Symbolic computation of Caudrey–Dodd–Gibbon equation subject to periodic trigonometric and hyperbolic symmetries
The nonlinear evolution equations have been being continuously traced out to have remarkable progress and innovative applications by mathematicians and physicists. In this context, the comparison of ( G ′ / G , 1 / G ) and ( 1 / G ′ ) -expansion methods has been perceived for the Caudrey–Dodd–Gibbon...
Saved in:
| Published in | European physical journal plus Vol. 136; no. 4; p. 358 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2190-5444 2190-5444 |
| DOI | 10.1140/epjp/s13360-021-01350-x |
Cover
| Abstract | The nonlinear evolution equations have been being continuously traced out to have remarkable progress and innovative applications by mathematicians and physicists. In this context, the comparison of
(
G
′
/
G
,
1
/
G
)
and
(
1
/
G
′
)
-expansion methods has been perceived for the Caudrey–Dodd–Gibbon equation on account of obtaining the periodic trigonometric, hyperbolic and rational traveling wave solutions. For the sake of advantages and disadvantages of imposed mathematical method, the standing wave with arbitrary values has been depicted in terms of contour, 3-dimension and 2-dimension graphs. The new types of periodic trigonometric, hyperbolic and rational solutions of the Caudrey–Dodd–Gibbon equation have been obtained by the comparison of both imposed methods. Additionally, solution function in the classical
(
G
′
/
G
,
1
/
G
)
-expansion method is presented in a different form. The proposed methods for the comparison have proved to provide a powerful mathematical tool to solve nonlinear Caudrey–Dodd–Gibbon equation. By performing complicated and difficult operations via computer package program, our results showed the production of shock waves from investigated analytical solutions. |
|---|---|
| AbstractList | The nonlinear evolution equations have been being continuously traced out to have remarkable progress and innovative applications by mathematicians and physicists. In this context, the comparison of (G′/G,1/G) and (1/G′)-expansion methods has been perceived for the Caudrey–Dodd–Gibbon equation on account of obtaining the periodic trigonometric, hyperbolic and rational traveling wave solutions. For the sake of advantages and disadvantages of imposed mathematical method, the standing wave with arbitrary values has been depicted in terms of contour, 3-dimension and 2-dimension graphs. The new types of periodic trigonometric, hyperbolic and rational solutions of the Caudrey–Dodd–Gibbon equation have been obtained by the comparison of both imposed methods. Additionally, solution function in the classical (G′/G,1/G)-expansion method is presented in a different form. The proposed methods for the comparison have proved to provide a powerful mathematical tool to solve nonlinear Caudrey–Dodd–Gibbon equation. By performing complicated and difficult operations via computer package program, our results showed the production of shock waves from investigated analytical solutions. The nonlinear evolution equations have been being continuously traced out to have remarkable progress and innovative applications by mathematicians and physicists. In this context, the comparison of ( G ′ / G , 1 / G ) and ( 1 / G ′ ) -expansion methods has been perceived for the Caudrey–Dodd–Gibbon equation on account of obtaining the periodic trigonometric, hyperbolic and rational traveling wave solutions. For the sake of advantages and disadvantages of imposed mathematical method, the standing wave with arbitrary values