Dynamics analysis of a chemical reaction–diffusion model subject to Degn–Harrison reaction scheme

A chemical reaction–diffusion model with Degn–Harrison reaction scheme and subject to homogeneous Neumann boundary condition is revisited in this article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation for the only constant positive equilibrium solution are establis...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 48; pp. 161 - 181
Main Authors Yan, Xiang-Ping, Chen, Jian-Ye, Zhang, Cun-Hua
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.08.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN1468-1218
1878-5719
DOI10.1016/j.nonrwa.2019.01.005

Cover

Abstract A chemical reaction–diffusion model with Degn–Harrison reaction scheme and subject to homogeneous Neumann boundary condition is revisited in this article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation for the only constant positive equilibrium solution are established by analyzing the relevant eigenvalue problem. In particular, a simplified explicit formula determining the properties of spatially homogeneous Hopf bifurcation is derived by employing the normal form method and the center manifold theorem for reaction–diffusion equations. Our formula here simplifies the existing one obtained in Dong et al. (2017). Numerical approximations are also carried out in order to check our theoretical predictions.
AbstractList A chemical reaction–diffusion model with Degn–Harrison reaction scheme and subject to homogeneous Neumann boundary condition is revisited in this article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation for the only constant positive equilibrium solution are established by analyzing the relevant eigenvalue problem. In particular, a simplified explicit formula determining the properties of spatially homogeneous Hopf bifurcation is derived by employing the normal form method and the center manifold theorem for reaction–diffusion equations. Our formula here simplifies the existing one obtained in Dong et al. (2017). Numerical approximations are also carried out in order to check our theoretical predictions.
A chemical reaction–diffusion model with Degn–Harrison reaction scheme and subject to homogeneous Neumann boundary condition is revisited in this article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation for the only constant positive equilibrium solution are established by analyzing the relevant eigenvalue problem. In particular, a simplified explicit formula determining the properties of spatially homogeneous Hopf bifurcation is derived by employing the normal form method and the center manifold theorem for reaction–diffusion equations. Our formula here simplifies the existing one obtained in Dong et al. (2017). Numerical approximations are also carried out in order to check our theoretical predictions.
Author Yan, Xiang-Ping
Chen, Jian-Ye
Zhang, Cun-Hua
Author_xml – sequence: 1
  givenname: Xiang-Ping
  surname: Yan
  fullname: Yan, Xiang-Ping
  email: xpyan72@163.com
– sequence: 2
  givenname: Jian-Ye
  surname: Chen
  fullname: Chen, Jian-Ye
– sequence: 3
  givenname: Cun-Hua
  surname: Zhang
  fullname: Zhang, Cun-Hua
BookMark eNqFkM1O3DAUha0KpA4Db8DCUtcJvnb-3EUlBC2DhNQNrK0b56Z1lImpnaGaXd-BN-RJcDTthgVd3aOr7xzpnBN2NPmJGDsHkYOA6mLI0yP8xlwK0LmAXIjyA1tBUzdZWYM-SrqomgwkNB_ZSYyDEFCDghWj6_2EW2cjxwnHfXSR-54jtz8pfXHkgdDOzk8vf5471_e7mDTf-o5GHnftQHbms-fX9GMhNhiCiwn45-JxCaJTdtzjGOns712zh29f76822d33m9ury7vMKlXMWWPborUKVUGSpLZY6BJQqa7sSHRl39eqLXTb1n2Fna6wVZoSpa2sRSVkrdbs0yH3MfhfO4qzGfwupGLRSAmgpWqKKlHFgbLBxxioN4_BbTHsDQizDGoGcxjULIMaASYNmmyf39ism3FpOQd04__MXw5mSvWfHAUTraPJUudC2tB03r0f8ArQApor
CitedBy_id crossref_primary_10_1142_S0218127420500662
crossref_primary_10_11948_20230002
crossref_primary_10_1142_S0218127419300258
crossref_primary_10_3934_dcdsb_2021132
crossref_primary_10_1007_s12346_025_01247_5
crossref_primary_10_1016_j_chaos_2025_116006
crossref_primary_10_1016_j_nonrwa_2020_103191
crossref_primary_10_1007_s11071_021_06743_2
