Graph algorithms with neutral atom quantum processors

Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from s...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. A, Hadrons and nuclei Vol. 60; no. 9; p. 177
Main Authors Dalyac, Constantin, Leclerc, Lucas, Vignoli, Louis, Djellabi, Mehdi, Coelho, Wesley da Silva, Ximenez, Bruno, Dareau, Alexandre, Dreon, Davide, Elfving, Vincent E., Signoles, Adrien, Henry, Louis-Paul, Henriet, Loïc
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 06.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1434-601X
1434-6001
1434-601X
DOI10.1140/epja/s10050-024-01385-5

Cover

Abstract Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.
AbstractList Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.
ArticleNumber 177
Author Djellabi, Mehdi
Henriet, Loïc
Ximenez, Bruno
Dareau, Alexandre
Dalyac, Constantin
Leclerc, Lucas
Vignoli, Louis
Signoles, Adrien
Dreon, Davide
Elfving, Vincent E.
Coelho, Wesley da Silva
Henry, Louis-Paul
Author_xml – sequence: 1
  givenname: Constantin
  orcidid: 0000-0002-0339-6421
  surname: Dalyac
  fullname: Dalyac, Constantin
  email: constantin@pasqal.com
  organization: PASQAL
– sequence: 2
  givenname: Lucas
  orcidid: 0000-0003-0581-9165
  surname: Leclerc
  fullname: Leclerc, Lucas
  organization: PASQAL, Laboratoire Charles Fabry, Institut d’Optique Graduate School
– sequence: 3
  givenname: Louis
  orcidid: 0000-0003-1806-9762
  surname: Vignoli
  fullname: Vignoli, Louis
  organization: PASQAL
– sequence: 4
  givenname: Mehdi
  surname: Djellabi
  fullname: Djellabi, Mehdi
  organization: PASQAL
– sequence: 5
  givenname: Wesley da Silva
  surname: Coelho
  fullname: Coelho, Wesley da Silva
  organization: PASQAL
– sequence: 6
  givenname: Bruno
  surname: Ximenez
  fullname: Ximenez, Bruno
  organization: PASQAL
– sequence: 7
  givenname: Alexandre
  orcidid: 0000-0001-7581-4701
  surname: Dareau
  fullname: Dareau, Alexandre
  organization: PASQAL
– sequence: 8
  givenname: Davide
  orcidid: 0000-0002-4831-272X
  surname: Dreon
  fullname: Dreon, Davide
  organization: PASQAL
– sequence: 9
  givenname: Vincent E.
  orcidid: 0000-0002-5105-5664
  surname: Elfving
  fullname: Elfving, Vincent E.
  organization: PASQAL
– sequence: 10
  givenname: Adrien
  orcidid: 0000-0001-7822-9444
  surname: Signoles
  fullname: Signoles, Adrien
  organization: PASQAL
– sequence: 11
  givenname: Louis-Paul
  surname: Henry
  fullname: Henry, Louis-Paul
  organization: PASQAL
– sequence: 12
  givenname: Loïc
  surname: Henriet
  fullname: Henriet, Loïc
  organization: PASQAL
BookMark eNqNkEtLxDAQgIOs4O7qb7Dgue6kebQ9eJBFV2HBi4K3kLTpbkvbdJMU8d-btYLiRU8zDPPN41ugWW96jdAlhmuMKaz00MiVwwAMYkhoDJhkLGYnaI4poTEH_Dr7kZ-hhXMNANAk53PENlYO-0i2O2Nrv-9c9BZC1OvRW9lG0psuOoyy92MXDdYU2jlj3Tk6rWTr9MVXXKKX-7vn9UO8fdo8rm-3cUEI9XGuSsKpUhzrUADJKC-VKqFMCS0wUJxCXqWswnlaqYxzVaqi4hornRRlqihZoqtpblh9GLXzojGj7cNKQRLG04wlkIWum6mrsMY5qytR1F762vThh7oVGMTRlDiaEpMpEUyJT1OCBT79xQ-27qR9_weZTaQLRL_T9vu-v9APTqKDzQ
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_043020
crossref_primary_10_1103_PRXQuantum_6_010301
crossref_primary_10_1103_PhysRevA_111_032611
Cites_doi 10.1103/PhysRevE.58.5355
10.1364/OPTICA.512155
10.1038/s41586-023-06438-1
10.1038/s41567-019-0648-8
10.1038/s41586-020-3009-y
10.1063/1.3494526
10.1016/j.disopt.2016.01.005
10.1093/bib/bbaa257
10.1364/OE.24.009816
10.1103/PhysRevResearch.6.023241
10.1103/PhysRevResearch.3.013286
10.48550/arXiv.2306.13373
10.1103/PRXQuantum.3.030305
10.1103/PhysRevA.106.022611
10.1007/s11128-014-0809-8
10.48550/arXiv.2302.14369
10.48550/arXiv.2208.06732
10.1038/s41534-024-00804-1
10.48550/arXiv.2205.08500
10.1145/780542.780552
10.1038/s41586-022-04592-6
10.1103/PhysRevX.10.021067
10.1609/aaai.v33i01.33014602
10.1103/PhysRevResearch.6.033104
10.1038/s41586-018-0450-2
10.1103/physrevlett.129.203602
10.1103/PhysRevA.104.032416
10.48550/arXiv.1704.01212
10.48550/arXiv.1909.12264
10.1109/JETCAS.2022.3200837
10.22331/q-2020-09-21-327
10.1006/jagm.1997.0903
10.1098/rspb.2001.1800
10.1038/nphys1178
10.1002/net.3230140406
10.1103/physreva.108.023107
10.1364/OPTICA.513551
10.1038/s41567-020-0932-7
10.1103/PRXQuantum.3.030316
10.1145/322077.322090
10.48550/arXiv.2210.03100
10.1103/PhysRevA.107.032426
10.1038/nprot.2009.177
10.48550/arXiv.2210.07980
10.1038/s41534-023-00710-y
10.1038/s41598-022-16149-8
10.1103/PhysRevLett.130.193402
10.1103/PhysRevLett.85.2208
10.1016/j.knosys.2018.03.022
10.1063/1.4966970
10.1038/nature23474
10.1103/PhysRevB.108.085138
10.1038/s41567-019-0733-z
10.1038/s41586-023-05867-2
10.1103/PhysRevLett.128.113602
10.1038/s41467-022-33179-y
10.1017/9781107415157
10.1103/PhysRevLett.130.180601
10.1038/s41467-022-29977-z
10.1103/PRXQuantum.4.010316
10.1007/978-1-4419-8462-3_11
10.1038/s41586-023-06516-4
10.1103/PhysRevLett.133.013401
10.1103/RevModPhys.76.1037
10.1002/qute.202300398
10.1023/A:1009804230409
10.1007/978-1-4419-8462-3_5
10.1287/opre.14.4.699
10.1103/physreva.81.052313
10.48550/arXiv.2310.20519
10.1109/TQE.2024.3443660
10.1103/PhysRevResearch.5.043117
10.48550/arXiv.2402.05748
10.1103/PRXQuantum.3.030341
10.1038/s41567-020-0903-z
10.1103/PhysRevX.9.011057
10.1007/s40042-023-00774-1
10.1103/PhysRevResearch.2.013319
10.2172/2229681
10.1103/PhysRevA.98.032309
10.1038/s42254-021-00348-9
10.1103/physreva.97.063613
10.1038/s41567-022-01629-5
10.1103/PhysRevLett.130.220601
10.1103/PhysRevA.102.052617
10.48550/arXiv.2305.09518
10.1103/PhysRevX.12.021027
10.1145/956863.956972
10.1103/PRXQuantum.3.020303
10.1038/s41586-023-06927-3
10.1103/PhysRevX.4.021034
10.1038/nphys1183
10.22331/q-2018-08-06-79
10.1103/PhysRevResearch.5.043277
10.1103/PhysRevA.101.032314
10.1103/PhysRevX.12.011040
10.48550/arXiv.2210.10610
10.1126/science.abo6587
10.1038/s41467-019-13534-2
10.1038/nphys3835
10.1038/s41586-019-0980-2
10.1038/s41467-021-22539-9
10.1103/PhysRevApplied.16.034013
10.48550/arXiv.2306.13123
10.1016/j.dss.2020.113303
10.1103/PhysRevLett.131.093401
10.1088/1748-0221/7/02/c02025
10.48550/ARXIV.1808.10816
10.1103/physrevlett.87.037901
10.1103/PhysRevA.107.042615
10.1038/s41586-023-06481-y
10.1103/PhysRevResearch.6.013271
10.1038/s41586-023-05859-2
10.1103/PhysRevResearch.3.043059
10.1103/PhysRevLett.122.040504
10.1016/j.disopt.2010.07.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1140/epja/s10050-024-01385-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-601X
ExternalDocumentID 10_1140_epja_s10050_024_01385_5
GroupedDBID -~X
.VR
06D
0R~
199
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFNX
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHPBZ
AHWEU
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ADMLS
B0M
CITATION
EAD
EAS
EBLON
EMK
EPL
I-F
TUS
~8M
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c334t-9bd364bb61ec330a546dbbd0d734c1041709f75f197fb866bdbcf6e1be2cd7b43
IEDL.DBID U2A
ISSN 1434-601X
1434-6001
IngestDate Mon Oct 06 18:37:09 EDT 2025
Wed Oct 01 02:17:05 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Mon Jul 21 06:07:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-9bd364bb61ec330a546dbbd0d734c1041709f75f197fb866bdbcf6e1be2cd7b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0339-6421
0000-0002-5105-5664
0000-0003-0581-9165
0000-0003-1806-9762
0000-0001-7581-4701
0000-0002-4831-272X
0000-0001-7822-9444
PQID 3256785208
PQPubID 2043701
ParticipantIDs proquest_journals_3256785208
crossref_citationtrail_10_1140_epja_s10050_024_01385_5
crossref_primary_10_1140_epja_s10050_024_01385_5
springer_journals_10_1140_epja_s10050_024_01385_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-06
PublicationDateYYYYMMDD 2024-09-06