has been depicted in terms of contour, 3-dimension and 2-dimension graphs. The new types of periodic trigonometric, hyperbolic and rational solutions of the Caudrey–Dodd–Gibbon equation have been obtained by the comparison of both imposed methods. Additionally, solution function in the classical ( G ′ / G , 1 / G ) -expansion method is presented in a different form. The proposed methods for the comparison have proved to provide a powerful mathematical tool to solve nonlinear Caudrey–Dodd–Gibbon equation. By performing complicated and difficult operations via computer package program, our results showed the production of shock waves from investigated analytical solutions. |
| ArticleNumber | 358 |
| Author | Durur, Hülya Abro, Kashif Ali Yokuş, Asıf |
| Author_xml | – sequence: 1 givenname: Asıf surname: Yokuş fullname: Yokuş, Asıf organization: Department of Actuary, Faculty of Science, Firat University – sequence: 2 givenname: Hülya surname: Durur fullname: Durur, Hülya organization: Department of Computer Engineering, Faculty of Engineering, Ardahan University – sequence: 3 givenname: Kashif Ali orcidid: 0000-0003-0867-642X surname: Abro fullname: Abro, Kashif Ali email: kashif.abro@faculty.muet.edu.pk organization: Institute of Ground Water Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology |
| BookMark | eNqNkE1OwzAQhS1UJErpGYjEOtSOnTRZsEAFClIlFsDa8m9J1MSp7UjNjjtwQ06C2yCB2IA3M5p5b571nYJRYxoFwDmClwgROFNt1c4cwjiDMUxQDBFOYbw7AuMEFTBOCSGjH_0JmDpXwfBIgUhBxsA_9TU3m1JEwtRt55kvTRMZHS1YJ63qP97eb4yUoSxLzsNKbbtB4zpeKeEjb6JW2dLIcMPbcm0aU6vQiIg1Mnrtw3IIcH19WCh3Bo412zg1_aoT8HJ3-7y4j1ePy4fF9SoWGBMf5yTROtUy0yLHBOOUaEYIKmSWKyiF4LlO84xhorhM0gxyyDlTBIaxzlWa4wm4GO621mw75TytTGebEEmTAhVznGQJDKr5oBLWOGeVpq0ta2Z7iiDdU6Z7ynSgTANleqBMd8F59cspyoGgt6zc_MOfD34XEpu1st__-8v6CRfAn0o |
| CitedBy_id | crossref_primary_10_35414_akufemubid_946217 crossref_primary_10_1142_S0217979221502131 crossref_primary_10_1007_s11082_024_06814_9 crossref_primary_10_1080_01430750_2021_1939157 crossref_primary_10_1080_02286203_2022_2064797 crossref_primary_10_1016_j_cjph_2025_03_015 crossref_primary_10_1016_j_joes_2022_01_012 crossref_primary_10_1142_S0217979224500541 crossref_primary_10_4236_ojmsi_2021_93020 crossref_primary_10_1088_1402_4896_ac35c5 crossref_primary_10_1142_S0219876224500531 crossref_primary_10_3390_appliedmath5010020 crossref_primary_10_1515_phys_2023_0104 crossref_primary_10_1155_2022_5382153 crossref_primary_10_1016_j_physa_2023_128819 crossref_primary_10_1080_02286203_2021_1966729 crossref_primary_10_1515_nleng_2021_0017 crossref_primary_10_4236_am_2021_1210057 crossref_primary_10_1016_j_cjph_2022_04_022 crossref_primary_10_1515_nleng_2021_0011 crossref_primary_10_1007_s11082_022_03944_w crossref_primary_10_1115_1_4052189 |
| Cites_doi | 10.25092/baunfbed.743062 10.1007/s10973-020-10027-z 10.1002/mma.6378 10.2478/amns.2020.1.00042 10.1142/S0217984920500360 10.1007/s10973-020-09312-8 10.34198/ejms.3220.229247 10.3390/fractalfract4030041 10.2478/amns.2020.1.00043 10.1108/HFF-04-2014-0116 10.1007/s10973-020-09429-w 10.1007/s13369-020-04780-4 10.1140/epjp/s13360-020-00136-x 10.1155/2011/218216 10.1088/1402-4896/ab560c 10.1002/mma.6638 10.1016/j.euromechflu.2020.07.014 10.1016/j.physa.2020.124327 10.1140/epjp/s13360-020-00646-8 10.1016/j.na.2010.02.030 10.1140/epjp/s13360-019-00046-7 10.1007/s40324-015-0059-4 10.1002/mma.6655 10.1016/j.amc.2004.06.012 10.1016/S0096-3003(01)00312-5 10.1016/j.amc.2007.08.008 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1140/epjp/s13360-021-01350-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2190-5444 |