crossref_primary_10_1007_s11071_022_07863_z
crossref_primary_10_1016_j_chaos_2024_115987
crossref_primary_10_1142_S0218127421501431
crossref_primary_10_1142_S0218127423501742
Cites_doi 10.1016/0022-5193(69)90003-4
10.1016/j.nonrwa.2018.02.004
10.1016/j.jde.2008.10.024
10.1016/j.jde.2012.12.009
10.1090/S0002-9947-05-04010-9
10.1126/science.251.4994.650
10.1016/j.nonrwa.2007.02.005
10.1016/j.jmaa.2010.02.002
10.1073/pnas.89.9.3977
10.1007/BF00279718
10.1016/j.jde.2015.03.017
10.1016/j.nonrwa.2016.07.002
10.1098/rstb.1952.0012
10.1007/BF01320132
10.1016/0375-9601(76)90399-6
10.1007/s10884-004-2782-x
10.1143/PTP.61.801
10.1093/imamat/hxs020
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.nonrwa.2019.01.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
EndPage 181
ExternalDocumentID 10_1016_j_nonrwa_2019_01_005
S1468121818309866
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61763024
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61563026
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Lanzhou Jiaotong University, China
  grantid: 152022
  funderid: http://dx.doi.org/10.13039/501100009014
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-8cb4bc3a34e2e29ca4951a33d5de0d5ff73b49bb7f6ad96ab39e9ca9c27060273
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Fri Jul 25 06:33:05 EDT 2025
Wed Oct 01 04:41:01 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Degn–Harrison reaction scheme
Hopf bifurcation
Local asymptotic stability
Turing instability
Time-periodic pattern
Reaction–diffusion chemical model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-8cb4bc3a34e2e29ca4951a33d5de0d5ff73b49bb7f6ad96ab39e9ca9c27060273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2211923846
PQPubID 2045088
PageCount 21
ParticipantIDs proquest_journals_2211923846
crossref_primary_10_1016_j_nonrwa_2019_01_005
crossref_citationtrail_10_1016_j_nonrwa_2019_01_005
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2019_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fairé, Velarde (b5) 1979; 8
Hassard, Kazarinoff, Wan (b7) 1981
Ibánez, Fairén, Velarde (b9) 1976; 59
Jang, Ni, Tang (b11) 2004; 16
Wu, Ma, Guo (b19) 2013; 78
Lengyel, Epstein (b14) 1992; 89
Yi, Wei, Shi (b22) 2009; 246
Li, Wu, Dong (b10) 2015; 259
Wiggins (b18) 1991
Hemmer, Velarde (b8) 1978; 31
Yi, Wei, Shi (b20) 2008; 9
Dong, Li, Zhang (b3) 2017; 33
Du, Wang (b4) 2010; 366
Degn, Harrison (b2) 1969; 22
Turing (b16) 1952; 237
Kuznetsov (b12) 1995
Ye, Li, Wang, Wu (b23) 2011
Andronov, Leontovich, Gordon, Mayer (b1) 1967
Peng, Yi, Zhao (b17) 2013; 254
Fairen, Velarde (b6) 1979; 61
Lengyel, Epstein (b13) 1991; 251
Ni, Tang (b15) 2005; 357
Yan, Zhang (b21) 2018; 43
Peng (10.1016/j.nonrwa.2019.01.005_b17) 2013; 254
Fairen (10.1016/j.nonrwa.2019.01.005_b6) 1979; 61
Ibánez (10.1016/j.nonrwa.2019.01.005_b9) 1976; 59
Jang (10.1016/j.nonrwa.2019.01.005_b11) 2004; 16
Ni (10.1016/j.nonrwa.2019.01.005_b15) 2005; 357
Yi (10.1016/j.nonrwa.2019.01.005_b20) 2008; 9
Lengyel (10.1016/j.nonrwa.2019.01.005_b14) 1992; 89
Andronov (10.1016/j.nonrwa.2019.01.005_b1) 1967
Fairé (10.1016/j.nonrwa.2019.01.005_b5) 1979; 8
Ye (10.1016/j.nonrwa.2019.01.005_b23) 2011
Hemmer (10.1016/j.nonrwa.2019.01.005_b8) 1978; 31
Du (10.1016/j.nonrwa.2019.01.005_b4) 2010; 366
Dong (10.1016/j.nonrwa.2019.01.005_b3) 2017; 33
Hassard (10.1016/j.nonrwa.2019.01.005_b7) 1981
Kuznetsov (10.1016/j.nonrwa.2019.01.005_b12) 1995
Yan (10.1016/j.nonrwa.2019.01.005_b21) 2018; 43
Degn (10.1016/j.nonrwa.2019.01.005_b2) 1969; 22
Li (10.1016/j.nonrwa.2019.01.005_b10) 2015; 259
Lengyel (10.1016/j.nonrwa.2019.01.005_b13) 1991; 251
Wu (10.1016/j.nonrwa.2019.01.005_b19) 2013; 78
Wiggins (10.1016/j.nonrwa.2019.01.005_b18) 1991
Yi (10.1016/j.nonrwa.2019.01.005_b22) 2009; 246
Turing (10.1016/j.nonrwa.2019.01.005_b16) 1952; 237
References_xml – volume: 22
  start-page: 238
  year: 1969
  end-page: 248
  ident: b2
  article-title: Theory of oscillations of respiration rate in continuous culture of klebsiella aerogenes
  publication-title: J. Theoret. Biol.