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-06
  day: 06
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Hadrons and Nuclei
PublicationTitle The European physical journal. A, Hadrons and nuclei
PublicationTitleAbbrev Eur. Phys. J. A
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ShawALSchollPFinklesteinRDark-state enhanced loading of an optical tweezer arrayPhys. Rev. Lett.2023130192023PhRvL.130s3402S10.1103/PhysRevLett.130.193402
A. Bergschneider, V.M. Klinkhamer, J.H. Becher et al., Spin-resolved single-atom imaging of 6li in free space. Phys. Rev. A 97(6), (2018). https://doi.org/10.1103/physreva.97.063613
SongYKimMHwangHQuantum simulation of cayley-tree ising hamiltonians with three-dimensional rydberg atomsPhys. Rev. Res.20213110.1103/PhysRevResearch.3.013286
ZhouLWangSTChoiSQuantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devicesPhys. Rev. X20201010.1103/PhysRevX.10.021067
M.A. Norcia, H. Kim, W.B. Cairncross et al., Iterative assembly of 171\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{171}$$\end{document}yb atom arrays in cavity-enhanced optical lattices. (2024). arXiv:2401.16177
G. Verdon, T. McCourt, E. Luzhnica et al., Quantum graph neural networks. (2019). https://doi.org/10.48550/arXiv.1909.12264, arXiv:1909.12264
WangHYehHCKamenevAMany-body localization enables iterative quantum optimizationNat. Commun.202213155032022NatCo..13.5503W10.1038/s41467-022-33179-y
BluvsteinDLevineHSemeghiniGA quantum processor based on coherent transport of entangled atom arraysNature202260479064514562022Natur.604..451B10.1038/s41586-022-04592-6
P. Mernyei, K. Meichanetzidis, İlkan Ceylan. İsmail, Equivariant quantum graph circuits. (2022). arXiv:2112.05261
B.F. Schiffer, D.S. Wild, N. Maskara et al., Circumventing superexponential runtimes for hard instances of quantum adiabatic optimization. (2023). arXiv preprint arXiv:2306.13131https://doi.org/10.1103/PhysRevResearch.6.013271
SchuldMKilloranNQuantum machine learning in feature hilbert spacesPhys. Rev. Lett.20191222019PhRvL.122d0504S10.1103/PhysRevLett.122.040504
SchymikKNXimenezBBlochEIn situ equalization of single-atom loading in large-scale optical tweezer arraysPhys. Rev. A202210622022PhRvA.106b2611S10.1103/PhysRevA.106.022611
L. Schatzki, M. Larocca, F. Sauvage et al., Theoretical guarantees for permutation-equivariant quantum neural networks. (2022). arXiv preprint arXiv:2210.09974https://doi.org/10.1038/s41534-024-00804-1
KimMKimKHwangJRydberg quantum wires for maximum independent set problemsNat. Phys.202218775575910.1038/s41567-022-01629-5
A. Abbas, A. Ambainis, B. Augustino et al., Quantum optimization: Potential, challenges, and the path forward. (2023). arXiv:2312.02279
I. Christen, M. Sutula, T. Propson et al., An integrated photonic engine for programmable atomic control. (2022). https://doi.org/10.48550/arXiv.2208.06732, arXiv:2208.06732
HuntHBIIIMaratheMVRadhakrishnanVNc-approximation schemes for np-and pspace-hard problems for geometric graphsJ. Algor.1998262238274160650410.1006/jagm.1997.0903
B. Marchand, Positioning atoms using optical tweezer traps (2020)
HsuTWZhuWThieleTSingle-atom trapping in a metasurface-lens optical tweezerPRX Quant.2022332022PRXQ....3c0316H10.1103/PRXQuantum.3.030316
S. Varsamopoulos, E. Philip, H.W.T. van Vlijmen et al., Quantum extremal learning. (2022). arXiv:2205.02807
L. Henriet, L. Beguin, A. Signoles et al., Quantum computing with neutral atoms. Quantum. 4, 327 (2020). https://doi.org/10.22331/q-2020-09-21-327, arXiv:2006.12326 [quant-ph]
A. Byun, J. Jung, K. Kim et al., Rydberg-atom graphs for quadratic unconstrained binary optimization problems. (2023). arXiv:2309.14847
B. Zhang, P. Peng, A. Paul et al., A scaled local gate controller for optically addressed qubits. (2023). arXiv preprint arXiv:2310.08539https://doi.org/10.1364/OPTICA.512155
E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimization Algorithm. (2014). arXiv e-prints arXiv:1411.4028. arXiv:1411.4028 [quant-ph]
MatsumoriTTakiMKadowakiTApplication of qubo solver using black-box optimization to structural design for resonance avoidanceSci. Rep.2022121121432022NatSR..1212143M10.1038/s41598-022-16149-8
MadjarovISCoveyJPShawALHigh-fidelity entanglement and detection of alkaline-earth rydberg atomsNat. Phys.202016885786110.1038/s41567-020-0903-z
H. Pichler, S.T. Wang, L. Zhou et al., Quantum optimization for maximum independent set using rydberg atom arrays. (2018). https://doi.org/10.48550/ARXIV.1808.10816
BrownMThieleTKiehlCGray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assemblyPhys. Rev. X20199110.1103/PhysRevX.9.011057
HavlíčekVCórcolesADTemmeKSupervised learning with quantum-enhanced feature spacesNature201956777472092122019Natur.567..209H10.1038/s41586-019-0980-2
W.E. Diewert, Applications of Duality Theory, Stanford Institute for Mathematical Studies in the Social Sciences Stanford. (1974). URL https://www.researchgate.net/publication/230663892_Applications_of_Duality_Theory
SchaferJBKonstanJARiedlJE-commerce recommendation applicationsData Min. Knowl. Discov.200151–211515310.1023/A:1009804230409
D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks. in Proceedings of the Twelfth International Conference on Information and Knowledge Management. Association for Computing Machinery, New York, NY, USA, CIKM ’03, p 556-559, (2003). https://doi.org/10.1145/956863.956972
S. Notarnicola, A. Elben, T. Lahaye et al., A randomized measurement toolbox for rydberg quantum technologies. (2021). arXiv:2112.11046
J. Park, S. Jeong, M. Kim et al., A rydberg-atom approach to the integer factorization problem. (2024). arXiv:2312.08703
H. Neven, V. Denchev, G. Rose et al., Qboost: Large scale classifier training with adiabatic quantum optimization. Journal of Machine Learning Research 25, 333–348, (2012). URL https://proceedings.mlr.press/v25/neven12/neven12.pdf
A.D. King, J. Raymond, T. Lanting et al., Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature pp 1–6. (2023). https://doi.org/10.1038/s41586-023-05867-2
MorrisonDRJacobsonSHSauppeJJBranch-and-bound algorithms: A survey of recent advances in searching, branching, and pruningDiscret. Optim.20161979102346414110.1016/j.disopt.2016.01.005
J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum bf 2, 79. (2018) https://doi.org/10.22331/q-2018-08-06-79, arXiv:1801.00862 [quant-ph]
SchollPShawALTsaiRBSErasure conversion in a high-fidelity rydberg quantum simulatorNature202362279822732782023Natur.622..273S10.1038/s41586-023-06516-4
FominFVLokshtanovDSaurabhSKernelization: theory of parameterized preprocessing2019CambridgeCambridge University Press10.1017/9781107415157
R. Tao, M. Ammenwerth, F. Gyger et al., High-fidelity detection of large-scale atom arrays in an optical lattice. (2024). arXiv:2309.04717
BarnesKBattaglinoPBloomBJAssembly and coherent control of a register of nuclear spin qubitsNat. Comm.202213127792022NatCo..13.2779B10.1038/s41467-022-29977-z
B. Cimring, R. El Sabeh, M. Bacvanski et al., Efficient algorithms to solve atom reconfiguration problems. i. redistribution-reconfiguration algorithm. Phys Rev A 108(2), (2023). https://doi.org/10.1103/physreva.108.023107
KitaiKGuoJJuSDesigning metamaterials with quantum annealing and factorization machinesPhys. Rev. Res.2020210.1103/PhysRevResearch.2.013319
GareyMRJohnsonDS“strong”np-completeness results: Motivation, examples, and implicationsJ. ACM (JACM)197825349950847874710.1145/322077.322090
LanthalerMDlaskaCEnderKRydberg-blockade-based parity quantum optimizationPhys. Rev. Lett.2023130222023PhRvL.130v0601L460828210.1103/PhysRevLett.130.220601