| ExternalDocumentID | 10_1140_epjp_s13360_021_01350_x |
| GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 2VQ AAAVM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADQRH AEBTG AEKMD AEZWR AFDZB AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION EJD FINBP FSGXE O9- PHGZM PHGZT PQGLB PUEGO S1Z 8FE 8FG DWQXO P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c334t-842ff5fd6fc8343354fa4419d68e0dccb8f586a34ebd2560b0bbae408f5f8e583 |
| IEDL.DBID | BENPR |
| ISSN | 2190-5444 |
| IngestDate | Sun Sep 07 05:30:36 EDT 2025 Wed Oct 01 03:22:30 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Fri Feb 21 02:49:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-842ff5fd6fc8343354fa4419d68e0dccb8f586a34ebd2560b0bbae408f5f8e583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0867-642X |
| PQID | 2919732620 |
| PQPubID | 2044220 |
| ParticipantIDs | proquest_journals_2919732620 crossref_primary_10_1140_epjp_s13360_021_01350_x crossref_citationtrail_10_1140_epjp_s13360_021_01350_x springer_journals_10_1140_epjp_s13360_021_01350_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | European physical journal plus |
| PublicationTitleAbbrev | Eur. Phys. J. Plus |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Abro, Abdon (CR23) 2020; 95 Salas, Castillo (CR28) 2011; 6 Kashif, Abdon (CR21) 2020; 135 Bhojraj, Abro, Abdul (CR19) 2020 Yokuş, Durur (CR13) 2019; 21 Naher, Abdullah, Akbar (CR25) 2011; 2011 Jiang, Bi (CR29) 2010; 72 Yokuş, Durur, Abro, Kaya (CR15) 2020; 135 Chen, Xu, Dai (CR31) 2015; 25 Ahmad, Rafiq, Cesarano, Durur (CR3) 2020; 3 He (CR2) 2000; 114 Abro, Atangana (CR10) 2020 Kashif, Atangana (CR16) 2020; 1 Neamaty, Agheli, Darzi (CR30) 2016; 73 Kaya, Yokus (CR20) 2005; 164 Durur, Ilhan, Bulut (CR8) 2020; 4 Kashif, Jose (CR12) 2020 Kashif, Atangana (CR7) 2020 He (CR1) 2003; 135 Durur, Tasbozan, Kurt (CR5) 2020; 5 Abro (CR24) 2019; 135 Abdollahzadeh, Hosseini, Ghanbarpour, Shirvani (CR26) 2010; 2 Yavuz, Sulaiman, Usta, Bulut (CR17) 2020; 21 Aziz, Muhammad, Kashif (CR4) 2020 Durur, Yokuş (CR9) 2020; 22 Durur (CR18) 2020; 34 Kashif, Ambreen, Abdon (CR22) 2020 Durur, Kurt, Tasbozan (CR6) 2020; 5 Wazwaz (CR27) 2008; 197 Ali, Yilmazer, Yokus, Bulut (CR11) 2020; 548 Abro, Atangana (CR14) 2020 JH He (1350_CR2) 2000; 114 H Durur (1350_CR6) 2020; 5 D Kaya (1350_CR20) 2005; 164 H Chen (1350_CR31) 2015; 25 H Ahmad (1350_CR3) 2020; 3 AA Kashif (1350_CR7) 2020 H Durur (1350_CR9) 2020; 22 H Durur (1350_CR5) 2020; 5 H Durur (1350_CR8) 2020; 4 KA Abro (1350_CR14) 2020 AA Kashif (1350_CR16) 2020; 1 A Neamaty (1350_CR30) 2016; 73 H Durur (1350_CR18) 2020; 34 AA Kashif (1350_CR21) 2020; 135 A Yokuş (1350_CR13) 2019; 21 AA Kashif (1350_CR12) 2020 UA Aziz (1350_CR4) 2020 M Yavuz (1350_CR17) 2020; 21 KA Abro (1350_CR23) 2020; 95 AH Salas (1350_CR28) 2011; 6 AA Kashif (1350_CR22) 2020 H Naher (1350_CR25) 2011; 2011 KA Abro (1350_CR24) 2019; 135 JH He (1350_CR1) 2003; 135 A Yokuş (1350_CR15) 2020; 135 KK Ali (1350_CR11) 2020; 548 AM Wazwaz (1350_CR27) 2008; 197 L Bhojraj (1350_CR19) 2020 KA Abro (1350_CR10) 2020 M Abdollahzadeh (1350_CR26) 2010; 2 B Jiang (1350_CR29) 2010; 72 |