– volume: 16
  start-page: 297
  year: 2004
  end-page: 320
  ident: b11
  article-title: Global bifurcation and structure of turing patterns in the 1-D Lengyel–Epstein model
  publication-title: J. Dynam. Differential Equations
– volume: 8
  start-page: 147
  year: 1979
  end-page: 157
  ident: b5
  article-title: Time-periodic oscillations in a model for the respiratory process of a bacterial culture
  publication-title: J. Math. Biol.
– volume: 31
  start-page: 111
  year: 1978
  end-page: 116
  ident: b8
  article-title: Multiple steady states for the Degn-Harrison reaction scheme of a bacterial culture
  publication-title: Z. Phys. B
– volume: 33
  start-page: 284
  year: 2017
  end-page: 297
  ident: b3
  article-title: Hopf bifurcation in a reaction–diffusion model with degn-harrison reaction scheme
  publication-title: Nonlinear Anal. RWA
– volume: 357
  start-page: 3953
  year: 2005
  end-page: 3969
  ident: b15
  article-title: Turing patterns in the Lengyel–Epstein system for the cima reaction
  publication-title: Trans. Amer. Math. Soc.
– volume: 61
  start-page: 801
  year: 1979
  end-page: 814
  ident: b6
  article-title: Dissipative structures in a nonlinear reaction–diffusion model with inhibition forward: global nonuniform steady patterns, spatio-temporal structures and wave-like phenomena
  publication-title: Progr. Theoret. Phys.
– year: 1967
  ident: b1
  article-title: Bifurcations Theory for Dynamical Systems on the Plane
– volume: 251
  start-page: 650
  year: 1991
  end-page: 652
  ident: b13
  article-title: Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system
  publication-title: Science
– volume: 237
  start-page: 37
  year: 1952
  end-page: 72
  ident: b16
  article-title: The chemical basis of morphogenesis
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B
– volume: 89
  start-page: 3977
  year: 1992
  end-page: 3979
  ident: b14
  article-title: A chemical approach to designing turing patterns in reaction–diffusion systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 254
  start-page: 2465
  year: 2013
  end-page: 2498
  ident: b17
  article-title: Spatiotemporal patterns in a reaction–diffusion model with the Degn-Harrison reaction scheme
  publication-title: J. Differential Equations
– year: 1991
  ident: b18
  article-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos
– volume: 366
  start-page: 473
  year: 2010
  end-page: 485
  ident: b4
  article-title: Hopf bifurcation analysis in the 1-D Lengyel–Epstein reaction–diffusion model
  publication-title: J. Math. Anal. Appl.
– year: 2011
  ident: b23
  article-title: Introduction to Reaction-Diffusion Equations
– volume: 259
  start-page: 1990
  year: 2015
  end-page: 2029
  ident: b10
  article-title: Turing patterns in a reaction–diffusion model with the Degn-Harrison reaction scheme
  publication-title: J. Differential Equations
– volume: 78
  start-page: 1265
  year: 2013
  end-page: 1289
  ident: b19
  article-title: The effect of interaction ratio in a chemical reaction
  publication-title: IMA J. Appl. Math.