MalagutiEMonaciMTothPAn exact approach for the vertex coloring problemDiscr. Optim.201182174190279518810.1016/j.disopt.2010.07.005
HuangHYKuengRPreskillJPredicting many properties of a quantum system from very few measurementsNat. Phys.202016101050105710.1038/s41567-020-0932-7
Z. Zeng, G. Giudici, H. Pichler, Quantum dimer models with rydberg gadgets. (2024). arXiv:2402.10651
HollerithSSrakaewKWeiDRealizing distance-selective interactions in a Rydberg–Dressed atom arrayPhys. Rev. Lett.2022128112022PhRvL.128k3602H10.1103/PhysRevLett.128.113602arXiv:2110.10125 [cond-mat.quant-gas]
KnoernschildCZhangXLIsenhowerLIndependent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering systemApp. Phys. Lett.201097132010ApPhL..97m4101K10.1063/1.3494526
LeclercLOrtiz-GutiérrezLGrijalvaSFinancial risk management on a neutral atom quantum processorPhys. Rev. Res.2023510.1103/PhysRevResearch.5.043117
DesrosiersJSoumisFDesrochersMRouting with time windows by column generationNetworks198414454556510.1002/net.3230140406
M.Y. Naghmouchi, W.d.S. Coelho, Mixed integer linear programming solver using benders decomposition assisted by neutral atom quantum processor. (2024). arXiv preprint arXiv:2402.05748https://doi.org/10.48550/arXiv.2402.05748
VandersypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.2004764103710692004RvMP...76.1037V10.1103/RevModPhys.76.1037arXiv:quant-ph/0404064 [quant-ph]
J. Wurtz, S. Sack, S.T. Wang, Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms. (2024). arXiv:2403.03153
M. Cain, S. Chattopadhyay, J.G. Liu et al., Quantum speedup for combinatorial optimization with flat energy landscapes. (2023). arXiv preprint arXiv:2306.13123, https://doi.org/10.48550/arXiv.2306.13123
R.S. Andrist, M.J. Schuetz, P. Minssen et al., Hardness of the maximum independent set problem on unit-disk graphs and prospects for quantum speedups. (2023). arXiv preprint arXiv:2307.09442https://doi.org/10.1103/PhysRevResearch.5.043277
SchollPWilliamsHJBornetGMicrowave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg AtomsPRX Quant.2022322022PRXQ....3b0303S10.1103/PRXQuantum.3.020303arXiv:2107.14459 [quant-ph]
CongIChoiSLukinMDQuantum convolutional neural networksNat. Phys.201915121273127810.1038/s41567-019-0648-8arXiv:1810.03787 [quant-ph]
J. Wurtz , P.L.S. Lopes, N. Gemelke et al., Industry applications of n
P Scholl (1385_CR103) 2022; 3
AW Young (1385_CR133) 2020; 588
M Schlosser (1385_CR102) 2023; 130
K Kitai (1385_CR61) 2020; 2
1385_CR101
RV Solé (1385_CR117) 2001; 268
DR Morrison (1385_CR81) 2016; 19
1385_CR100
D Barredo (1385_CR6) 2018; 561
S Stastny (1385_CR119) 2023; 108
1385_CR65
1385_CR60
A Skolik (1385_CR115) 2023; 9
HB Hunt III (1385_CR52) 1998; 26
F Nogrette (1385_CR87) 2014; 4
E Malaguti (1385_CR74) 2011; 8
S Hollerith (1385_CR48) 2022; 128
K Wright (1385_CR130) 2019; 10
S Ebadi (1385_CR33) 2022; 376
1385_CR78
1385_CR75
1385_CR77
MO Brown (1385_CR16) 2019; 9
1385_CR70
L Leclerc (1385_CR67) 2023; 5
L Zhou (1385_CR137) 2020; 10
M Schuld (1385_CR106) 2019; 122
1385_CR128
1385_CR127
V Havlíček (1385_CR45) 2019; 567
1385_CR123
1385_CR89
1385_CR122
1385_CR121
C Knoernschild (1385_CR62) 2010; 97
1385_CR86
C Chen (1385_CR22) 2023; 616
1385_CR88
1385_CR82
1385_CR84
1385_CR83
KN Schymik (1385_CR109) 2021; 16
A Gaëtan (1385_CR39) 2009; 5
MF Serret (1385_CR111) 2020; 102
A Skolik (1385_CR116) 2023; 9
A Browaeys (1385_CR14) 2020; 16
J Zeiher (1385_CR134) 2016; 12
1385_CR19
1385_CR136
1385_CR135
1385_CR13
1385_CR12
1385_CR132
1385_CR131
1385_CR97
1385_CR96
1385_CR11
T Pourhabibi (1385_CR95) 2020; 133
1385_CR98
TW Hsu (1385_CR49) 2022; 3
1385_CR93
1385_CR92
D Bluvstein (1385_CR10) 2022; 604
1385_CR94
E Urban (1385_CR125) 2009; 5
1385_CR90
A Byun (1385_CR18) 2022; 3
J Desrosiers (1385_CR31) 1984; 14
P Goyal (1385_CR43) 2018; 151
B Albrecht (1385_CR2) 2023; 107
G Pagano (1385_CR91) 2018; 4
AL Shaw (1385_CR112) 2023; 130
MR Garey (1385_CR41) 1978; 25
MD Lukin (1385_CR71) 2001; 87
K Mitarai (1385_CR79) 2018; 98
1385_CR28
1385_CR29
M Lanthaler (1385_CR63) 2023; 130
1385_CR24
1385_CR23
1385_CR26
1385_CR25
1385_CR20
1385_CR8
1385_CR7
J Biamonte (1385_CR9) 2017; 549
W Lee (1385_CR69) 2016; 24
Y Song (1385_CR118) 2021; 3
K Barnes (1385_CR5) 2022; 13
1385_CR4
FV Fomin (1385_CR37) 2019
M Kim (1385_CR57) 2022; 18
Y Tang (1385_CR120) 2022
HY Huang (1385_CR50) 2020; 16
1385_CR1
D Jaksch (1385_CR53) 2000; 85
T Matsumori (1385_CR76) 2022; 12
M Brown (1385_CR15) 2019; 9
IS Madjarov (1385_CR73) 2020; 16
M Kim (1385_CR58) 2023; 82
1385_CR38
1385_CR35
1385_CR36
SJ Evered (1385_CR34) 2023; 622
1385_CR30
1385_CR32
P Scholl (1385_CR105) 2023; 622
MM Aliyu (1385_CR3) 2021; 3
MT Nguyen (1385_CR85) 2023; 4
T Kadowaki (1385_CR56) 1998; 58
A Buzulutskov (1385_CR17) 2012; 7
S Ma (1385_CR72) 2023; 622
M Schuld (1385_CR108) 2020; 101
KN Schymik (1385_CR110) 2022; 106
I Cong (1385_CR27) 2019; 15
H Wang (1385_CR129) 2022; 13
1385_CR46
K Singh (1385_CR114) 2022; 12
1385_CR42
M Cerezo (1385_CR21) 2021; 3
1385_CR44
JB Schafer (1385_CR99) 2001; 5
1385_CR40
M Larocca (1385_CR64) 2022; 3
LP Henry (1385_CR47) 2021; 104
A Jenkins (1385_CR54) 2022; 12
Coelho W da Silva (1385_CR113) 2023; 107
M Schuld (1385_CR107) 2014; 13
HY Huang (1385_CR51) 2021; 12
1385_CR59
C Morris (1385_CR80) 2019; 33
1385_CR55
LMK Vandersypen (1385_CR126) 2004; 76
P Scholl (1385_CR104) 2022; 3
EL Lawler (1385_CR66) 1966; 14
A Theocharidis (1385_CR124) 2009; 4
W Lee (1385_CR68) 2016; 24
References_xml – reference: PourhabibiTOngKLKamBHFraud detection: A systematic literature review of graph-based anomaly detection approachesDecis. Support Syst.202013310.1016/j.dss.2020.113303
– reference: C. Dalyac , L.P. Henry, M. Kim et al., Exploring the impact of graph locality for the resolution of MIS with neutral atom devices. (2023). arXiv e-prints https://doi.org/10.48550/arXiv.2306.13373, arXiv:2306.13373 [quant-ph]
– reference: B. Cimring, R. El Sabeh, M. Bacvanski et al., Efficient algorithms to solve atom reconfiguration problems. i. redistribution-reconfiguration algorithm. Phys Rev A 108(2), (2023). https://doi.org/10.1103/physreva.108.023107
– reference: J. Wurtz, S. Sack, S.T. Wang, Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms. (2024). arXiv:2403.03153
– reference: E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimization Algorithm. (2014). arXiv e-prints arXiv:1411.4028. arXiv:1411.4028 [quant-ph]
– reference: B. Marchand, Positioning atoms using optical tweezer traps (2020)
– reference: KimMKimKHwangJRydberg quantum wires for maximum independent set problemsNat. Phys.202218775575910.1038/s41567-022-01629-5
– reference: H. Neven, V. Denchev, G. Rose et al., Qboost: Large scale classifier training with adiabatic quantum optimization. Journal of Machine Learning Research 25, 333–348, (2012). URL https://proceedings.mlr.press/v25/neven12/neven12.pdf
– reference: SoléRVThe small world of human languageProc. Biol. Sci.200126814822261226510.1098/rspb.2001.1800
– reference: NguyenMTLiuJGWurtzJQuantum optimization with arbitrary connectivity using rydberg atom arraysPRX Quant.202342023PRXQ....4a0316N10.1103/PRXQuantum.4.010316
– reference: J. Park, S. Jeong, M. Kim et al., A rydberg-atom approach to the integer factorization problem. (2024). arXiv:2312.08703
– reference: SchlosserMTichelmannSSchäffnerDScalable multilayer architecture of assembled single-atom qubit arrays in a three-dimensional talbot tweezer latticePhys. Rev. Lett.2023130182023PhRvL.130r0601S10.1103/PhysRevLett.130.180601
– reference: CongIChoiSLukinMDQuantum convolutional neural networksNat. Phys.201915121273127810.1038/s41567-019-0648-8arXiv:1810.03787 [quant-ph]