| References_xml | – volume: 22 start-page: 628 issue: 2 year: 2020 end-page: 636 ident: CR9 article-title: Analytical solutions of Kolmogorov–Petrovskii–Piskunov equation publication-title: Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi doi: 10.25092/baunfbed.743062 – year: 2020 ident: CR7 article-title: Porous effects on the fractional modeling of magnetohydrodynamic pulsatile flow: an analytic study via strong kernels publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10027-z – volume: 197 start-page: 719 issue: 2 year: 2008 end-page: 724 ident: CR27 article-title: Multiple-soliton solutions for the fifth order Caudrey–Dodd–Gibbon equation publication-title: Appl. Math. Comput. – volume: 6 start-page: 7729 issue: 34 year: 2011 end-page: 7737 ident: CR28 article-title: Computing multi-soliton solutions to Caudrey-Dodd-Gibbon equation by Hirotas method publication-title: Int. J. Phys. Sci. – volume: 1 start-page: 1 year: 2020 end-page: 18 ident: CR16 article-title: Mathematical analysis of memristor through fractal-fractional differential operators: a numerical study publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6378 – volume: 5 start-page: 447 issue: 1 year: 2020 end-page: 454 ident: CR5 article-title: New analytical solutions of conformable time fractional bad and good modified Boussinesq equations publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00042 – volume: 34 start-page: 2050036 issue: 03 year: 2020 ident: CR18 article-title: Different types analytic solutions of the (1+ 1)-dimensional resonant nonlinear Schrödinger’s equation using (G′/G)-expansion method publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984920500360 – year: 2020 ident: CR22 article-title: Thermal stratification of rotational second-grade fluid through fractional differential operators publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09312-8 – volume: 3 start-page: 229 issue: 2 year: 2020 end-page: 247 ident: CR3 article-title: Variational iteration algorithm-I with an auxiliary parameter for solving boundary value problems publication-title: Earthline J. Math. Sci. doi: 10.34198/ejms.3220.229247 – volume: 4 start-page: 41 issue: 3 year: 2020 ident: CR8 article-title: Novel complex wave solutions of the (2+ 1)-dimensional hyperbolic nonlinear Schrödinger equation publication-title: Fractal Fract. doi: 10.3390/fractalfract4030041 – volume: 5 start-page: 455 issue: 1 year: 2020 end-page: 460 ident: CR6 article-title: New travelling wave solutions for KdV6 equation using sub equation method publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00043 – volume: 25 start-page: 651 issue: 3 year: 2015 end-page: 655 ident: CR31 article-title: Breather soliton and cross two-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-04-2014-0116 – volume: 21 start-page: 1 year: 2020 end-page: 18 ident: CR17 article-title: Analysis and numerical computations of the fractional regularized long-wave equation with damping term publication-title: Math. Methods Appl. Sci. – year: 2020 ident: CR19 article-title: Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09429-w – volume: 135 start-page: 73 issue: 1 year: 2003 end-page: 79 ident: CR1 article-title: Homotopy perturbation method: a new nonlinear analytical technique publication-title: Appl. Math. Comput. – year: 2020 ident: CR14 article-title: Numerical study and chaotic analysis of meminductor and memcapacitor through fractal-fractional differential operator publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04780-4 – volume: 135 start-page: 226 year: 2020 end-page: 242 ident: CR21 article-title: A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal–fractional differentiations publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00136-x – volume: 2011 start-page: 218216 year: 2011 ident: CR25 article-title: The ( ′/ )-expansion method for abundant traveling wave solutions of Caudrey-Dodd-Gibbon equation publication-title: Math. Probl. Eng. doi: 10.1155/2011/218216 – volume: 