– year: 1981
  ident: b7
  article-title: Theory and Applications of Hopf Bifurcation
– year: 1995
  ident: b12
  article-title: Elements of Applied Bifurcation Theory
– volume: 43
  start-page: 54
  year: 2018
  end-page: 77
  ident: b21
  article-title: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law
  publication-title: Nonlinear Anal. RWA
– volume: 9
  start-page: 1038
  year: 2008
  end-page: 1051
  ident: b20
  article-title: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system
  publication-title: Nonlinear Anal. RWA
– volume: 59
  start-page: 335
  year: 1976
  end-page: 337
  ident: b9
  article-title: Stability diagram and nonlinear structures in a simple reaction scheme involving inhibition forward
  publication-title: Phys. Lett. A
– volume: 246
  start-page: 1944
  year: 2009
  end-page: 1977
  ident: b22
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system
  publication-title: J. Differential Equations
– volume: 22
  start-page: 238
  issue: 2
  year: 1969
  ident: 10.1016/j.nonrwa.2019.01.005_b2
  article-title: Theory of oscillations of respiration rate in continuous culture of klebsiella aerogenes
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(69)90003-4
– volume: 43
  start-page: 54
  year: 2018
  ident: 10.1016/j.nonrwa.2019.01.005_b21
  article-title: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2018.02.004
– volume: 246
  start-page: 1944
  issue: 5
  year: 2009
  ident: 10.1016/j.nonrwa.2019.01.005_b22
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.10.024
– volume: 254
  start-page: 2465
  issue: 6
  year: 2013
  ident: 10.1016/j.nonrwa.2019.01.005_b17
  article-title: Spatiotemporal patterns in a reaction–diffusion model with the Degn-Harrison reaction scheme
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2012.12.009
– volume: 357
  start-page: 3953
  issue: 10
  year: 2005
  ident: 10.1016/j.nonrwa.2019.01.005_b15
  article-title: Turing patterns in the Lengyel–Epstein system for the cima reaction
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-05-04010-9
– year: 1995
  ident: 10.1016/j.nonrwa.2019.01.005_b12
– volume: 251
  start-page: 650
  issue: 4994
  year: 1991
  ident: 10.1016/j.nonrwa.2019.01.005_b13
  article-title: Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system
  publication-title: Science
  doi: 10.1126/science.251.4994.650
– volume: 9
  start-page: 1038
  issue: 3
  year: 2008
  ident: 10.1016/j.nonrwa.2019.01.005_b20
  article-title: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2007.02.005
– year: 2011
  ident: 10.1016/j.nonrwa.2019.01.005_b23
– year: 1981
  ident: 10.1016/j.nonrwa.2019.01.005_b7
– volume: 366
  start-page: 473
  issue: 2
  year: 2010
  ident: 10.1016/j.nonrwa.2019.01.005_b4
  article-title: Hopf bifurcation analysis in the 1-D Lengyel–Epstein reaction–diffusion model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.02.002
– volume: 89
  start-page: 3977
  issue: 9
  year: 1992
  ident: 10.1016/j.nonrwa.2019.01.005_b14
  article-title: A chemical approach to designing turing patterns in reaction–diffusion systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.89.9.3977
– volume: 8
  start-page: 147
  issue: 2
  year: 1979
  ident: 10.1016/j.nonrwa.2019.01.005_b5
  article-title: Time-periodic oscillations in a model for the respiratory process of a bacterial culture
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00279718
– volume: 259
  start-page: 1990
  issue: 5
  year: 2015
  ident: 10.1016/j.nonrwa.2019.01.005_b10
  article-title: Turing patterns in a reaction–diffusion model with the Degn-Harrison reaction scheme
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.03.017
– volume: 33
  start-page: 284
  year: 2017
  ident: 10.1016/j.nonrwa.2019.01.005_b3
  article-title: Hopf bifurcation in a reaction–diffusion model with degn-harrison reaction scheme
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2016.07.002
– volume: 237
  start-page: 37
  issue: 641
  year: 1952
  ident: 10.1016/j.nonrwa.2019.01.005_b16
  article-title: The chemical basis of morphogenesis
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B
  doi: 10.1098/rstb.1952.0012
– year: 1967
  ident: 10.1016/j.nonrwa.2019.01.005_b1
– volume: 31
  start-page: 111
  issue: 1
  year: 1978
  ident: 10.1016/j.nonrwa.2019.01.005_b8
  article-title: Multiple steady states for the Degn-Harrison reaction scheme of a bacterial culture
  publication-title: Z. Phys. B
  doi: 10.1007/BF01320132
– volume: 59
  start-page: 335
  issue: 5
  year: 1976
  ident: 10.1016/j.nonrwa.2019.01.005_b9
  article-title: Stability diagram and nonlinear structures in a simple reaction scheme involving inhibition forward
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(76)90399-6
– volume: 16
  start-page: 297
  issue: 2
  year: 2004
  ident: 10.1016/j.nonrwa.2019.01.005_b11
  article-title: Global bifurcation and structure of turing patterns in the 1-D Lengyel–Epstein model
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-004-2782-x
– year: 1991
  ident: 10.1016/j.nonrwa.2019.01.005_b18
– volume: 61
  start-page: 801
  issue: 3
  year: 1979
  ident: 10.1016/j.nonrwa.2019.01.005_b6
  article-title: Dissipative structures in a nonlinear reaction–diffusion model with inhibition forward: global nonuniform steady patterns, spatio-temporal structures and wave-like phenomena
  publication-title: Progr. Theoret. Phys.