– reference: A. Bergschneider, V.M. Klinkhamer, J.H. Becher et al., Spin-resolved single-atom imaging of 6li in free space. Phys. Rev. A 97(6), (2018). https://doi.org/10.1103/physreva.97.063613
– reference: A. Abbas, A. Ambainis, B. Augustino et al., Quantum optimization: Potential, challenges, and the path forward. (2023). arXiv:2312.02279
– reference: LawlerELWoodDEBranch-and-bound methods: A surveyOper. Res.196614469971920246910.1287/opre.14.4.699
– reference: M. Ragone, P. Braccia, Q.T. Nguyen et al., Representation theory for geometric quantum machine learning. (2022). arXiv preprint arXiv:2210.07980https://doi.org/10.48550/arXiv.2210.07980
– reference: HsuTWZhuWThieleTSingle-atom trapping in a metasurface-lens optical tweezerPRX Quant.2022332022PRXQ....3c0316H10.1103/PRXQuantum.3.030316
– reference: O. Ezratty, Where are we heading with NISQ? (2023). arXiv e-prints arXiv:2305.09518. https://doi.org/10.48550/arXiv.2305.09518, arXiv:2305.09518 [quant-ph]
– reference: L. Henriet, L. Beguin, A. Signoles et al., Quantum computing with neutral atoms. Quantum. 4, 327 (2020). https://doi.org/10.22331/q-2020-09-21-327, arXiv:2006.12326 [quant-ph]
– reference: M.A. Norcia, H. Kim, W.B. Cairncross et al., Iterative assembly of 171\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{171}$$\end{document}yb atom arrays in cavity-enhanced optical lattices. (2024). arXiv:2401.16177
– reference: AlbrechtBDalyacCLeclercLQuantum feature maps for graph machine learning on a neutral atom quantum processorPhys. Rev. A202310742023PhRvA.107d2615A10.1103/PhysRevA.107.042615arXiv:2211.16337 [quant-ph]
– reference: SchuldMSinayskiyIPetruccioneFThe quest for a quantum neural networkQuant. Inf. Process.201413256725862014QuIP...13.2567S327024110.1007/s11128-014-0809-8
– reference: CerezoMArrasmithABabbushRVariational quantum algorithmsNat. Rev. Phys.20213962564410.1038/s42254-021-00348-9
– reference: J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum bf 2, 79. (2018) https://doi.org/10.22331/q-2018-08-06-79, arXiv:1801.00862 [quant-ph]
– reference: LeeWKimHAhnJThree-dimensional rearrangement of single atoms using actively controlled optical microtrapsOpt. Express2016249981698252016OExpr..24.9816L10.1364/OE.24.009816
– reference: ByunAKimMAhnJFinding the maximum independent sets of platonic graphs using rydberg atomsPRX Quant.202232022PRXQ....3c0305B10.1103/PRXQuantum.3.030305
– reference: HuangHYKuengRPreskillJPredicting many properties of a quantum system from very few measurementsNat. Phys.202016101050105710.1038/s41567-020-0932-7
– reference: MorrisCRitzertMFeyMWeisfeiler and leman go neural: Higher-order graph neural networksProc. AAAI Conf. Artif. Intell.201933014602460910.1609/aaai.v33i01.33014602
– reference: NogretteFLabuhnHRavetsSSingle-atom trapping in holographic 2d arrays of microtraps with arbitrary geometriesPhys. Rev. X2014410.1103/PhysRevX.4.021034
– reference: F. Gyger, M. Ammenwerth, R. Tao et al., Continuous operation of large-scale atom arrays in optical lattices. (2024). arXiv:2402.04994
– reference: UrbanEJohnsonTAHenageTObservation of rydberg blockade between two atomsNat. Phys.20095211011410.1038/nphys1178
– reference: ZeiherJvan BijnenRSchaußPMany-body interferometry of a Rydberg-dressed spin latticeNat. Phys.201612121095109910.1038/nphys3835arXiv:1602.06313 [cond-mat.quant-gas]
– reference: HuangHYBroughtonMMohseniMPower of data in quantum machine learningNat. Commun.20211226312021NatCo..12.2631H10.1038/s41467-021-22539-9arXiv:2011.01938 [quant-ph]
– reference: SchollPWilliamsHJBornetGMicrowave Engineering of Programmable X X Z Hamiltonians in Arrays of Rydberg AtomsPRX Quant.2022322022PRXQ....3b0303S10.1103/PRXQuantum.3.020303arXiv:2107.14459 [quant-ph]
– reference: M. Cain, S. Chattopadhyay, J.G. Liu et al., Quantum speedup for combinatorial optimization with flat energy landscapes. (2023). arXiv preprint arXiv:2306.13123, https://doi.org/10.48550/arXiv.2306.13123
– reference: TheocharidisAvan DongenSEnrightAJNetwork visualization and analysis of gene expression data using biolayout express3dNat. Protoc.200941535155010.1038/nprot.2009.177
– reference: D. Bluvstein, S.J. Evered, A.A. Geim et al., Logical quantum processor based on reconfigurable atom arrays. Nature (2023). https://doi.org/10.1038/s41586-023-06927-3
– reference: C. Dalyac, Quantum many-body dynamics for combinatorial optimisation and machine learning (Sorbonne Université, Theses, 2023)
– reference: EbadiSKeeslingACainMQuantum optimization of maximum independent set using Rydberg atom arraysScience20223766598120912152022Sci...376.1209E10.1126/science.abo6587arXiv:2202.09372 [quant-ph]
– reference: ChenCBornetGBintzMContinuous symmetry breaking in a two-dimensional rydberg arrayNature202361679586916952023Natur.616..691C10.1038/s41586-023-05859-2
– reference: HollerithSSrakaewKWeiDRealizing distance-selective interactions in a Rydberg–Dressed atom arrayPhys. Rev. Lett.2022128112022PhRvL.128k3602H10.1103/PhysRevLett.128.113602arXiv:2110.10125 [cond-mat.quant-gas]
– reference: I. Christen, M. Sutula, T. Propson et al., An integrated photonic engine for programmable atomic control. (2022). https://doi.org/10.48550/arXiv.2208.06732, arXiv:2208.06732
– reference: WangHYehHCKamenevAMany-body localization enables iterative quantum optimizationNat. Commun.202213155032022NatCo..13.5503W10.1038/s41467-022-33179-y
– reference: Q.T. Nguyen, L. Schatzki, P., Braccia et al., Theory for equivariant quantum neural networks. (2022). arXiv:2210.08566
– reference: SchollPShawALTsaiRBSErasure conversion in a high-fidelity rydberg quantum simulatorNature202362279822732782023Natur.622..273S10.1038/s41586-023-06516-4
– reference: S. Varsamopoulos, E. Philip, H.W.T. van Vlijmen et al., Quantum extremal learning. (2022). arXiv:2205.02807
– reference: SongYKimMHwangHQuantum simulation of cayley-tree ising hamiltonians with three-dimensional rydberg atomsPhys. Rev. Res.20213110.1103/PhysRevResearch.3.013286
– reference: W.E. Diewert, Applications of Duality Theory, Stanford Institute for Mathematical Studies in the Social Sciences Stanford. (1974). URL https://www.researchgate.net/publication/230663892_Applications_of_Duality_Theory
– reference: LeclercLOrtiz-GutiérrezLGrijalvaSFinancial risk management on a neutral atom quantum processorPhys. Rev. Res.2023510.1103/PhysRevResearch.5.043117
– reference: KimMAhnJSongYQuantum computing with rydberg atom graphsJ. Korean Phys. Soc.20238298278402023JKPS...82..827K10.1007/s40042-023-00774-1
– reference: GareyMRJohnsonDS“strong”np-completeness results: Motivation, examples, and implicationsJ. ACM (JACM)197825349950847874710.1145/322077.322090
– reference: LanthalerMDlaskaCEnderKRydberg-blockade-based parity quantum optimizationPhys. Rev. Lett.2023130222023PhRvL.130v0601L460828210.1103/PhysRevLett.130.220601
– reference: B. Ravon, P. Méhaignerie, Y. Machu et al., Array of individual circular rydberg atoms trapped in optical tweezers. (2023). arXiv preprint arXiv:2304.04831https://doi.org/10.1103/PhysRevLett.131.093401
– reference: B.F. Schiffer, D.S. Wild, N. Maskara et al., Circumventing superexponential runtimes for hard instances of quantum adiabatic optimization. (2023). arXiv preprint arXiv:2306.13131https://doi.org/10.1103/PhysRevResearch.6.013271
– reference: BarnesKBattaglinoPBloomBJAssembly and coherent control of a register of nuclear spin qubitsNat. Comm.202213127792022NatCo..13.2779B10.1038/s41467-022-29977-z
– reference: DesrosiersJSoumisFDesrochersMRouting with time windows by column generationNetworks198414454556510.1002/net.3230140406
– reference: JakschDCiracJIZollerPFast quantum gates for neutral atomsPhys. Rev. Lett.20008510220822112000PhRvL..85.2208J10.1103/PhysRevLett.85.2208
– reference: WrightKBeckKMDebnathSBenchmarking an 11-qubit quantum computerNat. Commun.201910154642019NatCo..10.5464W10.1038/s41467-019-13534-2
– reference: L. Pause, L. Sturm, M. Mittenbühler et al., Supercharged two-dimensional tweezer array with more than 1000 atomic qubits. (2023). arXiv preprint arXiv:2310.09191https://doi.org/10.1364/OPTICA.513551
– reference: G. Verdon, T. McCourt, E. Luzhnica et al., Quantum graph neural networks. (2019). https://doi.org/10.48550/arXiv.1909.12264, arXiv:1909.12264
– reference: P. Mernyei, K. Meichanetzidis, İlkan Ceylan. İsmail, Equivariant quantum graph circuits. (2022). arXiv:2112.05261
– reference: M.Y. Naghmouchi, W.d.S. Coelho, Mixed integer linear programming solver using benders decomposition assisted by neutral atom quantum processor. (2024). arXiv preprint arXiv:2402.05748https://doi.org/10.48550/arXiv.2402.05748
– reference: MalagutiEMonaciMTothPAn exact approach for the vertex coloring problemDiscr. Optim.201182174190279518810.1016/j.disopt.2010.07.005
– reference: S. Notarnicola, A. Elben, T. Lahaye et al., A randomized measurement toolbox for rydberg quantum technologies. (2021). arXiv:2112.11046
– reference: MaSLiuGPengPHigh-fidelity gates and mid-circuit erasure conversion in an atomic qubitNature202362279822792842023Natur.622..279M10.1038/s41586-023-06438-1
– reference: S. Thabet, R. Fouilland, L. Henriet, Extending graph transformers with quantum computed aggregation. (2022). https://doi.org/10.48550/arXiv.2210.10610, arXiv:2210.10610
– reference: ShawALSchollPFinklesteinRDark-state enhanced loading of an optical tweezer arrayPhys. Rev. Lett.2023130192023PhRvL.130s3402S10.1103/PhysRevLett.130.193402
– reference: M.M. Bronstein, J. Bruna, T. Cohen et al., Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. (2021). CoRR abs/2104.13478. arXiv:2104.13478
– reference: da SilvaCoelho WHenrietLHenryLPQuantum pricing-based column-generation framework for hard combinatorial problemsPhys. Rev. A202310732023PhRvA.107c2426D10.1103/PhysRevA.107.032426
– reference: BrownMThieleTKiehlCGray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assemblyPhys. Rev. X20199110.1103/PhysRevX.9.011057
– reference: H. Pichler, S.T. Wang, L. Zhou et al., Quantum optimization for maximum independent set using rydberg atom arrays. (2018). https://doi.org/10.48550/ARXIV.1808.10816
– reference: LaroccaMSauvageFSbahiFMGroup-invariant quantum machine learningPRX Quant.202232022PRXQ....3c0341L10.1103/PRXQuantum.3.030341
– reference: StastnySBüchlerHPLangNFunctional completeness of planar rydberg blockade structuresPhys. Rev. B20231082023PhRvB.108h5138S10.1103/PhysRevB.108.085138
– reference: BiamonteJWittekPPancottiNQuantum machine learningNature201754976711952022017Natur.549..195B10.1038/nature23474
– reference: BrowaeysALahayeTMany-body physics with individually controlled Rydberg atomsNat. Phys.202016213214210.1038/s41567-019-0733-zarXiv:2002.07413 [cond-mat.quant-gas]
– reference: J.K. Gamble, M. Friesen, D. Zhou et al., Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5). (2010). https://doi.org/10.1103/physreva.81.052313
– reference: SerretMFMarchandBAyralTSolving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarksPhys. Rev. A202010252020PhRvA.102e2617S10.1103/PhysRevA.102.052617arXiv:2006.11190 [quant-ph]
– reference: M. Larocca, S. Thanasilp, S. Wang et al., A review of barren plateaus in variational quantum computing. (2024). arXiv preprint arXiv:2405.00781
– reference: MadjarovISCoveyJPShawALHigh-fidelity entanglement and detection of alkaline-earth rydberg atomsNat. Phys.202016885786110.1038/s41567-020-0903-z
– reference: KitaiKGuoJJuSDesigning metamaterials with quantum annealing and factorization machinesPhys. Rev. Res.2020210.1103/PhysRevResearch.2.013319
– reference: MorrisonDRJacobsonSHSauppeJJBranch-and-bound algorithms: A survey of recent advances in searching, branching, and pruningDiscret. Optim.20161979102346414110.1016/j.disopt.2016.01.005
– reference: FominFVLokshtanovDSaurabhSKernelization: theory of parameterized preprocessing2019CambridgeCambridge University Press10.1017/9781107415157
– reference: ZhouLWangSTChoiSQuantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devicesPhys. Rev. X20201010.1103/PhysRevX.10.021067
– reference: PaganoGHessPKaplanHCryogenic trapped-ion system for large scale quantum simulationQuant. Sci. Technol.2018412019QS&T....4a4004P10.1063/1.4966970
– reference: Z. Zeng, G. Giudici, H. Pichler, Quantum dimer models with rydberg gadgets. (2024). arXiv:2402.10651
– reference: SchaferJBKonstanJARiedlJE-commerce recommendation applicationsData Min. Knowl. Discov.200151–211515310.1023/A:1009804230409
– reference: A.M. Childs, R. Cleve, E. Deotto et al., Exponential algorithmic speedup by a quantum walk. in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. ACM, STOC03, (2003). https://doi.org/10.1145/780542.780552
– reference: A.J. Menssen, A. Hermans, I. Christen et al., Scalable photonic integrated circuits for programmable control of atomic systems. (2022). https://doi.org/10.48550/arXiv.2210.03100, arXiv:2210.03100
– reference: KnoernschildCZhangXLIsenhowerLIndependent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering systemApp. Phys. Lett.201097132010ApPhL..97m4101K10.1063/1.3494526
– reference: HuntHBIIIMaratheMVRadhakrishnanVNc-approximation schemes for np-and pspace-hard problems for geometric graphsJ. Algor.1998262238274160650410.1006/jagm.1997.0903
– reference: J. Gilmer, S.S. Schoenholz, P.F. Riley et al., Neural Message Passing for Quantum Chemistry. (2017). arXiv e-prints arXiv:1704.01212 [cs.LG], https://doi.org/10.48550/arXiv.1704.01212
– reference: SchymikKNPancaldiSNogretteFSingle atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperaturesPhys. Rev. A202116310.1103/PhysRevApplied.16.034013
– reference: S. Bhagat, G. Cormode, S. Muthukrishnan, Node Classification in Social Networks, Springer US, Boston, MA, pp 115–148. (2011).https://doi.org/10.1007/978-1-4419-8462-3_5
– reference: LukinMDFleischhauerMCoteRDipole blockade and quantum information processing in mesoscopic atomic ensemblesPhys. Rev. Lett.200187310.1103/physrevlett.87.037901
– reference: BarredoDLienhardVDe LeseleucSSynthetic three-dimensional atomic structures assembled atom by atomNature2018561772179822018Natur.561...79B10.1038/s41586-018-0450-2
– reference: A. Byun, J. Jung, K. Kim et al., Rydberg-atom graphs for quadratic unconstrained binary optimization problems. (2023). arXiv:2309.14847
– reference: A. de Oliveira, E. Diamond-Hitchcock, D. Walker et al., Demonstration of weighted graph optimization on a rydberg atom array using local light-shifts. (2024). arXiv preprint arXiv:2404.02658
– reference: GaëtanAMiroshnychenkoYWilkTObservation of collective excitation of two individual atoms in the rydberg blockade regimeNat. Phys.20095211511810.1038/nphys1183
– reference: SchuldMKilloranNQuantum machine learning in feature hilbert spacesPhys. Rev. Lett.20191222019PhRvL.122d0504S10.1103/PhysRevLett.122.040504
– reference: L.C. Freeman, Visualizing social networks. J. Soc. Struct. 1(2000). https://doi.org/10.1007/978-1-4419-8462-3_11
– reference: G. Muzio, L. O’Bray, K. Borgwardt, Biological network analysis with deep learning. Brief. Bioinf. 22(2), 1515–1530 (2020). https://doi.org/10.1093/bib/bbaa257, https://academic.oup.com/bib/article-pdf/22/2/1515/36655309/bbaa257.pdf
– reference: M. Brandl, M. Van Mourik, L. Postler et al., Cryogenic setup for trapped ion quantum computing. Rev. Sci. Instrum. 87(11) (2016). https://doi.org/10.1063/1.4966970
– reference: BluvsteinDLevineHSemeghiniGA quantum processor based on coherent transport of entangled atom arraysNature202260479064514562022Natur.604..451B10.1038/s41586-022-04592-6
– reference: TangYYanJKoyejoSMohamedSAgarwalAGraphqntk: Quantum neural tangent kernel for graph dataAdv. Neural Inf. Process. Syst.2022Curran Associates Inc61046118
– reference: S. Thabet, R. Fouilland, M. Djellabi et al., Enhancing graph neural networks with quantum computed encodings. (2023). https://doi.org/10.48550/arXiv.2310.20519, arXiv:2310.20519
– reference: VandersypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.2004764103710692004RvMP...76.1037V10.1103/RevModPhys.76.1037arXiv:quant-ph/0404064 [quant-ph]
– reference: R.S. Andrist, M.J. Schuetz, P. Minssen et al., Hardness of the maximum independent set problem on unit-disk graphs and prospects for quantum speedups. (2023). arXiv preprint arXiv:2307.09442https://doi.org/10.1103/PhysRevResearch.5.043277
– reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998585535553631998PhRvE..58.5355K10.1103/PhysRevE.58.5355arXiv:cond-mat/9804280 [cond-mat.stat-mech]
– reference: K. Kishi, T. Satoh, R. Raymond et al., Graph kernels encoding features of all subgraphs by quantum superposition. (2021). https://doi.org/10.1109/JETCAS.2022.3200837, arXiv:2103.16093
– reference: R. Tao, M. Ammenwerth, F. Gyger et al., High-fidelity detection of large-scale atom arrays in an optical lattice. (2024). arXiv:2309.04717
– reference: S.Y. Chen, T. Wei, C. Zhang et al., Hybrid quantum-classical graph convolutional network. (2021). CoRR abs/2101.06189. arXiv:2101.06189
– reference: GoyalPFerraraEGraph embedding techniques, applications, and performance: A surveyKnowl.-Based Syst.2018151789410.1016/j.knosys.2018.03.022
– reference: SchymikKNXimenezBBlochEIn situ equalization of single-atom loading in large-scale optical tweezer arraysPhys. Rev. A202210622022PhRvA.106b2611S10.1103/PhysRevA.106.022611
– reference: JenkinsALisJWSenooAYtterbium nuclear-spin qubits in an optical tweezer arrayPhys. Rev. X202212210.1103/PhysRevX.12.021027
– reference: HavlíčekVCórcolesADTemmeKSupervised learning with quantum-enhanced feature spacesNature201956777472092122019Natur.567..209H10.1038/s41586-019-0980-2
– reference: EveredSJBluvsteinDKalinowskiMHigh-fidelity parallel entangling gates on a neutral-atom quantum computerNature202362279822682722023Natur.622..268E10.1038/s41586-023-06481-y
– reference: J. Wurtz , P.L.S. Lopes, N. Gemelke et al., Industry applications of neutral-atom quantum computing solving independent set problems. (2022) . arXiv e-prints. https://doi.org/10.48550/arXiv.2205.08500, arXiv:2205.08500 [quant-ph]
– reference: L. Schatzki, M. Larocca, F. Sauvage et al., Theoretical guarantees for permutation-equivariant quantum neural networks. (2022). arXiv preprint arXiv:2210.09974https://doi.org/10.1038/s41534-024-00804-1
– reference: MitaraiKNegoroMKitagawaMQuantum circuit learningPhys. Rev. A2018982018PhRvA..98c2309M10.1103/PhysRevA.98.032309
– reference: YoungAWEcknerWJMilnerWRHalf-minute-scale atomic coherence and high relative stability in a tweezer clockNature202058878384084132020Natur.588..408Y10.1038/s41586-020-3009-y
– reference: SkolikACattelanMYarkoniSEquivariant quantum circuits for learning on weighted graphsNPJ Quant. Inf.202391472023npjQI...9...47S10.1038/s41534-023-00710-y
– reference: AliyuMMZhaoLQuekXQD1 magic wavelength tweezers for scaling atom arraysPhys. Rev. Res.20213410.1103/PhysRevResearch.3.043059
– reference: BuzulutskovAAdvances in cryogenic avalanche detectorsJ. Instrum.2012702C02025C0202510.1088/1748-0221/7/02/c02025
– reference: SchuldMBrádlerKIsraelRMeasuring the similarity of graphs with a gaussian boson samplerPhys. Rev. A202010132020PhRvA.101c2314S10.1103/PhysRevA.101.032314
– reference: BrownMOThieleTKiehlCGray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assemblyPhys. Rev. X2019910.1103/PhysRevX.9.011057
– reference: SchollPWilliamsHJBornetGMicrowave engineering of programmable x x z hamiltonians in arrays of rydberg atomsPRX Quant.2022322022PRXQ....3b0303S10.1103/PRXQuantum.3.020303
– reference: A.D. King, J. Raymond, T. Lanting et al., Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature pp 1–6. (2023). https://doi.org/10.1038/s41586-023-05867-2
– reference: B. Zhang, P. Peng, A. Paul et al., A scaled local gate controller for optically addressed qubits. (2023). arXiv preprint arXiv:2310.08539https://doi.org/10.1364/OPTICA.512155
– reference: HenryLPThabetSDalyacCQuantum evolution kernel: Machine learning on graphs with programmable arrays of qubitsPhys. Rev. A202110432021PhRvA.104c2416H433083010.1103/PhysRevA.104.032416arXiv:2107.03247 [quant-ph]
– reference: E. Deist, Y.H. Lu, J. Ho et al., Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129(20). (2022). https://doi.org/10.1103/physrevlett.129.203602
– reference: S. Jeong, M. Kim, M. Hhan et al., Quantum Programming of the Satisfiability Problem with Rydberg Atom Graphs. (2023) . arXiv e-prints arXiv:2302.14369. https://doi.org/10.48550/arXiv.2302.14369, arXiv:2302.14369 [quant-ph]
– reference: SinghKAnandSPocklingtonADual-element, two-dimensional atom array with continuous-mode operationPhys. Rev. X202212110.1103/PhysRevX.12.011040
– reference: D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks. in Proceedings of the Twelfth International Conference on Information and Knowledge Management. Association for Computing Machinery, New York, NY, USA, CIKM ’03, p 556-559, (2003). https://doi.org/10.1145/956863.956972
– reference: MatsumoriTTakiMKadowakiTApplication of qubo solver using black-box optimization to structural design for resonance avoidanceSci. Rep.2022121121432022NatSR..1212143M10.1038/s41598-022-16149-8
– volume: 58
  start-page: 5355
  issue: 5
  year: 1998
  ident: 1385_CR56
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.5355
– ident: 1385_CR136
  doi: 10.1364/OPTICA.512155
– ident: 1385_CR23
– volume: 622
  start-page: 279
  issue: 7982
  year: 2023
  ident: 1385_CR72
  publication-title: Nature
  doi: 10.1038/s41586-023-06438-1
– volume: 15
  start-page: 1273
  issue: 12
  year: 2019
  ident: 1385_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0648-8
– ident: 1385_CR90
– volume: 588
  start-page: 408
  issue: 7838
  year: 2020
  ident: 1385_CR133
  publication-title: Nature
  doi: 10.1038/s41586-020-3009-y
– volume: 97
  issue: 13
  year: 2010
  ident: 1385_CR62
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.3494526
– ident: 1385_CR75
– volume: 19
  start-page: 79
  year: 2016
  ident: 1385_CR81
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2016.01.005
– ident: 1385_CR82
  doi: 10.1093/bib/bbaa257
– volume: 24
  start-page: 9816
  issue: 9
  year: 2016
  ident: 1385_CR69
  publication-title: Opt. Express
  doi: 10.1364/OE.24.009816
– ident: 1385_CR92
  doi: 10.1103/PhysRevResearch.6.023241
– volume: 3
  issue: 1
  year: 2021
  ident: 1385_CR118
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013286
– ident: 1385_CR29
  doi: 10.48550/arXiv.2306.13373
– volume: 3
  year: 2022
  ident: 1385_CR18
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.3.030305
– volume: 106
  issue: 2
  year: 2022
  ident: 1385_CR110
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.022611
– ident: 1385_CR89
– volume: 13
  start-page: 2567
  year: 2014
  ident: 1385_CR107
  publication-title: Quant. Inf. Process.
  doi: 10.1007/s11128-014-0809-8
– ident: 1385_CR55
  doi: 10.48550/arXiv.2302.14369
– ident: 1385_CR25
  doi: 10.48550/arXiv.2208.06732
– ident: 1385_CR100
  doi: 10.1038/s41534-024-00804-1
– ident: 1385_CR28
– ident: 1385_CR131
  doi: 10.48550/arXiv.2205.08500
– ident: 1385_CR24
  doi: 10.1145/780542.780552
– volume: 604
  start-page: 451
  issue: 7906
  year: 2022
  ident: 1385_CR10
  publication-title: Nature
  doi: 10.1038/s41586-022-04592-6
– volume: 24
  start-page: 9816
  issue: 9
  year: 2016
  ident: 1385_CR68
  publication-title: Opt. Express
  doi: 10.1364/OE.24.009816
– volume: 10
  year: 2020
  ident: 1385_CR137
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.10.021067
– volume: 33
  start-page: 4602
  issue: 01
  year: 2019
  ident: 1385_CR80
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v33i01.33014602
– ident: 1385_CR44
  doi: 10.1103/PhysRevResearch.6.033104
– volume: 561
  start-page: 79
  issue: 7721
  year: 2018
  ident: 1385_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0450-2
– start-page: 6104
  volume-title: Adv. Neural Inf. Process. Syst.
  year: 2022
  ident: 1385_CR120
– ident: 1385_CR86
– ident: 1385_CR30
  doi: 10.1103/physrevlett.129.203602
– volume: 104
  issue: 3
  year: 2021
  ident: 1385_CR47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.032416
– ident: 1385_CR42
  doi: 10.48550/arXiv.1704.01212
– ident: 1385_CR128
  doi: 10.48550/arXiv.1909.12264
– ident: 1385_CR60
  doi: 10.1109/JETCAS.2022.3200837
– ident: 1385_CR46
  doi: 10.22331/q-2020-09-21-327
– volume: 26
  start-page: 238
  issue: 2
  year: 1998
  ident: 1385_CR52
  publication-title: J. Algor.
  doi: 10.1006/jagm.1997.0903
– volume: 268
  start-page: 2261
  issue: 1482
  year: 2001
  ident: 1385_CR117
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2001.1800
– volume: 5
  start-page: 110
  issue: 2
  year: 2009
  ident: 1385_CR125
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1178
– volume: 14
  start-page: 545
  issue: 4
  year: 1984
  ident: 1385_CR31
  publication-title: Networks
  doi: 10.1002/net.3230140406
– ident: 1385_CR26
  doi: 10.1103/physreva.108.023107
– ident: 1385_CR93
  doi: 10.1364/OPTICA.513551
– volume: 16
  start-page: 1050
  issue: 10
  year: 2020
  ident: 1385_CR50
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– volume: 3
  issue: 3
  year: 2022
  ident: 1385_CR49
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.3.030316
– volume: 25
  start-page: 499
  issue: 3
  year: 1978
  ident: 1385_CR41
  publication-title: J. ACM (JACM)
  doi: 10.1145/322077.322090
– ident: 1385_CR77
  doi: 10.48550/arXiv.2210.03100
– volume: 107
  issue: 3
  year: 2023
  ident: 1385_CR113
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.032426
– volume: 4
  start-page: 1535
  year: 2009
  ident: 1385_CR124
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.177
– ident: 1385_CR127
– ident: 1385_CR97
  doi: 10.48550/arXiv.2210.07980
– volume: 9
  start-page: 47
  issue: 1
  year: 2023
  ident: 1385_CR116
  publication-title: NPJ Quant. Inf.
  doi: 10.1038/s41534-023-00710-y
– volume: 12
  start-page: 12143
  issue: 1
  year: 2022
  ident: 1385_CR76
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-16149-8
– volume: 130
  issue: 19
  year: 2023
  ident: 1385_CR112
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.193402
– volume: 85
  start-page: 2208
  issue: 10
  year: 2000
  ident: 1385_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2208
– volume: 151
  start-page: 78
  year: 2018
  ident: 1385_CR43
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– volume: 4
  issue: 1
  year: 2018
  ident: 1385_CR91
  publication-title: Quant. Sci. Technol.
  doi: 10.1063/1.4966970
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  ident: 1385_CR9
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 108
  year: 2023
  ident: 1385_CR119
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.085138
– ident: 1385_CR36
– volume: 16
  start-page: 132
  issue: 2
  year: 2020
  ident: 1385_CR14
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0733-z
– ident: 1385_CR78
– ident: 1385_CR84
– ident: 1385_CR59
  doi: 10.1038/s41586-023-05867-2
– volume: 128
  issue: 11
  year: 2022
  ident: 1385_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.113602
– volume: 13
  start-page: 5503
  issue: 1
  year: 2022
  ident: 1385_CR129
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33179-y
– volume-title: Kernelization: theory of parameterized preprocessing
  year: 2019
  ident: 1385_CR37
  doi: 10.1017/9781107415157
– volume: 130
  issue: 18
  year: 2023
  ident: 1385_CR102
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.180601
– volume: 13
  start-page: 2779
  issue: 1
  year: 2022
  ident: 1385_CR5
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-022-29977-z
– volume: 4
  year: 2023
  ident: 1385_CR85
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.4.010316
– ident: 1385_CR65
– ident: 1385_CR38
  doi: 10.1007/978-1-4419-8462-3_11
– volume: 622
  start-page: 273
  issue: 7982
  year: 2023
  ident: 1385_CR105
  publication-title: Nature
  doi: 10.1038/s41586-023-06516-4
– ident: 1385_CR121
  doi: 10.1103/PhysRevLett.133.013401
– volume: 76
  start-page: 1037
  issue: 4
  year: 2004
  ident: 1385_CR126
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.1037
– ident: 1385_CR19
  doi: 10.1002/qute.202300398
– volume: 5
  start-page: 115
  issue: 1–2
  year: 2001
  ident: 1385_CR99
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009804230409
– ident: 1385_CR8
  doi: 10.1007/978-1-4419-8462-3_5
– volume: 14
  start-page: 699
  issue: 4
  year: 1966
  ident: 1385_CR66
  publication-title: Oper. Res.
  doi: 10.1287/opre.14.4.699
– ident: 1385_CR40
  doi: 10.1103/physreva.81.052313
– ident: 1385_CR123
  doi: 10.48550/arXiv.2310.20519
– ident: 1385_CR132
  doi: 10.1109/TQE.2024.3443660
– volume: 5
  year: 2023
  ident: 1385_CR67
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.043117
– ident: 1385_CR135
– ident: 1385_CR83
  doi: 10.48550/arXiv.2402.05748
– volume: 3
  year: 2022
  ident: 1385_CR64
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.3.030341
– volume: 16
  start-page: 857
  issue: 8
  year: 2020
  ident: 1385_CR73
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0903-z
– volume: 9
  year: 2019
  ident: 1385_CR16
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.011057
– volume: 82
  start-page: 827
  issue: 9
  year: 2023
  ident: 1385_CR58
  publication-title: J. Korean Phys. Soc.
  doi: 10.1007/s40042-023-00774-1
– volume: 2
  year: 2020
  ident: 1385_CR61
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.013319
– ident: 1385_CR1
  doi: 10.2172/2229681
– volume: 9
  issue: 1
  year: 2019
  ident: 1385_CR15
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.011057
– volume: 98
  year: 2018
  ident: 1385_CR79
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.032309
– volume: 3
  start-page: 625
  issue: 9
  year: 2021
  ident: 1385_CR21
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– ident: 1385_CR7
  doi: 10.1103/physreva.97.063613
– volume: 18
  start-page: 755
  issue: 7
  year: 2022
  ident: 1385_CR57
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01629-5
– volume: 130
  issue: 22
  year: 2023
  ident: 1385_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.220601
– volume: 102
  issue: 5
  year: 2020
  ident: 1385_CR111
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.052617
– ident: 1385_CR35
  doi: 10.48550/arXiv.2305.09518
– volume: 12
  issue: 2
  year: 2022
  ident: 1385_CR54
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.12.021027
– ident: 1385_CR70
  doi: 10.1145/956863.956972
– volume: 3
  issue: 2
  year: 2022
  ident: 1385_CR103
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.3.020303
– ident: 1385_CR11
  doi: 10.1038/s41586-023-06927-3
– volume: 4
  year: 2014
  ident: 1385_CR87
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.4.021034
– ident: 1385_CR13
– volume: 5
  start-page: 115
  issue: 2
  year: 2009
  ident: 1385_CR39
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1183
– ident: 1385_CR96
  doi: 10.22331/q-2018-08-06-79
– volume: 9
  start-page: 47
  issue: 1
  year: 2023
  ident: 1385_CR115
  publication-title: NPJ Quant. Inf.
  doi: 10.1038/s41534-023-00710-y
– ident: 1385_CR4
  doi: 10.1103/PhysRevResearch.5.043277
– volume: 101
  issue: 3
  year: 2020
  ident: 1385_CR108
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.032314
– volume: 12
  issue: 1
  year: 2022
  ident: 1385_CR114
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.12.011040
– ident: 1385_CR122
  doi: 10.48550/arXiv.2210.10610
– volume: 376
  start-page: 1209
  issue: 6598
  year: 2022
  ident: 1385_CR33
  publication-title: Science
  doi: 10.1126/science.abo6587
– volume: 10
  start-page: 5464
  issue: 1
  year: 2019
  ident: 1385_CR130
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13534-2
– ident: 1385_CR12
  doi: 10.1063/1.4966970
– volume: 12
  start-page: 1095
  issue: 12
  year: 2016
  ident: 1385_CR134
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3835
– volume: 567
  start-page: 209
  issue: 7747
  year: 2019
  ident: 1385_CR45
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
– volume: 12
  start-page: 2631
  year: 2021
  ident: 1385_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22539-9
– volume: 3
  issue: 2
  year: 2022
  ident: 1385_CR104
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.3.020303
– volume: 16
  issue: 3
  year: 2021
  ident: 1385_CR109
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevApplied.16.034013
– ident: 1385_CR20
  doi: 10.48550/arXiv.2306.13123
– volume: 133
  year: 2020
  ident: 1385_CR95
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2020.113303
– ident: 1385_CR98
  doi: 10.1103/PhysRevLett.131.093401
– volume: 7
  start-page: C02025
  issue: 02
  year: 2012
  ident: 1385_CR17
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/7/02/c02025
– ident: 1385_CR32
– ident: 1385_CR94
  doi: 10.48550/ARXIV.1808.10816
– volume: 87
  start-page: 3
  year: 2001
  ident: 1385_CR71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.87.037901
– volume: 107
  issue: 4
  year: 2023
  ident: 1385_CR2
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.042615
– volume: 622
  start-page: 268
  issue: 7982
  year: 2023
  ident: 1385_CR34
  publication-title: Nature
  doi: 10.1038/s41586-023-06481-y
– ident: 1385_CR101
  doi: 10.1103/PhysRevResearch.6.013271
– volume: 616
  start-page: 691
  issue: 7958
  year: 2023
  ident: 1385_CR22
  publication-title: Nature
  doi: 10.1038/s41586-023-05859-2
– volume: 3
  issue: 4
  year: 2021
  ident: 1385_CR3
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.043059
– ident: 1385_CR88
– volume: 122
  year: 2019
  ident: 1385_CR106
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.040504
– volume: 8
  start-page: 174
  issue: 2
  year: 2011
  ident: 1385_CR74
  publication-title: Discr. Optim.
  doi: 10.1016/j.disopt.2010.07.005
SSID ssj0004296
Score 2.4727437
SecondaryResourceType review_article
Snippet Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Algorithms
Cognitive tasks
Electrons
Embedding
Graphs
Hadrons
Hardware
Heavy Ions
Machine learning
Neutral atoms
Nuclear Fusion
Nuclear Physics
Optimization
Particle and Nuclear Physics
Physics
Physics and Astronomy
Problem solving
Quantum Computing in Low-Energy Nuclear Theory
Qubits (quantum computing)
Review
Task complexity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JSgNBEC1iguBFXDEaZQ5em8xML5M5iKgYg2AQMZBbM70pkn35f7tmMejBXGfogn69VHV3vVcA15GI09haRQzVhrAsNn7NZZYYFEdLhBNaI8H5pS96A_Y85MMa9CsuDKZVVntivlGbqcY78jb1vjnp8Djs3M7mBKtG4etqVUIjK0srmJtcYmwHGjEqY9Whcf_Yf33bMCXjtOAbUUbQ1ZcZX_6U0bazrwwZdSEPiXdcBJ_wOOG__dUmCP3zbpq7o-4B7JdxZHBXDPwh1OzkCHbzfE69PAb-hELUQTb68H1YfY6XAV64BhO7xpuNwJ-0x8F87VFdj4NZwRWYLpYnMOg-vj_0SFkhgWhK2YqkylDBlBKR9R_CjDNhlDKhSSjT_qAVJWHqEu6iNHGqI4QySjthI2VjbRLF6CnUJ9OJPYNAdJx1SZrpSKEVm1qjqU6ZZtw5bVgTRIWD1KV8OFaxGMmC2hxKBFAWAEoPoMwBlLwJ4U_DWaGgsb1JqwJalktqKTcToAlRBf7m9xaT5_-bvIC9OB90lGRoQX21WNtLH22s1FU5hb4Bj67R2g
  priority: 102
  providerName: ProQuest
Title Graph algorithms with neutral atom quantum processors
URI https://link.springer.com/article/10.1140/epja/s10050-024-01385-5
https://www.proquest.com/docview/3256785208
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1434-601X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004296
  issn: 1434-601X
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1434-601X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004296
  issn: 1434-601X
  databaseCode: ADMLS
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-601X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004296
  issn: 1434-601X
  databaseCode: AFBBN
  dateStart: 19980101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1434-601X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004296
  issn: 1434-601X
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-601X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004296
  issn: 1434-601X
  databaseCode: U2A
  dateStart: 19980119
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYJiQuiKcYjKkHrhFpm6TtccAeAjYhYNI4Rc0LhPZij_9P0nYMODCJU6RWzuGrU9ux_RngwmdBEmgtkAqlQiQNlD1zqUbKkaNFzDApXYNzt8c6fXI7oIPvo75ctfsqJZn9qXM-W3ypp--p63jDFCNrWJBLsVFES1ChjtPLqnI_aKxbIoOEFeVcfwj_NEZrD_NXUjSzNa092C2cRK-Rf9V92NLjA9jOijXl_BBo27FMe-nwdWJD-7fR3HO3qd5YL921hWfD6JH3sbSQLUfeNG8EmMzmR9BvNZ-vO6gYf4BkGJIFSoQKGRGC-do-wCklTAmhsIpCIm0U5Uc4MRE1fhIZETMmlJCGaV_oQKpIkPAYyuPJWJ-Ax2KjTZSk0hduF51oJUOZEEmoMVKRKrAVDlwW3OBuRMWQ533LmDsAeQ4gtwDyDEBOq4C_BKc5PcZmkdoKaF6clzkPrecVxTTAcRX8Ffjr1xu2PP2HzBnsBJkmOBKGGpQXs6U-t_7FQtShFLfadag0brr3T25tv9w17XrV7D081jM9-wQ8xc_N
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThwxEC2xCJFLBCEok7D4EI4W3d56fECIfdhGKAKJm2lviSJmgZ4R4uf4NuxeGMEBTly75To8l12bXxXA71QQSZzT2FJjMcuJDWcud9jG5miZ8MKYSHA-74rOFTu55tdT8NRwYeKzyuZOLC9qOzAxR75Jg23O2pwk7e3hHY5To2J1tRmhkdejFexW2WKsJnacuseHEMIVW8f7Yb83CDk8uNzr4HrKADaUshGW2lLBtBapCx-SnDNhtbaJzSgzIVhJs0T6jPtUZl63hdBWGy9cqh0xNtOMBrnTMMsokyH4m9096F78mTAziaz4TZTh6FrUL8xCVLPphv_zyOBLeIKDocSxZMgxf20fJ07vmzptaf4OF-Br7beinUrRFmHK9b_BXPl-1BRLwI9i42uU3_4NmI3-9QoUE7yo78Yxk4JCZN9Dd-Owi-MeGlbchMF98R2uPgWrZZjpD_ruByDR9s5nMjepjlKcdNZQI5lh3HtjWQtEg4MydbvyODXjVlVU6kRFAFUFoAoAqhJAxVuQvCwcVh07Pl6y0gCt6iNcqInCtSBtwJ_8_kDkz_dFrsN85_L8TJ0dd09_wRdSKkBsB7ECM6P7sVsNns5Ir9XqhODmszX4GZCfEA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIhAL4ikKBTKwWnUS22nGClreFQOVulnxC4TatLTJ_8fOgwoGKrHGOg9fzro7332fAa58FsSB1gKpUCpEkkDZM5dopJw4WsQMk9IRnJ-H7G5EHsZ03IB-zYUppt3rlmTJaXAqTWnWmStTadvijp5_JI79hilGNsgg126jiG7AJnFqCdatR0FvRY8MYlaNdv1h_DMwrbLNXw3SIu4M9mC3Shi9XvmH96Gh0wPYKgY35fIQ6K1TnPaSydvMlvnv06Xnbla9VOfuCsOzJfXU-8wtfPnUm5ekgNlieQSjQf_1-g5VTyEgGYYkQ7FQISNCMF_bDzihhCkhFFZRSKStqPwIxyaixo8jI7qMCSWkYdoXOpAqEiQ8hmY6S_UJeKxrtIniRPrC7aJjrWQoYyIJNUYq0gJW48BlpRPunquY8JLDjLkDkJcAcgsgLwDktAX423BeSmWsN2nXQPPq7Cx5aLOwqEsD3G2BX4O_Wl6z5ek_bC5h--VmwJ_uh49nsBMUTuG0GdrQzBa5PrdpRyYuCqf6AsBK0U0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+algorithms+with+neutral+atom+quantum+processors&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Dalyac%2C+Constantin&rft.au=Leclerc%2C+Lucas&rft.au=Vignoli%2C+Louis&rft.au=Djellabi%2C+Mehdi&rft.date=2024-09-06&rft.issn=1434-601X&rft.eissn=1434-601X&rft.volume=60&rft.issue=9&rft_id=info:doi/10.1140%2Fepja%2Fs10050-024-01385-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epja_s10050_024_01385_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-601X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-601X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-601X&client=summon