95 start-page: 035228 year: 2020 ident: CR23 article-title: Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab560c – volume: 114 start-page: 115 issue: 2–3 year: 2000 end-page: 123 ident: CR2 article-title: Variational iteration method for autonomous ordinary differential systems publication-title: Appl. Math. Comput. – year: 2020 ident: CR10 article-title: A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6638 – volume: 164 start-page: 857 issue: 3 year: 2005 end-page: 864 ident: CR20 article-title: A decomposition method for finding solitary and periodic solutions for a coupled higher-dimensional Burgers equations publication-title: Appl. Math. Comput. – year: 2020 ident: CR4 article-title: Multiple soliton solutions with chiral nonlinear Schrödinger’s equation in (2+1)-dimensions publication-title: Eur. J. Mech. B. Fluids doi: 10.1016/j.euromechflu.2020.07.014 – volume: 548 year: 2020 ident: CR11 article-title: Analytical solutions for the (3+ 1)-dimensional nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics publication-title: Physica A doi: 10.1016/j.physa.2020.124327 – volume: 135 start-page: 1 issue: 8 year: 2020 end-page: 19 ident: CR15 article-title: Role of Gilson-Pickering equation for the different types of soliton solutions: a nonlinear analysis publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00646-8 – volume: 72 start-page: 4530 issue: 12 year: 2010 end-page: 4533 ident: CR29 article-title: A study on the bilinear Caudrey–Dodd–Gibbon equation publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2010.02.030 – volume: 135 start-page: 31 issue: 1 year: 2019 end-page: 45 ident: CR24 article-title: A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-019-00046-7 – volume: 21 start-page: 590 issue: 2 year: 2019 end-page: 599 ident: CR13 article-title: Complex hyperbolic traveling wave solutions of Kuramoto-Sivashinsky equation using (1/G') expansion method for nonlinear dynamic theory publication-title: J. Balıkesir Univ. Inst. Sci. Technol. – volume: 73 start-page: 121 issue: 2 year: 2016 end-page: 129 ident: CR30 article-title: Exact travelling wave Solutions for some nonlinear time fractional fifth-order Caudrey–Dodd–Gibbon equation by ′/ -expansion method publication-title: SeMA J. doi: 10.1007/s40324-015-0059-4 – year: 2020 ident: CR12 article-title: Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6655 – volume: 2 start-page: 81 issue: 4 year: 2010 end-page: 90 ident: CR26 article-title: Exact travelling solutions for fifth order Caudrey-Dodd-Gibbon equation publication-title: Int. J. Appl. Math. Comput. – volume: 21 start-page: 590 issue: 2 year: 2019 ident: 1350_CR13 publication-title: J. Balıkesir Univ. Inst. Sci. Technol. – volume: 95 start-page: 035228 year: 2020 ident: 1350_CR23 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab560c – year: 2020 ident: 1350_CR12 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6655 – volume: 21 start-page: 1 year: 2020 ident: 1350_CR17 publication-title: Math. Methods Appl. Sci. – volume: 22 start-page: 628 issue: 2 year: 2020 ident: 1350_CR9 publication-title: Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi doi: 10.25092/baunfbed.743062 – volume: 548 year: 2020 ident: 1350_CR11 publication-title: Physica A doi: 10.1016/j.physa.2020.124327 – year: 2020 ident: 1350_CR4 publication-title: Eur. J. Mech. B. Fluids doi: 10.1016/j.euromechflu.2020.07.014 – volume: 72 start-page: 4530 issue: 12 year: 2010 ident: 1350_CR29 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2010.02.030 – volume: 5 start-page: 447 issue: 1 year: 2020 ident: 1350_CR5 publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00042 – year: 2020 ident: 1350_CR14 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04780-4 – volume: 25 start-page: 651 issue: 3 year: 2015 ident: 1350_CR31 publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-04-2014-0116 – volume: 3 start-page: 229 issue: 2 year: 2020 ident: 1350_CR3 publication-title: Earthline J. Math. Sci. doi: 10.34198/ejms.3220.229247 – volume: 164 start-page: 857 issue: 3 year: 2005 ident: 1350_CR20 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2004.06.012 – year: 2020 ident: 1350_CR10 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6638 – year: 2020 ident: 1350_CR7 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10027-z – volume: 34 start-page: 2050036 issue: 03 year: 2020 ident: 1350_CR18 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984920500360 – volume: 135 start-page: 1 issue: 8 year: 2020 ident: 1350_CR15 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00646-8 – volume: 2011 start-page: 218216 year: 2011 ident: 1350_CR25 publication-title: Math. Probl. Eng. doi: 10.1155/2011/218216 – volume: 6 start-page: 7729 issue: 34 year: 2011 ident: 1350_CR28 publication-title: Int. J. Phys. Sci. – volume: 135 start-page: 226 year: 2020 ident: 1350_CR21 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00136-x – volume: 73 start-page: 121 issue: 2 year: 2016 ident: 1350_CR30 publication-title: SeMA J. doi: 10.1007/s40324-015-0059-4 – volume: 5 start-page: 455 issue: 1 year: 2020 ident: 1350_CR6 publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00043 – volume: 2 start-page: 81 issue: 4 year: 2010 ident: 1350_CR26 publication-title: Int. J. Appl. Math. Comput. – volume: 135 start-page: 73 issue: 1 year: 2003 ident: 1350_CR1 publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(01)00312-5 – volume: 135 start-page: 31 issue: 1 year: 2019 ident: 1350_CR24 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-019-00046-7 – volume: 4 start-page: 41 issue: 3 year: 2020 ident: 1350_CR8 publication-title: Fractal Fract. doi: 10.3390/fractalfract4030041 – year: 2020 ident: 1350_CR19 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09429-w – volume: 197 start-page: 719 issue: 2 year: 2008 ident: 1350_CR27 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.08.008 – year: 2020 ident: 1350_CR22 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09312-8 – volume: 1 start-page: 1 year: 2020 ident: 1350_CR16 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6378 – volume: 114 start-page: 115 issue: 2–3 year: 2000 ident: 1350_CR2 publication-title: Appl. Math. Comput. |
| SSID | ssj0000491494 |
| Score | 2.3300986 |
| Snippet | The nonlinear evolution equations have been being continuously traced out to have remarkable progress and innovative applications by mathematicians and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 358 |
| SubjectTerms | Algebra Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Exact solutions Mathematical and Computational Physics Methods Molecular Nonlinear evolution equations Optical and Plasma Physics Ordinary differential equations Physics Physics and Astronomy Regular Article Shock waves Standing waves Theoretical Traveling waves |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ64vcvAaTNukpkcRHwh60QVvIY8JKrq72i7ozf_gP_SXOEm7vg4KngoNk8LMpPkmmfmGkJ0CbAgIO5jbA8NE5Q0zGP2wDBQAOgFUKhYnn52XJ31xeiWvvrb6itnukyvJ9Kdu-Wz5LoxuR7s1hlQlZzGvALGL5Azh44yMnF7oyv18_-N4BYEvYn_RZXT9Iv99P_oEmT_uRdN2c7RA5jucSPdbwy6SKRgskdmUr-nqZdJcPN_bSOlLXWrLkPRLh4EemLFH67y9vMbW6fg4vrEWh-Ch5fSm9djGoxfaDGkkOR56nKPBED0WN8TuWo6agafXGJ4-th-on-_TANQrpH90eHlwwroGCswVhWiYEnkIMvgyOFWIopAiGIQ_lS8VcO-cVUGq0hQCrI_Qx3JrDQiOr4MCqYpVMj0YDmCN0LIyhgsnncu82OOgvBSuErZymXPKVz1STtSoXccuHptc3Om28pnrqH_d6l-j_nXSv37qEf4hOGoJNv4W2ZzYSXcrrtZ5lUXioTLnPZJNbPc5_MeU6_-Q2SBzeXKkmMazSaabxzFsIUJp7HbyxXfmD-XO priority: 102 providerName: Springer Nature |
| Title | Symbolic computation of Caudrey–Dodd–Gibbon equation subject to periodic trigonometric and hyperbolic symmetries |
| URI | https://link.springer.com/article/10.1140/epjp/s13360-021-01350-x https://www.proquest.com/docview/2919732620 |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2190-5444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: AFBBN dateStart: 20110107 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2190-5444 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2190-5444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2190-5444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB61iZC4IJ4iUKI9cF1lba_d9QGhpEpSgYgQEKmcrH2KIhqntSO1N_4D_5BfwowfjeBATyt5tWt5Zrz7ze7MNwCvE29CQNjB7bHXXOZOc43eD4-88h6NwOeKkpM_rLLTtXx3lp4dwKrPhaGwyn5NbBZqV1o6I5_EeUTEMlks3m4vOVWNotvVvoSG7koruDcNxdghDGNixhrAcDZfffx0e-qCeBhdAtkFeqFzMfHb79tJhZ5aJjiFKyAkSgW__nub2mPPf65Lm11o8RAedPCRTVt9P4IDv3kM95owTls9gfrzzYUhpl9mm2oNjdhZGdiJ3jlU2u-fv6iiOjbLc2Owy1-2VN-s2hk6kWF1yYj7uHQ4R42fTzkPVHTLMr1x7Bt6rVftC6qbi6bDV09hvZh_OTnlXV0FbpNE1lzJOIQ0uCxYlcgkSWXQiIpylykvnLVGhVRlOpHeOEJERhijvRT4OCifquQZDDblxj8HluVaC2lTayMnj4VXLpU2lya3kbXK5SPIejEWtiMdp9oXP4o2IVoUJP-ilX-B8i8a-RfXIxC3A7ct78bdQ456PRXdj1gVe7MZQdTrbt99x5Qv_j_lS7gfNzZDgTxHMKivdv4VYpTajOFQLZZjGE4Xs9mK2uXX9_NxZ47Yu46nfwAcTu_t |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwQXxK9YKOADHK11Yie1DxUqpWVL2xWCVurN-FeA6GbbZNXujXfo-_RheBLGTtIVHOipp0ixPJFmJvY39sx8CL1m3oQAsIPYNa8Jl04TDdEPybzwHpzASxGLk_fH5eiQfzwqjpbQZV8LE9Mq-zUxLdSusvGMfJjLLDaWKXP6dnpCImtUvF3tKTR0R63g1lOLsa6wY9fPzyCEq9d33oO93-T59tbB5oh0LAPEMsYbIngeQhFcGaxgnLGCBw0YQbpSeOqsNSIUotSMe-MiPjDUGO05hddB-EIwkHsLrXDGJQR_K--2xp8-X53yAP6GEIR3iWUQzAz99Md0WENkWFIS0yMAghWUnP-9LS6w7j_Xs2nX276P7nVwFW-0_vUALfnJQ3Q7pY3a-hFqvsyPTewsjG1ih0hmxlXAm3rmwEl-_7qIDO7w-PDdGBjyJ21rcVzPTDwBwk2FY6_lyoGMBtQdaywiyZfFeuLwN4iST9sP1PPjNODrx-jwRjT8BC1Pqol_inAptabcFtZmjq9RL1zBreRG2sxa4eQAlb0ale2anEeujZ-qLcCmKupftfpXoH-V9K_OB4heTZy2fT6un7La20l1P36tFm46QFlvu8XwNSKf_V_kK3RndLC_p_Z2xrvP0d08-U9MIlpFy83pzL8AfNSYl50TYvT1pv3-D8tfKRk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQqIgLoqUVy6P1gau1TuIE54iA5dGCKpWVuFl-jNUiyC4kK8GN_8A_5JcwdhJQORSpp0gZjSPNTORv7JlvCNnOwHiPsIPZHdBMlE4zjdkPS0ACYBBAKUNz8ulZcTQWJxf5xRw56HthYrV7fyXZ9jQElqaqGU6d77ht-RCml9NhjelVwVmoMUAck3OGUHJBBLYEDOtxuvty1IIgGPMA0VV3_UP_773pFXC-uSONW89ohSx3mJHutk7-SOag-kQ-xNpNW6-S5tf9tQn0vtTGEQ3R1nTi6Z6eOfTU08NjGKOOj8M_xqAIblp-b1rPTDiGoc2EBsLjicM1GkzXQ6NDmLRlqa4c_Y2p6m37gfr-Ogqg_kzGo4PzvSPWDVNgNstEw6RIvc-9K7yVmciyXHiNUKh0hQTurDXS57LQmQDjAgwy3BgNguNrLyGX2RcyX00qWCO0KLXmwubWJk7scJAuF7YUprSJtdKVA1L0ZlS2YxoPAy-uVNsFzVWwv2rtr9D-Ktpf3Q0If1GctmQb76ts9n5S3d9Xq7RMAglRkfIBSXrfvYrfWXL9P3S-kcWf-yP14_js-wZZSmNMheqeTTLf3M5gC4FLY77GsHwG0Ejs9g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic+computation+of+Caudrey%E2%80%93Dodd%E2%80%93Gibbon+equation+subject+to+periodic+trigonometric+and+hyperbolic+symmetries&rft.jtitle=European+physical+journal+plus&rft.au=Yoku%C5%9F%2C+As%C4%B1f&rft.au=Durur%2C+H%C3%BClya&rft.au=Abro%2C+Kashif+Ali&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.eissn=2190-5444&rft.volume=136&rft.issue=4&rft.spage=358&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-021-01350-x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |