orcidid: 0000-0003-1806-9762 surname: Vignoli fullname: Vignoli, Louis organization: PASQAL – sequence: 4 givenname: Mehdi surname: Djellabi fullname: Djellabi, Mehdi organization: PASQAL – sequence: 5 givenname: Wesley da Silva surname: Coelho fullname: Coelho, Wesley da Silva organization: PASQAL – sequence: 6 givenname: Bruno surname: Ximenez fullname: Ximenez, Bruno organization: PASQAL – sequence: 7 givenname: Alexandre orcidid: 0000-0001-7581-4701 surname: Dareau fullname: Dareau, Alexandre organization: PASQAL – sequence: 8 givenname: Davide orcidid: 0000-0002-4831-272X surname: Dreon fullname: Dreon, Davide organization: PASQAL – sequence: 9 givenname: Vincent E. orcidid: 0000-0002-5105-5664 surname: Elfving fullname: Elfving, Vincent E. organization: PASQAL – sequence: 10 givenname: Adrien orcidid: 0000-0001-7822-9444 surname: Signoles fullname: Signoles, Adrien organization: PASQAL – sequence: 11 givenname: Louis-Paul surname: Henry fullname: Henry, Louis-Paul organization: PASQAL – sequence: 12 givenname: Loïc surname: Henriet fullname: Henriet, Loïc organization: PASQAL  | 
    
| BookMark | eNqNkEtLxDAQgIOs4O7qb7Dgue6kebQ9eJBFV2HBi4K3kLTpbkvbdJMU8d-btYLiRU8zDPPN41ugWW96jdAlhmuMKaz00MiVwwAMYkhoDJhkLGYnaI4poTEH_Dr7kZ-hhXMNANAk53PENlYO-0i2O2Nrv-9c9BZC1OvRW9lG0psuOoyy92MXDdYU2jlj3Tk6rWTr9MVXXKKX-7vn9UO8fdo8rm-3cUEI9XGuSsKpUhzrUADJKC-VKqFMCS0wUJxCXqWswnlaqYxzVaqi4hornRRlqihZoqtpblh9GLXzojGj7cNKQRLG04wlkIWum6mrsMY5qytR1F762vThh7oVGMTRlDiaEpMpEUyJT1OCBT79xQ-27qR9_weZTaQLRL_T9vu-v9APTqKDzQ | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_043020 crossref_primary_10_1103_PRXQuantum_6_010301 crossref_primary_10_1103_PhysRevA_111_032611  | 
    
| Cites_doi | 10.1103/PhysRevE.58.5355 10.1364/OPTICA.512155 10.1038/s41586-023-06438-1 10.1038/s41567-019-0648-8 10.1038/s41586-020-3009-y 10.1063/1.3494526 10.1016/j.disopt.2016.01.005 10.1093/bib/bbaa257 10.1364/OE.24.009816 10.1103/PhysRevResearch.6.023241 10.1103/PhysRevResearch.3.013286 10.48550/arXiv.2306.13373 10.1103/PRXQuantum.3.030305 10.1103/PhysRevA.106.022611 10.1007/s11128-014-0809-8 10.48550/arXiv.2302.14369 10.48550/arXiv.2208.06732 10.1038/s41534-024-00804-1 10.48550/arXiv.2205.08500 10.1145/780542.780552 10.1038/s41586-022-04592-6 10.1103/PhysRevX.10.021067 10.1609/aaai.v33i01.33014602 10.1103/PhysRevResearch.6.033104 10.1038/s41586-018-0450-2 10.1103/physrevlett.129.203602 10.1103/PhysRevA.104.032416 10.48550/arXiv.1704.01212 10.48550/arXiv.1909.12264 10.1109/JETCAS.2022.3200837 10.22331/q-2020-09-21-327 10.1006/jagm.1997.0903 10.1098/rspb.2001.1800 10.1038/nphys1178 10.1002/net.3230140406 10.1103/physreva.108.023107 10.1364/OPTICA.513551 10.1038/s41567-020-0932-7 10.1103/PRXQuantum.3.030316 10.1145/322077.322090 10.48550/arXiv.2210.03100 10.1103/PhysRevA.107.032426 10.1038/nprot.2009.177 10.48550/arXiv.2210.07980 10.1038/s41534-023-00710-y 10.1038/s41598-022-16149-8 10.1103/PhysRevLett.130.193402 10.1103/PhysRevLett.85.2208 10.1016/j.knosys.2018.03.022 10.1063/1.4966970 10.1038/nature23474 10.1103/PhysRevB.108.085138 10.1038/s41567-019-0733-z 10.1038/s41586-023-05867-2 10.1103/PhysRevLett.128.113602 10.1038/s41467-022-33179-y 10.1017/9781107415157 10.1103/PhysRevLett.130.180601 10.1038/s41467-022-29977-z 10.1103/PRXQuantum.4.010316 10.1007/978-1-4419-8462-3_11 10.1038/s41586-023-06516-4 10.1103/PhysRevLett.133.013401 10.1103/RevModPhys.76.1037 10.1002/qute.202300398 10.1023/A:1009804230409 10.1007/978-1-4419-8462-3_5 10.1287/opre.14.4.699 10.1103/physreva.81.052313 10.48550/arXiv.2310.20519 10.1109/TQE.2024.3443660 10.1103/PhysRevResearch.5.043117 10.48550/arXiv.2402.05748 10.1103/PRXQuantum.3.030341 10.1038/s41567-020-0903-z 10.1103/PhysRevX.9.011057 10.1007/s40042-023-00774-1 10.1103/PhysRevResearch.2.013319 10.2172/2229681 10.1103/PhysRevA.98.032309 10.1038/s42254-021-00348-9 10.1103/physreva.97.063613 10.1038/s41567-022-01629-5 10.1103/PhysRevLett.130.220601 10.1103/PhysRevA.102.052617 10.48550/arXiv.2305.09518 10.1103/PhysRevX.12.021027 10.1145/956863.956972 10.1103/PRXQuantum.3.020303 10.1038/s41586-023-06927-3 10.1103/PhysRevX.4.021034 10.1038/nphys1183 10.22331/q-2018-08-06-79 10.1103/PhysRevResearch.5.043277 10.1103/PhysRevA.101.032314 10.1103/PhysRevX.12.011040 10.48550/arXiv.2210.10610 10.1126/science.abo6587 10.1038/s41467-019-13534-2 10.1038/nphys3835 10.1038/s41586-019-0980-2 10.1038/s41467-021-22539-9 10.1103/PhysRevApplied.16.034013 10.48550/arXiv.2306.13123 10.1016/j.dss.2020.113303 10.1103/PhysRevLett.131.093401 10.1088/1748-0221/7/02/c02025 10.48550/ARXIV.1808.10816 10.1103/physrevlett.87.037901 10.1103/PhysRevA.107.042615 10.1038/s41586-023-06481-y 10.1103/PhysRevResearch.6.013271 10.1038/s41586-023-05859-2 10.1103/PhysRevResearch.3.043059 10.1103/PhysRevLett.122.040504 10.1016/j.disopt.2010.07.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1140/epja/s10050-024-01385-5 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1434-601X | 
    
| ExternalDocumentID | 10_1140_epja_s10050_024_01385_5 | 
    
| GroupedDBID | -~X .VR 06D 0R~ 199 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFNX AFHIU AFOHR AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHPBZ AHWEU AHYZX AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EIOEI ESBYG ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF- PT5 QOS R89 R9I RED RID RNS ROL RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAYXX ADMLS B0M CITATION EAD EAS EBLON EMK EPL I-F TUS ~8M 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| ID | FETCH-LOGICAL-c334t-9bd364bb61ec330a546dbbd0d734c1041709f75f197fb866bdbcf6e1be2cd7b43 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1434-601X 1434-6001  | 
    
| IngestDate | Mon Oct 06 18:37:09 EDT 2025 Wed Oct 01 02:17:05 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Mon Jul 21 06:07:58 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c334t-9bd364bb61ec330a546dbbd0d734c1041709f75f197fb866bdbcf6e1be2cd7b43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0339-6421 0000-0002-5105-5664 0000-0003-0581-9165 0000-0003-1806-9762 0000-0001-7581-4701 0000-0002-4831-272X 0000-0001-7822-9444  | 
    
| PQID | 3256785208 | 
    
| PQPubID | 2043701 | 
    
| ParticipantIDs | proquest_journals_3256785208 crossref_citationtrail_10_1140_epja_s10050_024_01385_5 crossref_primary_10_1140_epja_s10050_024_01385_5 springer_journals_10_1140_epja_s10050_024_01385_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-06 | 
    
| PublicationDateYYYYMMDD | 2024-09-06 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-06 day: 06  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationSubtitle | Hadrons and Nuclei | 
    
| PublicationTitle | The European physical journal. A, Hadrons and nuclei | 
    
| PublicationTitleAbbrev | Eur. Phys. J. A | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | ShawALSchollPFinklesteinRDark-state enhanced loading of an optical tweezer arrayPhys. Rev. Lett.2023130192023PhRvL.130s3402S10.1103/PhysRevLett.130.193402 A. Bergschneider, V.M. Klinkhamer, J.H. Becher et al., Spin-resolved single-atom imaging of 6li in free space. Phys. Rev. A 97(6), (2018). https://doi.org/10.1103/physreva.97.063613 SongYKimMHwangHQuantum simulation of cayley-tree ising hamiltonians with three-dimensional rydberg atomsPhys. Rev. Res.20213110.1103/PhysRevResearch.3.013286 ZhouLWangSTChoiSQuantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devicesPhys. Rev. X20201010.1103/PhysRevX.10.021067 M.A. Norcia, H. Kim, W.B. Cairncross et al., Iterative assembly of 171\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{171}$$\end{document}yb atom arrays in cavity-enhanced optical lattices. (2024). arXiv:2401.16177 G. Verdon, T. McCourt, E. Luzhnica et al., Quantum graph neural networks. (2019). https://doi.org/10.48550/arXiv.1909.12264, arXiv:1909.12264 WangHYehHCKamenevAMany-body localization enables iterative quantum optimizationNat. Commun.202213155032022NatCo..13.5503W10.1038/s41467-022-33179-y BluvsteinDLevineHSemeghiniGA quantum processor based on coherent transport of entangled atom arraysNature202260479064514562022Natur.604..451B10.1038/s41586-022-04592-6 P. Mernyei, K. Meichanetzidis, İlkan Ceylan. İsmail, Equivariant quantum graph circuits. (2022). arXiv:2112.05261 B.F. Schiffer, D.S. Wild, N. Maskara et al., Circumventing superexponential runtimes for hard instances of quantum adiabatic optimization. (2023). arXiv preprint arXiv:2306.13131https://doi.org/10.1103/PhysRevResearch.6.013271 SchuldMKilloranNQuantum machine learning in feature hilbert spacesPhys. Rev. Lett.20191222019PhRvL.122d0504S10.1103/PhysRevLett.122.040504 SchymikKNXimenezBBlochEIn situ equalization of single-atom loading in large-scale optical tweezer arraysPhys. Rev. A202210622022PhRvA.106b2611S10.1103/PhysRevA.106.022611 L. Schatzki, M. Larocca, F. Sauvage et al., Theoretical guarantees for permutation-equivariant quantum neural networks. (2022). arXiv preprint arXiv:2210.09974https://doi.org/10.1038/s41534-024-00804-1 KimMKimKHwangJRydberg quantum wires for maximum independent set problemsNat. Phys.202218775575910.1038/s41567-022-01629-5 A. Abbas, A. Ambainis, B. Augustino et al., Quantum optimization: Potential, challenges, and the path forward. (2023). arXiv:2312.02279 I. Christen, M. Sutula, T. Propson et al., An integrated photonic engine for programmable atomic control. (2022). https://doi.org/10.48550/arXiv.2208.06732, arXiv:2208.06732 HuntHBIIIMaratheMVRadhakrishnanVNc-approximation schemes for np-and pspace-hard problems for geometric graphsJ. Algor.1998262238274160650410.1006/jagm.1997.0903 B. Marchand, Positioning atoms using optical tweezer traps (2020) HsuTWZhuWThieleTSingle-atom trapping in a metasurface-lens optical tweezerPRX Quant.2022332022PRXQ....3c0316H10.1103/PRXQuantum.3.030316 S. Varsamopoulos, E. Philip, H.W.T. van Vlijmen et al., Quantum extremal learning. (2022). arXiv:2205.02807 L. Henriet, L. Beguin, A. Signoles et al., Quantum computing with neutral atoms. Quantum. 4, 327 (2020). https://doi.org/10.22331/q-2020-09-21-327, arXiv:2006.12326 [quant-ph] A. Byun, J. Jung, K. Kim et al., Rydberg-atom graphs for quadratic unconstrained binary optimization problems. (2023). arXiv:2309.14847 B. Zhang, P. Peng, A. Paul et al., A scaled local gate controller for optically addressed qubits. (2023). arXiv preprint arXiv:2310.08539https://doi.org/10.1364/OPTICA.512155 E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimization Algorithm. (2014). arXiv e-prints arXiv:1411.4028. arXiv:1411.4028 [quant-ph] MatsumoriTTakiMKadowakiTApplication of qubo solver using black-box optimization to structural design for resonance avoidanceSci. Rep.2022121121432022NatSR..1212143M10.1038/s41598-022-16149-8 MadjarovISCoveyJPShawALHigh-fidelity entanglement and detection of alkaline-earth rydberg atomsNat. Phys.202016885786110.1038/s41567-020-0903-z H. Pichler, S.T. Wang, L. Zhou et al., Quantum optimization for maximum independent set using rydberg atom arrays. (2018). https://doi.org/10.48550/ARXIV.1808.10816 BrownMThieleTKiehlCGray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assemblyPhys. Rev. X20199110.1103/PhysRevX.9.011057 HavlíčekVCórcolesADTemmeKSupervised learning with quantum-enhanced feature spacesNature201956777472092122019Natur.567..209H10.1038/s41586-019-0980-2 W.E. Diewert, Applications of Duality Theory, Stanford Institute for Mathematical Studies in the Social Sciences Stanford. (1974). URL https://www.researchgate.net/publication/230663892_Applications_of_Duality_Theory SchaferJBKonstanJARiedlJE-commerce recommendation applicationsData Min. Knowl. Discov.200151–211515310.1023/A:1009804230409 D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks. in Proceedings of the Twelfth International Conference on Information and Knowledge Management. Association for Computing Machinery, New York, NY, USA, CIKM ’03, p 556-559, (2003). https://doi.org/10.1145/956863.956972 S. Notarnicola, A. Elben, T. Lahaye et al., A randomized measurement toolbox for rydberg quantum technologies. (2021). arXiv:2112.11046 J. Park, S. Jeong, M. Kim et al., A rydberg-atom approach to the integer factorization problem. (2024). arXiv:2312.08703 H. Neven, V. Denchev, G. Rose et al., Qboost: Large scale classifier training with adiabatic quantum optimization. Journal of Machine Learning Research 25, 333–348, (2012). URL https://proceedings.mlr.press/v25/neven12/neven12.pdf A.D. King, J. Raymond, T. Lanting et al., Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature pp 1–6. (2023). https://doi.org/10.1038/s41586-023-05867-2 MorrisonDRJacobsonSHSauppeJJBranch-and-bound algorithms: A survey of recent advances in searching, branching, and pruningDiscret. Optim.20161979102346414110.1016/j.disopt.2016.01.005 J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum bf 2, 79. (2018) https://doi.org/10.22331/q-2018-08-06-79, arXiv:1801.00862 [quant-ph] SchollPShawALTsaiRBSErasure conversion in a high-fidelity rydberg quantum simulatorNature202362279822732782023Natur.622..273S10.1038/s41586-023-06516-4 FominFVLokshtanovDSaurabhSKernelization: theory of parameterized preprocessing2019CambridgeCambridge University Press10.1017/9781107415157 R. Tao, M. Ammenwerth, F. Gyger et al., High-fidelity detection of large-scale atom arrays in an optical lattice. (2024). arXiv:2309.04717 BarnesKBattaglinoPBloomBJAssembly and coherent control of a register of nuclear spin qubitsNat. Comm.202213127792022NatCo..13.2779B10.1038/s41467-022-29977-z B. Cimring, R. El Sabeh, M. Bacvanski et al., Efficient algorithms to solve atom reconfiguration problems. i. redistribution-reconfiguration algorithm. Phys Rev A 108(2), (2023). https://doi.org/10.1103/physreva.108.023107 KitaiKGuoJJuSDesigning metamaterials with quantum annealing and factorization machinesPhys. Rev. Res.2020210.1103/PhysRevResearch.2.013319 GareyMRJohnsonDS“strong”np-completeness results: Motivation, examples, and implicationsJ. ACM (JACM)197825349950847874710.1145/322077.322090 LanthalerMDlaskaCEnderKRydberg-blockade-based parity quantum optimizationPhys. Rev. Lett.2023130222023PhRvL.130v0601L460828210.1103/PhysRevLett.130.220601 MalagutiEMonaciMTothPAn exact approach for the vertex coloring problemDiscr. Optim.201182174190279518810.1016/j.disopt.2010.07.005 HuangHYKuengRPreskillJPredicting many properties of a quantum system from very few measurementsNat. Phys.202016101050105710.1038/s41567-020-0932-7 Z. Zeng, G. Giudici, H. Pichler, Quantum dimer models with rydberg gadgets. (2024). arXiv:2402.10651 HollerithSSrakaewKWeiDRealizing distance-selective interactions in a Rydberg–Dressed atom arrayPhys. Rev. Lett.2022128112022PhRvL.128k3602H10.1103/PhysRevLett.128.113602arXiv:2110.10125 [cond-mat.quant-gas] KnoernschildCZhangXLIsenhowerLIndependent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering systemApp. Phys. Lett.201097132010ApPhL..97m4101K10.1063/1.3494526 LeclercLOrtiz-GutiérrezLGrijalvaSFinancial risk management on a neutral atom quantum processorPhys. Rev. Res.2023510.1103/PhysRevResearch.5.043117 DesrosiersJSoumisFDesrochersMRouting with time windows by column generationNetworks198414454556510.1002/net.3230140406 M.Y. Naghmouchi, W.d.S. Coelho, Mixed integer linear programming solver using benders decomposition assisted by neutral atom quantum processor. (2024). arXiv preprint arXiv:2402.05748https://doi.org/10.48550/arXiv.2402.05748 VandersypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.2004764103710692004RvMP...76.1037V10.1103/RevModPhys.76.1037arXiv:quant-ph/0404064 [quant-ph] J. Wurtz, S. Sack, S.T. Wang, Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms. (2024). arXiv:2403.03153 M. Cain, S. Chattopadhyay, J.G. Liu et al., Quantum speedup for combinatorial optimization with flat energy landscapes. (2023). arXiv preprint arXiv:2306.13123, https://doi.org/10.48550/arXiv.2306.13123 R.S. Andrist, M.J. Schuetz, P. Minssen et al., Hardness of the maximum independent set problem on unit-disk graphs and prospects for quantum speedups. (2023). arXiv preprint arXiv:2307.09442https://doi.org/10.1103/PhysRevResearch.5.043277 SchollPWilliamsHJBornetGMicrowave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg AtomsPRX Quant.2022322022PRXQ....3b0303S10.1103/PRXQuantum.3.020303arXiv:2107.14459 [quant-ph] CongIChoiSLukinMDQuantum convolutional neural networksNat. Phys.201915121273127810.1038/s41567-019-0648-8arXiv:1810.03787 [quant-ph] J. Wurtz , P.L.S. Lopes, N. Gemelke et al., Industry applications of n P Scholl (1385_CR103) 2022; 3 AW Young (1385_CR133) 2020; 588 M Schlosser (1385_CR102) 2023; 130 K Kitai (1385_CR61) 2020; 2 1385_CR101 RV Solé (1385_CR117) 2001; 268 DR Morrison (1385_CR81) 2016; 19 1385_CR100 D Barredo (1385_CR6) 2018; 561 S Stastny (1385_CR119) 2023; 108 1385_CR65 1385_CR60 A Skolik (1385_CR115) 2023; 9 HB Hunt III (1385_CR52) 1998; 26 F Nogrette (1385_CR87) 2014; 4 E Malaguti (1385_CR74) 2011; 8 S Hollerith (1385_CR48) 2022; 128 K Wright (1385_CR130) 2019; 10 S Ebadi (1385_CR33) 2022; 376 1385_CR78 1385_CR75 1385_CR77 MO Brown (1385_CR16) 2019; 9 1385_CR70 L Leclerc (1385_CR67) 2023; 5 L Zhou (1385_CR137) 2020; 10 M Schuld (1385_CR106) 2019; 122 1385_CR128 1385_CR127 V Havlíček (1385_CR45) 2019; 567 1385_CR123 1385_CR89 1385_CR122 1385_CR121 C Knoernschild (1385_CR62) 2010; 97 1385_CR86 C Chen (1385_CR22) 2023; 616 1385_CR88 1385_CR82 1385_CR84 1385_CR83 KN Schymik (1385_CR109) 2021; 16 A Gaëtan (1385_CR39) 2009; 5 MF Serret (1385_CR111) 2020; 102 A Skolik (1385_CR116) 2023; 9 A Browaeys (1385_CR14) 2020; 16 J Zeiher (1385_CR134) 2016; 12 1385_CR19 1385_CR136 1385_CR135 1385_CR13 1385_CR12 1385_CR132 1385_CR131 1385_CR97 1385_CR96 1385_CR11 T Pourhabibi (1385_CR95) 2020; 133 1385_CR98 TW Hsu (1385_CR49) 2022; 3 1385_CR93 1385_CR92 D Bluvstein (1385_CR10) 2022; 604 1385_CR94 E Urban (1385_CR125) 2009; 5 1385_CR90 A Byun (1385_CR18) 2022; 3 J Desrosiers (1385_CR31) 1984; 14 P Goyal (1385_CR43) 2018; 151 B Albrecht (1385_CR2) 2023; 107 G Pagano (1385_CR91) 2018; 4 AL Shaw (1385_CR112) 2023; 130 MR Garey (1385_CR41) 1978; 25 MD Lukin (1385_CR71) 2001; 87 K Mitarai (1385_CR79) 2018; 98 1385_CR28 1385_CR29 M Lanthaler (1385_CR63) 2023; 130 1385_CR24 1385_CR23 1385_CR26 1385_CR25 1385_CR20 1385_CR8 1385_CR7 J Biamonte (1385_CR9) 2017; 549 W Lee (1385_CR69) 2016; 24 Y Song (1385_CR118) 2021; 3 K Barnes (1385_CR5) 2022; 13 1385_CR4 FV Fomin (1385_CR37) 2019 M Kim (1385_CR57) 2022; 18 Y Tang (1385_CR120) 2022 HY Huang (1385_CR50) 2020; 16 1385_CR1 D Jaksch (1385_CR53) 2000; 85 T Matsumori (1385_CR76) 2022; 12 M Brown (1385_CR15) 2019; 9 IS Madjarov (1385_CR73) 2020; 16 M Kim (1385_CR58) 2023; 82 1385_CR38 1385_CR35 1385_CR36 SJ Evered (1385_CR34) 2023; 622 1385_CR30 1385_CR32 P Scholl (1385_CR105) 2023; 622 MM Aliyu (1385_CR3) 2021; 3 MT Nguyen (1385_CR85) 2023; 4 T Kadowaki (1385_CR56) 1998; 58 A Buzulutskov (1385_CR17) 2012; 7 S Ma (1385_CR72) 2023; 622 M Schuld (1385_CR108) 2020; 101 KN Schymik (1385_CR110) 2022; 106 I Cong (1385_CR27) 2019; 15 H Wang (1385_CR129) 2022; 13 1385_CR46 K Singh (1385_CR114) 2022; 12 1385_CR42 M Cerezo (1385_CR21) 2021; 3 1385_CR44 JB Schafer (1385_CR99) 2001; 5 1385_CR40 M Larocca (1385_CR64) 2022; 3 LP Henry (1385_CR47) 2021; 104 A Jenkins (1385_CR54) 2022; 12 Coelho W da Silva (1385_CR113) 2023; 107 M Schuld (1385_CR107) 2014; 13 HY Huang (1385_CR51) 2021; 12 1385_CR59 C Morris (1385_CR80) 2019; 33 1385_CR55 LMK Vandersypen (1385_CR126) 2004; 76 P Scholl (1385_CR104) 2022; 3 EL Lawler (1385_CR66) 1966; 14 A Theocharidis (1385_CR124) 2009; 4 W Lee (1385_CR68) 2016; 24  | 
    
| References_xml | – reference: PourhabibiTOngKLKamBHFraud detection: A systematic literature review of graph-based anomaly detection approachesDecis. Support Syst.202013310.1016/j.dss.2020.113303 – reference: C. Dalyac , L.P. Henry, M. Kim et al., Exploring the impact of graph locality for the resolution of MIS with neutral atom devices. (2023). arXiv e-prints https://doi.org/10.48550/arXiv.2306.13373, arXiv:2306.13373 [quant-ph] – reference: B. Cimring, R. El Sabeh, M. Bacvanski et al., Efficient algorithms to solve atom reconfiguration problems. i. redistribution-reconfiguration algorithm. Phys Rev A 108(2), (2023). https://doi.org/10.1103/physreva.108.023107 – reference: J. Wurtz, S. Sack, S.T. Wang, Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms. (2024). arXiv:2403.03153 – reference: E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimization Algorithm. (2014). arXiv e-prints arXiv:1411.4028. arXiv:1411.4028 [quant-ph] – reference: B. Marchand, Positioning atoms using optical tweezer traps (2020) – reference: KimMKimKHwangJRydberg quantum wires for maximum independent set problemsNat. Phys.202218775575910.1038/s41567-022-01629-5 – reference: H. Neven, V. Denchev, G. Rose et al., Qboost: Large scale classifier training with adiabatic quantum optimization. Journal of Machine Learning Research 25, 333–348, (2012). URL https://proceedings.mlr.press/v25/neven12/neven12.pdf – reference: SoléRVThe small world of human languageProc. Biol. Sci.200126814822261226510.1098/rspb.2001.1800 – reference: NguyenMTLiuJGWurtzJQuantum optimization with arbitrary connectivity using rydberg atom arraysPRX Quant.202342023PRXQ....4a0316N10.1103/PRXQuantum.4.010316 – reference: J. Park, S. Jeong, M. Kim et al., A rydberg-atom approach to the integer factorization problem. (2024). arXiv:2312.08703 – reference: SchlosserMTichelmannSSchäffnerDScalable multilayer architecture of assembled single-atom qubit arrays in a three-dimensional talbot tweezer latticePhys. Rev. Lett.2023130182023PhRvL.130r0601S10.1103/PhysRevLett.130.180601 – reference: CongIChoiSLukinMDQuantum convolutional neural networksNat. Phys.201915121273127810.1038/s41567-019-0648-8arXiv:1810.03787 [quant-ph] – reference: A. Bergschneider, V.M. Klinkhamer, J.H. Becher et al., Spin-resolved single-atom imaging of 6li in free space. Phys. Rev. A 97(6), (2018). https://doi.org/10.1103/physreva.97.063613 – reference: A. Abbas, A. Ambainis, B. Augustino et al., Quantum optimization: Potential, challenges, and the path forward. (2023). arXiv:2312.02279 – reference: LawlerELWoodDEBranch-and-bound methods: A surveyOper. Res.196614469971920246910.1287/opre.14.4.699 – reference: M. Ragone, P. Braccia, Q.T. Nguyen et al., Representation theory for geometric quantum machine learning. (2022). arXiv preprint arXiv:2210.07980https://doi.org/10.48550/arXiv.2210.07980 – reference: HsuTWZhuWThieleTSingle-atom trapping in a metasurface-lens optical tweezerPRX Quant.2022332022PRXQ....3c0316H10.1103/PRXQuantum.3.030316 – reference: O. Ezratty, Where are we heading with NISQ? (2023). arXiv e-prints arXiv:2305.09518. https://doi.org/10.48550/arXiv.2305.09518, arXiv:2305.09518 [quant-ph] – reference: L. Henriet, L. Beguin, A. Signoles et al., Quantum computing with neutral atoms. Quantum. 4, 327 (2020). https://doi.org/10.22331/q-2020-09-21-327, arXiv:2006.12326 [quant-ph] – reference: M.A. Norcia, H. Kim, W.B. Cairncross et al., Iterative assembly of 171\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{171}$$\end{document}yb atom arrays in cavity-enhanced optical lattices. (2024). arXiv:2401.16177 – reference: AlbrechtBDalyacCLeclercLQuantum feature maps for graph machine learning on a neutral atom quantum processorPhys. Rev. A202310742023PhRvA.107d2615A10.1103/PhysRevA.107.042615arXiv:2211.16337 [quant-ph] – reference: SchuldMSinayskiyIPetruccioneFThe quest for a quantum neural networkQuant. Inf. Process.201413256725862014QuIP...13.2567S327024110.1007/s11128-014-0809-8 – reference: CerezoMArrasmithABabbushRVariational quantum algorithmsNat. Rev. Phys.20213962564410.1038/s42254-021-00348-9 – reference: J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum bf 2, 79. (2018) https://doi.org/10.22331/q-2018-08-06-79, arXiv:1801.00862 [quant-ph] – reference: LeeWKimHAhnJThree-dimensional rearrangement of single atoms using actively controlled optical microtrapsOpt. Express2016249981698252016OExpr..24.9816L10.1364/OE.24.009816 – reference: ByunAKimMAhnJFinding the maximum independent sets of platonic graphs using rydberg atomsPRX Quant.202232022PRXQ....3c0305B10.1103/PRXQuantum.3.030305 – reference: HuangHYKuengRPreskillJPredicting many properties of a quantum system from very few measurementsNat. Phys.202016101050105710.1038/s41567-020-0932-7 – reference: MorrisCRitzertMFeyMWeisfeiler and leman go neural: Higher-order graph neural networksProc. AAAI Conf. Artif. Intell.201933014602460910.1609/aaai.v33i01.33014602 – reference: NogretteFLabuhnHRavetsSSingle-atom trapping in holographic 2d arrays of microtraps with arbitrary geometriesPhys. Rev. X2014410.1103/PhysRevX.4.021034 – reference: F. Gyger, M. Ammenwerth, R. Tao et al., Continuous operation of large-scale atom arrays in optical lattices. (2024). arXiv:2402.04994 – reference: UrbanEJohnsonTAHenageTObservation of rydberg blockade between two atomsNat. Phys.20095211011410.1038/nphys1178 – reference: ZeiherJvan BijnenRSchaußPMany-body interferometry of a Rydberg-dressed spin latticeNat. Phys.201612121095109910.1038/nphys3835arXiv:1602.06313 [cond-mat.quant-gas] – reference: HuangHYBroughtonMMohseniMPower of data in quantum machine learningNat. Commun.20211226312021NatCo..12.2631H10.1038/s41467-021-22539-9arXiv:2011.01938 [quant-ph] – reference: SchollPWilliamsHJBornetGMicrowave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg AtomsPRX Quant.2022322022PRXQ....3b0303S10.1103/PRXQuantum.3.020303arXiv:2107.14459 [quant-ph] – reference: M. Cain, S. Chattopadhyay, J.G. Liu et al., Quantum speedup for combinatorial optimization with flat energy landscapes. (2023). arXiv preprint arXiv:2306.13123, https://doi.org/10.48550/arXiv.2306.13123 – reference: TheocharidisAvan DongenSEnrightAJNetwork visualization and analysis of gene expression data using biolayout express3dNat. Protoc.200941535155010.1038/nprot.2009.177 – reference: D. Bluvstein, S.J. Evered, A.A. Geim et al., Logical quantum processor based on reconfigurable atom arrays. Nature (2023). https://doi.org/10.1038/s41586-023-06927-3 – reference: C. Dalyac, Quantum many-body dynamics for combinatorial optimisation and machine learning (Sorbonne Université, Theses, 2023) – reference: EbadiSKeeslingACainMQuantum optimization of maximum independent set using Rydberg atom arraysScience20223766598120912152022Sci...376.1209E10.1126/science.abo6587arXiv:2202.09372 [quant-ph] – reference: ChenCBornetGBintzMContinuous symmetry breaking in a two-dimensional rydberg arrayNature202361679586916952023Natur.616..691C10.1038/s41586-023-05859-2 – reference: HollerithSSrakaewKWeiDRealizing distance-selective interactions in a Rydberg–Dressed atom arrayPhys. Rev. Lett.2022128112022PhRvL.128k3602H10.1103/PhysRevLett.128.113602arXiv:2110.10125 [cond-mat.quant-gas] – reference: I. Christen, M. Sutula, T. Propson et al., An integrated photonic engine for programmable atomic control. (2022). https://doi.org/10.48550/arXiv.2208.06732, arXiv:2208.06732 – reference: WangHYehHCKamenevAMany-body localization enables iterative quantum optimizationNat. Commun.202213155032022NatCo..13.5503W10.1038/s41467-022-33179-y – reference: Q.T. Nguyen, L. Schatzki, P., Braccia et al., Theory for equivariant quantum neural networks. (2022). arXiv:2210.08566 – reference: SchollPShawALTsaiRBSErasure conversion in a high-fidelity rydberg quantum simulatorNature202362279822732782023Natur.622..273S10.1038/s41586-023-06516-4 – reference: S. Varsamopoulos, E. Philip, H.W.T. van Vlijmen et al., Quantum extremal learning. (2022). arXiv:2205.02807 – reference: SongYKimMHwangHQuantum simulation of cayley-tree ising hamiltonians with three-dimensional rydberg atomsPhys. Rev. Res.20213110.1103/PhysRevResearch.3.013286 – reference: W.E. Diewert, Applications of Duality Theory, Stanford Institute for Mathematical Studies in the Social Sciences Stanford. (1974). URL https://www.researchgate.net/publication/230663892_Applications_of_Duality_Theory – reference: LeclercLOrtiz-GutiérrezLGrijalvaSFinancial risk management on a neutral atom quantum processorPhys. Rev. Res.2023510.1103/PhysRevResearch.5.043117 – reference: KimMAhnJSongYQuantum computing with rydberg atom graphsJ. Korean Phys. Soc.20238298278402023JKPS...82..827K10.1007/s40042-023-00774-1 – reference: GareyMRJohnsonDS“strong”np-completeness results: Motivation, examples, and implicationsJ. ACM (JACM)197825349950847874710.1145/322077.322090 – reference: LanthalerMDlaskaCEnderKRydberg-blockade-based parity quantum optimizationPhys. Rev. Lett.2023130222023PhRvL.130v0601L460828210.1103/PhysRevLett.130.220601 – reference: B. Ravon, P. Méhaignerie, Y. Machu et al., Array of individual circular rydberg atoms trapped in optical tweezers. (2023). arXiv preprint arXiv:2304.04831https://doi.org/10.1103/PhysRevLett.131.093401 – reference: B.F. Schiffer, D.S. Wild, N. Maskara et al., Circumventing superexponential runtimes for hard instances of quantum adiabatic optimization. (2023). arXiv preprint arXiv:2306.13131https://doi.org/10.1103/PhysRevResearch.6.013271 – reference: BarnesKBattaglinoPBloomBJAssembly and coherent control of a register of nuclear spin qubitsNat. Comm.202213127792022NatCo..13.2779B10.1038/s41467-022-29977-z – reference: DesrosiersJSoumisFDesrochersMRouting with time windows by column generationNetworks198414454556510.1002/net.3230140406 – reference: JakschDCiracJIZollerPFast quantum gates for neutral atomsPhys. Rev. Lett.20008510220822112000PhRvL..85.2208J10.1103/PhysRevLett.85.2208 – reference: WrightKBeckKMDebnathSBenchmarking an 11-qubit quantum computerNat. Commun.201910154642019NatCo..10.5464W10.1038/s41467-019-13534-2 – reference: L. Pause, L. Sturm, M. Mittenbühler et al., Supercharged two-dimensional tweezer array with more than 1000 atomic qubits. (2023). arXiv preprint arXiv:2310.09191https://doi.org/10.1364/OPTICA.513551 – reference: G. Verdon, T. McCourt, E. Luzhnica et al., Quantum graph neural networks. (2019). https://doi.org/10.48550/arXiv.1909.12264, arXiv:1909.12264 – reference: P. Mernyei, K. Meichanetzidis, İlkan Ceylan. İsmail, Equivariant quantum graph circuits. (2022). arXiv:2112.05261 – reference: M.Y. Naghmouchi, W.d.S. Coelho, Mixed integer linear programming solver using benders decomposition assisted by neutral atom quantum processor. (2024). arXiv preprint arXiv:2402.05748https://doi.org/10.48550/arXiv.2402.05748 – reference: MalagutiEMonaciMTothPAn exact approach for the vertex coloring problemDiscr. Optim.201182174190279518810.1016/j.disopt.2010.07.005 – reference: S. Notarnicola, A. Elben, T. Lahaye et al., A randomized measurement toolbox for rydberg quantum technologies. (2021). arXiv:2112.11046 – reference: MaSLiuGPengPHigh-fidelity gates and mid-circuit erasure conversion in an atomic qubitNature202362279822792842023Natur.622..279M10.1038/s41586-023-06438-1 – reference: S. Thabet, R. Fouilland, L. Henriet, Extending graph transformers with quantum computed aggregation. (2022). https://doi.org/10.48550/arXiv.2210.10610, arXiv:2210.10610 – reference: ShawALSchollPFinklesteinRDark-state enhanced loading of an optical tweezer arrayPhys. Rev. Lett.2023130192023PhRvL.130s3402S10.1103/PhysRevLett.130.193402 – reference: M.M. Bronstein, J. Bruna, T. Cohen et al., Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. (2021). CoRR abs/2104.13478. arXiv:2104.13478 – reference: da SilvaCoelho WHenrietLHenryLPQuantum pricing-based column-generation framework for hard combinatorial problemsPhys. Rev. A202310732023PhRvA.107c2426D10.1103/PhysRevA.107.032426 – reference: BrownMThieleTKiehlCGray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assemblyPhys. Rev. X20199110.1103/PhysRevX.9.011057 – reference: H. Pichler, S.T. Wang, L. Zhou et al., Quantum optimization for maximum independent set using rydberg atom arrays. (2018). https://doi.org/10.48550/ARXIV.1808.10816 – reference: LaroccaMSauvageFSbahiFMGroup-invariant quantum machine learningPRX Quant.202232022PRXQ....3c0341L10.1103/PRXQuantum.3.030341 – reference: StastnySBüchlerHPLangNFunctional completeness of planar rydberg blockade structuresPhys. Rev. B20231082023PhRvB.108h5138S10.1103/PhysRevB.108.085138 – reference: BiamonteJWittekPPancottiNQuantum machine learningNature201754976711952022017Natur.549..195B10.1038/nature23474 – reference: BrowaeysALahayeTMany-body physics with individually controlled Rydberg atomsNat. Phys.202016213214210.1038/s41567-019-0733-zarXiv:2002.07413 [cond-mat.quant-gas] – reference: J.K. Gamble, M. Friesen, D. Zhou et al., Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5). (2010). https://doi.org/10.1103/physreva.81.052313 – reference: SerretMFMarchandBAyralTSolving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarksPhys. Rev. A202010252020PhRvA.102e2617S10.1103/PhysRevA.102.052617arXiv:2006.11190 [quant-ph] – reference: M. Larocca, S. Thanasilp, S. Wang et al., A review of barren plateaus in variational quantum computing. (2024). arXiv preprint arXiv:2405.00781 – reference: MadjarovISCoveyJPShawALHigh-fidelity entanglement and detection of alkaline-earth rydberg atomsNat. Phys.202016885786110.1038/s41567-020-0903-z – reference: KitaiKGuoJJuSDesigning metamaterials with quantum annealing and factorization machinesPhys. Rev. Res.2020210.1103/PhysRevResearch.2.013319 – reference: MorrisonDRJacobsonSHSauppeJJBranch-and-bound algorithms: A survey of recent advances in searching, branching, and pruningDiscret. Optim.20161979102346414110.1016/j.disopt.2016.01.005 – reference: FominFVLokshtanovDSaurabhSKernelization: theory of parameterized preprocessing2019CambridgeCambridge University Press10.1017/9781107415157 – reference: ZhouLWangSTChoiSQuantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devicesPhys. Rev. X20201010.1103/PhysRevX.10.021067 – reference: PaganoGHessPKaplanHCryogenic trapped-ion system for large scale quantum simulationQuant. Sci. Technol.2018412019QS&T....4a4004P10.1063/1.4966970 – reference: Z. Zeng, G. Giudici, H. Pichler, Quantum dimer models with rydberg gadgets. (2024). arXiv:2402.10651 – reference: SchaferJBKonstanJARiedlJE-commerce recommendation applicationsData Min. Knowl. Discov.200151–211515310.1023/A:1009804230409 – reference: A.M. Childs, R. Cleve, E. Deotto et al., Exponential algorithmic speedup by a quantum walk. in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. ACM, STOC03, (2003). https://doi.org/10.1145/780542.780552 – reference: A.J. Menssen, A. Hermans, I. Christen et al., Scalable photonic integrated circuits for programmable control of atomic systems. (2022). https://doi.org/10.48550/arXiv.2210.03100, arXiv:2210.03100 – reference: KnoernschildCZhangXLIsenhowerLIndependent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering systemApp. Phys. Lett.201097132010ApPhL..97m4101K10.1063/1.3494526 – reference: HuntHBIIIMaratheMVRadhakrishnanVNc-approximation schemes for np-and pspace-hard problems for geometric graphsJ. Algor.1998262238274160650410.1006/jagm.1997.0903 – reference: J. Gilmer, S.S. Schoenholz, P.F. Riley et al., Neural Message Passing for Quantum Chemistry. (2017). arXiv e-prints arXiv:1704.01212 [cs.LG], https://doi.org/10.48550/arXiv.1704.01212 – reference: SchymikKNPancaldiSNogretteFSingle atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperaturesPhys. Rev. A202116310.1103/PhysRevApplied.16.034013 – reference: S. Bhagat, G. Cormode, S. Muthukrishnan, Node Classification in Social Networks, Springer US, Boston, MA, pp 115–148. (2011).https://doi.org/10.1007/978-1-4419-8462-3_5 – reference: LukinMDFleischhauerMCoteRDipole blockade and quantum information processing in mesoscopic atomic ensemblesPhys. Rev. Lett.200187310.1103/physrevlett.87.037901 – reference: BarredoDLienhardVDe LeseleucSSynthetic three-dimensional atomic structures assembled atom by atomNature2018561772179822018Natur.561...79B10.1038/s41586-018-0450-2 – reference: A. Byun, J. Jung, K. Kim et al., Rydberg-atom graphs for quadratic unconstrained binary optimization problems. (2023). arXiv:2309.14847 – reference: A. de Oliveira, E. Diamond-Hitchcock, D. Walker et al., Demonstration of weighted graph optimization on a rydberg atom array using local light-shifts. (2024). arXiv preprint arXiv:2404.02658 – reference: GaëtanAMiroshnychenkoYWilkTObservation of collective excitation of two individual atoms in the rydberg blockade regimeNat. Phys.20095211511810.1038/nphys1183 – reference: SchuldMKilloranNQuantum machine learning in feature hilbert spacesPhys. Rev. Lett.20191222019PhRvL.122d0504S10.1103/PhysRevLett.122.040504 – reference: L.C. Freeman, Visualizing social networks. J. Soc. Struct. 1(2000). https://doi.org/10.1007/978-1-4419-8462-3_11 – reference: G. Muzio, L. O’Bray, K. Borgwardt, Biological network analysis with deep learning. Brief. Bioinf. 22(2), 1515–1530 (2020). https://doi.org/10.1093/bib/bbaa257, https://academic.oup.com/bib/article-pdf/22/2/1515/36655309/bbaa257.pdf – reference: M. Brandl, M. Van Mourik, L. Postler et al., Cryogenic setup for trapped ion quantum computing. Rev. Sci. Instrum. 87(11) (2016). https://doi.org/10.1063/1.4966970 – reference: BluvsteinDLevineHSemeghiniGA quantum processor based on coherent transport of entangled atom arraysNature202260479064514562022Natur.604..451B10.1038/s41586-022-04592-6 – reference: TangYYanJKoyejoSMohamedSAgarwalAGraphqntk: Quantum neural tangent kernel for graph dataAdv. Neural Inf. Process. Syst.2022Curran Associates Inc61046118 – reference: S. Thabet, R. Fouilland, M. Djellabi et al., Enhancing graph neural networks with quantum computed encodings. (2023). https://doi.org/10.48550/arXiv.2310.20519, arXiv:2310.20519 – reference: VandersypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.2004764103710692004RvMP...76.1037V10.1103/RevModPhys.76.1037arXiv:quant-ph/0404064 [quant-ph] – reference: R.S. Andrist, M.J. Schuetz, P. Minssen et al., Hardness of the maximum independent set problem on unit-disk graphs and prospects for quantum speedups. (2023). arXiv preprint arXiv:2307.09442https://doi.org/10.1103/PhysRevResearch.5.043277 – reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998585535553631998PhRvE..58.5355K10.1103/PhysRevE.58.5355arXiv:cond-mat/9804280 [cond-mat.stat-mech] – reference: K. Kishi, T. Satoh, R. Raymond et al., Graph kernels encoding features of all subgraphs by quantum superposition. (2021). https://doi.org/10.1109/JETCAS.2022.3200837, arXiv:2103.16093 – reference: R. Tao, M. Ammenwerth, F. Gyger et al., High-fidelity detection of large-scale atom arrays in an optical lattice. (2024). arXiv:2309.04717 – reference: S.Y. Chen, T. Wei, C. Zhang et al., Hybrid quantum-classical graph convolutional network. (2021). CoRR abs/2101.06189. arXiv:2101.06189 – reference: GoyalPFerraraEGraph embedding techniques, applications, and performance: A surveyKnowl.-Based Syst.2018151789410.1016/j.knosys.2018.03.022 – reference: SchymikKNXimenezBBlochEIn situ equalization of single-atom loading in large-scale optical tweezer arraysPhys. Rev. A202210622022PhRvA.106b2611S10.1103/PhysRevA.106.022611 – reference: JenkinsALisJWSenooAYtterbium nuclear-spin qubits in an optical tweezer arrayPhys. Rev. X202212210.1103/PhysRevX.12.021027 – reference: HavlíčekVCórcolesADTemmeKSupervised learning with quantum-enhanced feature spacesNature201956777472092122019Natur.567..209H10.1038/s41586-019-0980-2 – reference: EveredSJBluvsteinDKalinowskiMHigh-fidelity parallel entangling gates on a neutral-atom quantum computerNature202362279822682722023Natur.622..268E10.1038/s41586-023-06481-y – reference: J. Wurtz , P.L.S. Lopes, N. Gemelke et al., Industry applications of neutral-atom quantum computing solving independent set problems. (2022) . arXiv e-prints. https://doi.org/10.48550/arXiv.2205.08500, arXiv:2205.08500 [quant-ph] – reference: L. Schatzki, M. Larocca, F. Sauvage et al., Theoretical guarantees for permutation-equivariant quantum neural networks. (2022). arXiv preprint arXiv:2210.09974https://doi.org/10.1038/s41534-024-00804-1 – reference: MitaraiKNegoroMKitagawaMQuantum circuit learningPhys. Rev. A2018982018PhRvA..98c2309M10.1103/PhysRevA.98.032309 – reference: YoungAWEcknerWJMilnerWRHalf-minute-scale atomic coherence and high relative stability in a tweezer clockNature202058878384084132020Natur.588..408Y10.1038/s41586-020-3009-y – reference: SkolikACattelanMYarkoniSEquivariant quantum circuits for learning on weighted graphsNPJ Quant. Inf.202391472023npjQI...9...47S10.1038/s41534-023-00710-y – reference: AliyuMMZhaoLQuekXQD1 magic wavelength tweezers for scaling atom arraysPhys. Rev. Res.20213410.1103/PhysRevResearch.3.043059 – reference: BuzulutskovAAdvances in cryogenic avalanche detectorsJ. Instrum.2012702C02025C0202510.1088/1748-0221/7/02/c02025 – reference: SchuldMBrádlerKIsraelRMeasuring the similarity of graphs with a gaussian boson samplerPhys. Rev. A202010132020PhRvA.101c2314S10.1103/PhysRevA.101.032314 – reference: BrownMOThieleTKiehlCGray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assemblyPhys. Rev. X2019910.1103/PhysRevX.9.011057 – reference: SchollPWilliamsHJBornetGMicrowave engineering of programmable x x z hamiltonians in arrays of rydberg atomsPRX Quant.2022322022PRXQ....3b0303S10.1103/PRXQuantum.3.020303 – reference: A.D. King, J. Raymond, T. Lanting et al., Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature pp 1–6. (2023). https://doi.org/10.1038/s41586-023-05867-2 – reference: B. Zhang, P. Peng, A. Paul et al., A scaled local gate controller for optically addressed qubits. (2023). arXiv preprint arXiv:2310.08539https://doi.org/10.1364/OPTICA.512155 – reference: HenryLPThabetSDalyacCQuantum evolution kernel: Machine learning on graphs with programmable arrays of qubitsPhys. Rev. A202110432021PhRvA.104c2416H433083010.1103/PhysRevA.104.032416arXiv:2107.03247 [quant-ph] – reference: E. Deist, Y.H. Lu, J. Ho et al., Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129(20). (2022). https://doi.org/10.1103/physrevlett.129.203602 – reference: S. Jeong, M. Kim, M. Hhan et al., Quantum Programming of the Satisfiability Problem with Rydberg Atom Graphs. (2023) . arXiv e-prints arXiv:2302.14369. https://doi.org/10.48550/arXiv.2302.14369, arXiv:2302.14369 [quant-ph] – reference: SinghKAnandSPocklingtonADual-element, two-dimensional atom array with continuous-mode operationPhys. Rev. X202212110.1103/PhysRevX.12.011040 – reference: D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks. in Proceedings of the Twelfth International Conference on Information and Knowledge Management. Association for Computing Machinery, New York, NY, USA, CIKM ’03, p 556-559, (2003). https://doi.org/10.1145/956863.956972 – reference: MatsumoriTTakiMKadowakiTApplication of qubo solver using black-box optimization to structural design for resonance avoidanceSci. Rep.2022121121432022NatSR..1212143M10.1038/s41598-022-16149-8 – volume: 58 start-page: 5355 issue: 5 year: 1998 ident: 1385_CR56 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.5355 – ident: 1385_CR136 doi: 10.1364/OPTICA.512155 – ident: 1385_CR23 – volume: 622 start-page: 279 issue: 7982 year: 2023 ident: 1385_CR72 publication-title: Nature doi: 10.1038/s41586-023-06438-1 – volume: 15 start-page: 1273 issue: 12 year: 2019 ident: 1385_CR27 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0648-8 – ident: 1385_CR90 – volume: 588 start-page: 408 issue: 7838 year: 2020 ident: 1385_CR133 publication-title: Nature doi: 10.1038/s41586-020-3009-y – volume: 97 issue: 13 year: 2010 ident: 1385_CR62 publication-title: App. Phys. Lett. doi: 10.1063/1.3494526 – ident: 1385_CR75 – volume: 19 start-page: 79 year: 2016 ident: 1385_CR81 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2016.01.005 – ident: 1385_CR82 doi: 10.1093/bib/bbaa257 – volume: 24 start-page: 9816 issue: 9 year: 2016 ident: 1385_CR69 publication-title: Opt. Express doi: 10.1364/OE.24.009816 – ident: 1385_CR92 doi: 10.1103/PhysRevResearch.6.023241 – volume: 3 issue: 1 year: 2021 ident: 1385_CR118 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013286 – ident: 1385_CR29 doi: 10.48550/arXiv.2306.13373 – volume: 3 year: 2022 ident: 1385_CR18 publication-title: PRX Quant. doi: 10.1103/PRXQuantum.3.030305 – volume: 106 issue: 2 year: 2022 ident: 1385_CR110 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.106.022611 – ident: 1385_CR89 – volume: 13 start-page: 2567 year: 2014 ident: 1385_CR107 publication-title: Quant. Inf. Process. doi: 10.1007/s11128-014-0809-8 – ident: 1385_CR55 doi: 10.48550/arXiv.2302.14369 – ident: 1385_CR25 doi: 10.48550/arXiv.2208.06732 – ident: 1385_CR100 doi: 10.1038/s41534-024-00804-1 – ident: 1385_CR28 – ident: 1385_CR131 doi: 10.48550/arXiv.2205.08500 – ident: 1385_CR24 doi: 10.1145/780542.780552 – volume: 604 start-page: 451 issue: 7906 year: 2022 ident: 1385_CR10 publication-title: Nature doi: 10.1038/s41586-022-04592-6 – volume: 24 start-page: 9816 issue: 9 year: 2016 ident: 1385_CR68 publication-title: Opt. Express doi: 10.1364/OE.24.009816 – volume: 10 year: 2020 ident: 1385_CR137 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.10.021067 – volume: 33 start-page: 4602 issue: 01 year: 2019 ident: 1385_CR80 publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v33i01.33014602 – ident: 1385_CR44 doi: 10.1103/PhysRevResearch.6.033104 – volume: 561 start-page: 79 issue: 7721 year: 2018 ident: 1385_CR6 publication-title: Nature doi: 10.1038/s41586-018-0450-2 – start-page: 6104 volume-title: Adv. Neural Inf. Process. Syst. year: 2022 ident: 1385_CR120 – ident: 1385_CR86 – ident: 1385_CR30 doi: 10.1103/physrevlett.129.203602 – volume: 104 issue: 3 year: 2021 ident: 1385_CR47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.032416 – ident: 1385_CR42 doi: 10.48550/arXiv.1704.01212 – ident: 1385_CR128 doi: 10.48550/arXiv.1909.12264 – ident: 1385_CR60 doi: 10.1109/JETCAS.2022.3200837 – ident: 1385_CR46 doi: 10.22331/q-2020-09-21-327 – volume: 26 start-page: 238 issue: 2 year: 1998 ident: 1385_CR52 publication-title: J. Algor. doi: 10.1006/jagm.1997.0903 – volume: 268 start-page: 2261 issue: 1482 year: 2001 ident: 1385_CR117 publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.2001.1800 – volume: 5 start-page: 110 issue: 2 year: 2009 ident: 1385_CR125 publication-title: Nat. Phys. doi: 10.1038/nphys1178 – volume: 14 start-page: 545 issue: 4 year: 1984 ident: 1385_CR31 publication-title: Networks doi: 10.1002/net.3230140406 – ident: 1385_CR26 doi: 10.1103/physreva.108.023107 – ident: 1385_CR93 doi: 10.1364/OPTICA.513551 – volume: 16 start-page: 1050 issue: 10 year: 2020 ident: 1385_CR50 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0932-7 – volume: 3 issue: 3 year: 2022 ident: 1385_CR49 publication-title: PRX Quant. doi: 10.1103/PRXQuantum.3.030316 – volume: 25 start-page: 499 issue: 3 year: 1978 ident: 1385_CR41 publication-title: J. ACM (JACM) doi: 10.1145/322077.322090 – ident: 1385_CR77 doi: 10.48550/arXiv.2210.03100 – volume: 107 issue: 3 year: 2023 ident: 1385_CR113 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.032426 – volume: 4 start-page: 1535 year: 2009 ident: 1385_CR124 publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.177 – ident: 1385_CR127 – ident: 1385_CR97 doi: 10.48550/arXiv.2210.07980 – volume: 9 start-page: 47 issue: 1 year: 2023 ident: 1385_CR116 publication-title: NPJ Quant. Inf. doi: 10.1038/s41534-023-00710-y – volume: 12 start-page: 12143 issue: 1 year: 2022 ident: 1385_CR76 publication-title: Sci. Rep. doi: 10.1038/s41598-022-16149-8 – volume: 130 issue: 19 year: 2023 ident: 1385_CR112 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.193402 – volume: 85 start-page: 2208 issue: 10 year: 2000 ident: 1385_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2208 – volume: 151 start-page: 78 year: 2018 ident: 1385_CR43 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.022 – volume: 4 issue: 1 year: 2018 ident: 1385_CR91 publication-title: Quant. Sci. Technol. doi: 10.1063/1.4966970 – volume: 549 start-page: 195 issue: 7671 year: 2017 ident: 1385_CR9 publication-title: Nature doi: 10.1038/nature23474 – volume: 108 year: 2023 ident: 1385_CR119 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.085138 – ident: 1385_CR36 – volume: 16 start-page: 132 issue: 2 year: 2020 ident: 1385_CR14 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0733-z – ident: 1385_CR78 – ident: 1385_CR84 – ident: 1385_CR59 doi: 10.1038/s41586-023-05867-2 – volume: 128 issue: 11 year: 2022 ident: 1385_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.113602 – volume: 13 start-page: 5503 issue: 1 year: 2022 ident: 1385_CR129 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33179-y – volume-title: Kernelization: theory of parameterized preprocessing year: 2019 ident: 1385_CR37 doi: 10.1017/9781107415157 – volume: 130 issue: 18 year: 2023 ident: 1385_CR102 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.180601 – volume: 13 start-page: 2779 issue: 1 year: 2022 ident: 1385_CR5 publication-title: Nat. Comm. doi: 10.1038/s41467-022-29977-z – volume: 4 year: 2023 ident: 1385_CR85 publication-title: PRX Quant. doi: 10.1103/PRXQuantum.4.010316 – ident: 1385_CR65 – ident: 1385_CR38 doi: 10.1007/978-1-4419-8462-3_11 – volume: 622 start-page: 273 issue: 7982 year: 2023 ident: 1385_CR105 publication-title: Nature doi: 10.1038/s41586-023-06516-4 – ident: 1385_CR121 doi: 10.1103/PhysRevLett.133.013401 – volume: 76 start-page: 1037 issue: 4 year: 2004 ident: 1385_CR126 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.1037 – ident: 1385_CR19 doi: 10.1002/qute.202300398 – volume: 5 start-page: 115 issue: 1–2 year: 2001 ident: 1385_CR99 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009804230409 – ident: 1385_CR8 doi: 10.1007/978-1-4419-8462-3_5 – volume: 14 start-page: 699 issue: 4 year: 1966 ident: 1385_CR66 publication-title: Oper. Res. doi: 10.1287/opre.14.4.699 – ident: 1385_CR40 doi: 10.1103/physreva.81.052313 – ident: 1385_CR123 doi: 10.48550/arXiv.2310.20519 – ident: 1385_CR132 doi: 10.1109/TQE.2024.3443660 – volume: 5 year: 2023 ident: 1385_CR67 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.043117 – ident: 1385_CR135 – ident: 1385_CR83 doi: 10.48550/arXiv.2402.05748 – volume: 3 year: 2022 ident: 1385_CR64 publication-title: PRX Quant. doi: 10.1103/PRXQuantum.3.030341 – volume: 16 start-page: 857 issue: 8 year: 2020 ident: 1385_CR73 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0903-z – volume: 9 year: 2019 ident: 1385_CR16 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.011057 – volume: 82 start-page: 827 issue: 9 year: 2023 ident: 1385_CR58 publication-title: J. Korean Phys. Soc. doi: 10.1007/s40042-023-00774-1 – volume: 2 year: 2020 ident: 1385_CR61 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013319 – ident: 1385_CR1 doi: 10.2172/2229681 – volume: 9 issue: 1 year: 2019 ident: 1385_CR15 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.011057 – volume: 98 year: 2018 ident: 1385_CR79 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.032309 – volume: 3 start-page: 625 issue: 9 year: 2021 ident: 1385_CR21 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00348-9 – ident: 1385_CR7 doi: 10.1103/physreva.97.063613 – volume: 18 start-page: 755 issue: 7 year: 2022 ident: 1385_CR57 publication-title: Nat. Phys. doi: 10.1038/s41567-022-01629-5 – volume: 130 issue: 22 year: 2023 ident: 1385_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.220601 – volume: 102 issue: 5 year: 2020 ident: 1385_CR111 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.052617 – ident: 1385_CR35 doi: 10.48550/arXiv.2305.09518 – volume: 12 issue: 2 year: 2022 ident: 1385_CR54 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.12.021027 – ident: 1385_CR70 doi: 10.1145/956863.956972 – volume: 3 issue: 2 year: 2022 ident: 1385_CR103 publication-title: PRX Quant. doi: 10.1103/PRXQuantum.3.020303 – ident: 1385_CR11 doi: 10.1038/s41586-023-06927-3 – volume: 4 year: 2014 ident: 1385_CR87 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.021034 – ident: 1385_CR13 – volume: 5 start-page: 115 issue: 2 year: 2009 ident: 1385_CR39 publication-title: Nat. Phys. doi: 10.1038/nphys1183 – ident: 1385_CR96 doi: 10.22331/q-2018-08-06-79 – volume: 9 start-page: 47 issue: 1 year: 2023 ident: 1385_CR115 publication-title: NPJ Quant. Inf. doi: 10.1038/s41534-023-00710-y – ident: 1385_CR4 doi: 10.1103/PhysRevResearch.5.043277 – volume: 101 issue: 3 year: 2020 ident: 1385_CR108 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.032314 – volume: 12 issue: 1 year: 2022 ident: 1385_CR114 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.12.011040 – ident: 1385_CR122 doi: 10.48550/arXiv.2210.10610 – volume: 376 start-page: 1209 issue: 6598 year: 2022 ident: 1385_CR33 publication-title: Science doi: 10.1126/science.abo6587 – volume: 10 start-page: 5464 issue: 1 year: 2019 ident: 1385_CR130 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13534-2 – ident: 1385_CR12 doi: 10.1063/1.4966970 – volume: 12 start-page: 1095 issue: 12 year: 2016 ident: 1385_CR134 publication-title: Nat. Phys. doi: 10.1038/nphys3835 – volume: 567 start-page: 209 issue: 7747 year: 2019 ident: 1385_CR45 publication-title: Nature doi: 10.1038/s41586-019-0980-2 – volume: 12 start-page: 2631 year: 2021 ident: 1385_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22539-9 – volume: 3 issue: 2 year: 2022 ident: 1385_CR104 publication-title: PRX Quant. doi: 10.1103/PRXQuantum.3.020303 – volume: 16 issue: 3 year: 2021 ident: 1385_CR109 publication-title: Phys. Rev. A doi: 10.1103/PhysRevApplied.16.034013 – ident: 1385_CR20 doi: 10.48550/arXiv.2306.13123 – volume: 133 year: 2020 ident: 1385_CR95 publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2020.113303 – ident: 1385_CR98 doi: 10.1103/PhysRevLett.131.093401 – volume: 7 start-page: C02025 issue: 02 year: 2012 ident: 1385_CR17 publication-title: J. Instrum. doi: 10.1088/1748-0221/7/02/c02025 – ident: 1385_CR32 – ident: 1385_CR94 doi: 10.48550/ARXIV.1808.10816 – volume: 87 start-page: 3 year: 2001 ident: 1385_CR71 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.87.037901 – volume: 107 issue: 4 year: 2023 ident: 1385_CR2 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.042615 – volume: 622 start-page: 268 issue: 7982 year: 2023 ident: 1385_CR34 publication-title: Nature doi: 10.1038/s41586-023-06481-y – ident: 1385_CR101 doi: 10.1103/PhysRevResearch.6.013271 – volume: 616 start-page: 691 issue: 7958 year: 2023 ident: 1385_CR22 publication-title: Nature doi: 10.1038/s41586-023-05859-2 – volume: 3 issue: 4 year: 2021 ident: 1385_CR3 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.043059 – ident: 1385_CR88 – volume: 122 year: 2019 ident: 1385_CR106 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.040504 – volume: 8 start-page: 174 issue: 2 year: 2011 ident: 1385_CR74 publication-title: Discr. Optim. doi: 10.1016/j.disopt.2010.07.005  | 
    
| SSID | ssj0004296 | 
    
| Score | 2.4727437 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 177 | 
    
| SubjectTerms | Algorithms Cognitive tasks Electrons Embedding Graphs Hadrons Hardware Heavy Ions Machine learning Neutral atoms Nuclear Fusion Nuclear Physics Optimization Particle and Nuclear Physics Physics Physics and Astronomy Problem solving Quantum Computing in Low-Energy Nuclear Theory Qubits (quantum computing) Review Task complexity  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JSgNBEC1iguBFXDEaZQ5em8xML5M5iKgYg2AQMZBbM70pkn35f7tmMejBXGfogn69VHV3vVcA15GI09haRQzVhrAsNn7NZZYYFEdLhBNaI8H5pS96A_Y85MMa9CsuDKZVVntivlGbqcY78jb1vjnp8Djs3M7mBKtG4etqVUIjK0srmJtcYmwHGjEqY9Whcf_Yf33bMCXjtOAbUUbQ1ZcZX_6U0bazrwwZdSEPiXdcBJ_wOOG__dUmCP3zbpq7o-4B7JdxZHBXDPwh1OzkCHbzfE69PAb-hELUQTb68H1YfY6XAV64BhO7xpuNwJ-0x8F87VFdj4NZwRWYLpYnMOg-vj_0SFkhgWhK2YqkylDBlBKR9R_CjDNhlDKhSSjT_qAVJWHqEu6iNHGqI4QySjthI2VjbRLF6CnUJ9OJPYNAdJx1SZrpSKEVm1qjqU6ZZtw5bVgTRIWD1KV8OFaxGMmC2hxKBFAWAEoPoMwBlLwJ4U_DWaGgsb1JqwJalktqKTcToAlRBf7m9xaT5_-bvIC9OB90lGRoQX21WNtLH22s1FU5hb4Bj67R2g priority: 102 providerName: ProQuest  | 
    
| Title | Graph algorithms with neutral atom quantum processors | 
    
| URI | https://link.springer.com/article/10.1140/epja/s10050-024-01385-5 https://www.proquest.com/docview/3256785208  | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1434-601X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004296 issn: 1434-601X databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1434-601X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004296 issn: 1434-601X databaseCode: ADMLS dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-601X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004296 issn: 1434-601X databaseCode: AFBBN dateStart: 19980101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1434-601X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004296 issn: 1434-601X databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-601X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004296 issn: 1434-601X databaseCode: U2A dateStart: 19980119 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYJiQuiKcYjKkHrhFpm6TtccAeAjYhYNI4Rc0LhPZij_9P0nYMODCJU6RWzuGrU9ux_RngwmdBEmgtkAqlQiQNlD1zqUbKkaNFzDApXYNzt8c6fXI7oIPvo75ctfsqJZn9qXM-W3ypp--p63jDFCNrWJBLsVFES1ChjtPLqnI_aKxbIoOEFeVcfwj_NEZrD_NXUjSzNa092C2cRK-Rf9V92NLjA9jOijXl_BBo27FMe-nwdWJD-7fR3HO3qd5YL921hWfD6JH3sbSQLUfeNG8EmMzmR9BvNZ-vO6gYf4BkGJIFSoQKGRGC-do-wCklTAmhsIpCIm0U5Uc4MRE1fhIZETMmlJCGaV_oQKpIkPAYyuPJWJ-Ax2KjTZSk0hduF51oJUOZEEmoMVKRKrAVDlwW3OBuRMWQ533LmDsAeQ4gtwDyDEBOq4C_BKc5PcZmkdoKaF6clzkPrecVxTTAcRX8Ffjr1xu2PP2HzBnsBJkmOBKGGpQXs6U-t_7FQtShFLfadag0brr3T25tv9w17XrV7D081jM9-wQ8xc_N | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThwxEC2xCJFLBCEok7D4EI4W3d56fECIfdhGKAKJm2lviSJmgZ4R4uf4NuxeGMEBTly75To8l12bXxXA71QQSZzT2FJjMcuJDWcud9jG5miZ8MKYSHA-74rOFTu55tdT8NRwYeKzyuZOLC9qOzAxR75Jg23O2pwk7e3hHY5To2J1tRmhkdejFexW2WKsJnacuseHEMIVW8f7Yb83CDk8uNzr4HrKADaUshGW2lLBtBapCx-SnDNhtbaJzSgzIVhJs0T6jPtUZl63hdBWGy9cqh0xNtOMBrnTMMsokyH4m9096F78mTAziaz4TZTh6FrUL8xCVLPphv_zyOBLeIKDocSxZMgxf20fJ07vmzptaf4OF-Br7beinUrRFmHK9b_BXPl-1BRLwI9i42uU3_4NmI3-9QoUE7yo78Yxk4JCZN9Dd-Owi-MeGlbchMF98R2uPgWrZZjpD_ruByDR9s5nMjepjlKcdNZQI5lh3HtjWQtEg4MydbvyODXjVlVU6kRFAFUFoAoAqhJAxVuQvCwcVh07Pl6y0gCt6iNcqInCtSBtwJ_8_kDkz_dFrsN85_L8TJ0dd09_wRdSKkBsB7ECM6P7sVsNns5Ir9XqhODmszX4GZCfEA8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIhAL4ikKBTKwWnUS22nGClreFQOVulnxC4TatLTJ_8fOgwoGKrHGOg9fzro7332fAa58FsSB1gKpUCpEkkDZM5dopJw4WsQMk9IRnJ-H7G5EHsZ03IB-zYUppt3rlmTJaXAqTWnWmStTadvijp5_JI79hilGNsgg126jiG7AJnFqCdatR0FvRY8MYlaNdv1h_DMwrbLNXw3SIu4M9mC3Shi9XvmH96Gh0wPYKgY35fIQ6K1TnPaSydvMlvnv06Xnbla9VOfuCsOzJfXU-8wtfPnUm5ekgNlieQSjQf_1-g5VTyEgGYYkQ7FQISNCMF_bDzihhCkhFFZRSKStqPwIxyaixo8jI7qMCSWkYdoXOpAqEiQ8hmY6S_UJeKxrtIniRPrC7aJjrWQoYyIJNUYq0gJW48BlpRPunquY8JLDjLkDkJcAcgsgLwDktAX423BeSmWsN2nXQPPq7Cx5aLOwqEsD3G2BX4O_Wl6z5ek_bC5h--VmwJ_uh49nsBMUTuG0GdrQzBa5PrdpRyYuCqf6AsBK0U0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+algorithms+with+neutral+atom+quantum+processors&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Dalyac%2C+Constantin&rft.au=Leclerc%2C+Lucas&rft.au=Vignoli%2C+Louis&rft.au=Djellabi%2C+Mehdi&rft.date=2024-09-06&rft.issn=1434-601X&rft.eissn=1434-601X&rft.volume=60&rft.issue=9&rft_id=info:doi/10.1140%2Fepja%2Fs10050-024-01385-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epja_s10050_024_01385_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-601X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-601X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-601X&client=summon |