  doi: 10.1143/PTP.61.801
– volume: 78
  start-page: 1265
  issue: 6
  year: 2013
  ident: 10.1016/j.nonrwa.2019.01.005_b19
  article-title: The effect of interaction ratio in a chemical reaction
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxs020
SSID ssj0017131
Score 2.3151023
Snippet A chemical reaction–diffusion model with Degn–Harrison reaction scheme and subject to homogeneous Neumann boundary condition is revisited in this article....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Boundary conditions
Chemical reactions
Degn–Harrison reaction scheme
Diffusion
Eigenvalues
Hopf bifurcation
Local asymptotic stability
Mathematical models
Organic chemistry
Reaction-diffusion equations
Reaction–diffusion chemical model
Stability
Time-periodic pattern
Turing instability
Title Dynamics analysis of a chemical reaction–diffusion model subject to Degn–Harrison reaction scheme
URI https://dx.doi.org/10.1016/j.nonrwa.2019.01.005
https://www.proquest.com/docview/2211923846
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: AIKHN
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: ACRLP
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: .~1
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA9jvuiD-Benc-TB17q0ydL2cWyO-mdD1MHeQtKmMhE31g7fxO_gN_STmGvTgiIIPpWGSyiX9O5y3P1-CJ35riZxmvQcpULpMM6lIwmRjg9QLcqlQaAh3zGe8GjKrma9WQMNql4YKKu0tr-06YW1tiNdq83ucj7v3kPTkAseKqAkDDjAbjPmA4vB-Vtd5uGaS5hbdRiBdNU-V9R4mRv26hXQh9ywAO8EErvf3dMPQ114n9EO2rZhI-6XX7aLGvplD22Na8zVbB_pYUkun2FpgUbwIsUSxxYSAJvwsGhi-Hz_AFqUNeTJcMGEg7O1gnwMzhd4qB9BIpKrgp2wnoUzWEgfoOno4mEQOZZEwYkpZbkTxIqpmErKtKe9MJbmRuRKSpNeoknSS1OfKhYq5adcJiGXiobaSIWxB7g6Jrg5RE2jJn2EsBmmyiNJSmjCUp0o5nPFA7OCr1Kmghaile5EbBHGgejiWVSlZE-i1LgAjQviCqPxFnLqWcsSYeMPeb_aFvHtpAjjBP6Y2a52Udg_NRMeQNyZuIXx438vfII24a2sC2yjZr5a61MTq-SqUxzGDtroD-5ubuF5eR1NvgDpye9G
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA9zHtSD-BenU3PwWtc2adoeZXNU3XZxg91C0qYyETfWDm_id_Ab-knMa9OCIgy8pi-hvCTvT3jv90PoyneUHaeJZ0kZCosyJixh28LyAapFOiQIFLx3DEcsmtD7qTdtoG7VCwNllcb2lza9sNZmpGO02VnMZp1HaBpywEMFxA4DxjbQJvVcHzKw6_e6zsPRWZhTtRiBeNU_VxR56RR7-QbwQ05YoHcCi93f_umXpS7cT38P7Zq4Ed-Uv7aPGur1AO0Ma9DV7BCpXskun2FhkEbwPMUCxwYTAOv4sOhi-Pr4BF6UFTyU4YIKB2crCQ8yOJ_jnnoCiUgsC3rCehbOYCF1hCb923E3sgyLghUTQnMriCWVMRGEKle5YSx0SuQIQhIvUXbipalPJA2l9FMmkpAJSUKlpcLYBWAdHd0co6ZWkzpBWA8T6dpJapOEpiqR1GeSBXoFX6ZUBi1EKt3x2ECMA9PFC69qyZ55qXEOGue2w7XGW8iqZy1KiI018n61LfzHUeHaC6yZ2a52kZurmnEXMO504ELZ6b8XvkRb0Xg44IO70cMZ2oYvZZFgGzXz5Uqd68AllxfFwfwG_CLvRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+analysis+of+a+chemical+reaction%E2%80%93diffusion+model+subject+to+Degn%E2%80%93Harrison+reaction+scheme&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Yan%2C+Xiang-Ping&rft.au=Chen%2C+Jian-Ye&rft.au=Zhang%2C+Cun-Hua&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=48&rft.spage=161&rft_id=info:doi/10.1016%2Fj.nonrwa.2019.01.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon