Optimization of Sour Water Stripping Unit Using Artificial Neural Network–Particle Swarm Optimization Algorithm
Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission reduction. This paper aims to reduce energy consumption of the unit by strengthening process parameter optimization. Firstly, the basic model i...
Saved in:
| Published in | Processes Vol. 10; no. 8; p. 1431 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9717 2227-9717 |
| DOI | 10.3390/pr10081431 |
Cover
| Abstract | Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission reduction. This paper aims to reduce energy consumption of the unit by strengthening process parameter optimization. Firstly, the basic model is established by utilizing Aspen Plus, and the optimal model is determined by comparative analysis of back propagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) models. Then, the sensitivity analysis of Sobol is used to select the operating variables that have a significant influence on the energy consumption of the sour water stripping system. Finally, the particle swarm optimization (PSO) algorithm is used to optimize the operating conditions of the sour water stripping unit. The results show that the RBFNN model is more accurate than other models. Its network structure is 5-66-1, and the expected value has an approximately linear relationship with the output value. Through sensitivity analysis, it is found that each operating parameter has an impact on the sour water stripping process, which needs to be optimized by the PSO algorithm. After 210 iterations of the PSO algorithm, the optimal system energy consumption is obtained. In addition, the cold/hot feed ratio, sideline production position, tower bottom pressure, hot feed temperature, and cold feed temperature are 0.117, 18, 436 kPa, 146 °C, and 35 °C, respectively; the system energy consumption is 5.918 MW. Compared with value of 7.128 MW before optimization, the energy consumption of the system is greatly reduced by 16.97%, which shows that the energy-saving effect is very significant. |
|---|---|
| AbstractList | Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission reduction. This paper aims to reduce energy consumption of the unit by strengthening process parameter optimization. Firstly, the basic model is established by utilizing Aspen Plus, and the optimal model is determined by comparative analysis of back propagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) models. Then, the sensitivity analysis of Sobol is used to select the operating variables that have a significant influence on the energy consumption of the sour water stripping system. Finally, the particle swarm optimization (PSO) algorithm is used to optimize the operating conditions of the sour water stripping unit. The results show that the RBFNN model is more accurate than other models. Its network structure is 5-66-1, and the expected value has an approximately linear relationship with the output value. Through sensitivity analysis, it is found that each operating parameter has an impact on the sour water stripping process, which needs to be optimized by the PSO algorithm. After 210 iterations of the PSO algorithm, the optimal system energy consumption is obtained. In addition, the cold/hot feed ratio, sideline production position, tower bottom pressure, hot feed temperature, and cold feed temperature are 0.117, 18, 436 kPa, 146 °C, and 35 °C, respectively; the system energy consumption is 5.918 MW. Compared with value of 7.128 MW before optimization, the energy consumption of the system is greatly reduced by 16.97%, which shows that the energy-saving effect is very significant. |
| Audience | Academic |
| Author | Saif, Mohammed Maged Ahemd Jing, Genhui Zhang, Ye Fan, Zheng |
| Author_xml | – sequence: 1 givenname: Ye surname: Zhang fullname: Zhang, Ye – sequence: 2 givenname: Zheng surname: Fan fullname: Fan, Zheng – sequence: 3 givenname: Genhui surname: Jing fullname: Jing, Genhui – sequence: 4 givenname: Mohammed Maged Ahemd surname: Saif fullname: Saif, Mohammed Maged Ahemd |
| BookMark | eNp9UctKAzEUDaJgrd34BQF3Smse00yzLMUXFCvU4nJIM0lNnZlMMxlKXfkP_qFfYtoRfCDmLu7l5px7T06OwH5hCwXACUY9Sjm6KB1GaIAjivdAixASd3mM4_1v9SHoVNUShcMxHfRZC6wmpTe5eRHe2AJaDae2dvBReOXg1DtTlqZYwFlhPJxV23LovNFGGpHBO1W7XfJr657fX9_uRbiUmYLTtXA5_DF6mC2sM_4pPwYHWmSV6nzmNphdXT6MbrrjyfXtaDjuSkoj32WaM8ZpKigXSPa11jIlCDM9T4kkSmHW5-GlLEYREmIeUFJhonnM6VxFQtE2OG_m1kUpNmuRZUnpTC7cJsEo2RqWfBkW0KcNunR2VavKJ8tgRBEEJiRGjMSMhnVt0GtQC5GpxBTaeidkiFTlRobf0Cb0h3EUcR5MR4GAGoJ0tqqc0ok0fmdIIJrsbyVnvyj_yP4AlWecVQ |
| CitedBy_id | crossref_primary_10_1080_10426914_2023_2219306 |
| Cites_doi | 10.1016/j.petrol.2021.109328 10.1007/s10064-020-02057-6 10.1016/j.ygeno.2020.07.027 10.1016/j.energy.2017.02.135 10.1016/j.tsep.2018.04.006 10.1016/j.jclepro.2019.117633 10.1016/j.energy.2019.04.030 10.3390/pr9020363 10.1016/j.jcis.2020.01.003 10.1016/j.cjche.2019.12.020 10.1080/01430750.2014.986289 10.1016/j.cogsys.2020.08.011 10.1016/B978-0-12-818634-3.50088-6 10.1016/j.surfin.2020.100699 10.1109/ACCESS.2020.3038021 10.1016/j.jwpe.2021.102012 10.1021/acs.iecr.7b02553 10.1016/j.egypro.2015.07.630 10.3390/en14010167 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/pr10081431 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10.3390/pr10081431 A744992220 10_3390_pr10081431 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c334t-6f96693da39a0c5fffcd2016fbd2c2ee165943167040aab39ace12f9793be4ae3 |
| IEDL.DBID | BENPR |
| ISSN | 2227-9717 |
| IngestDate | Sun Oct 26 03:38:39 EDT 2025 Sat Sep 06 14:16:54 EDT 2025 Mon Oct 20 16:55:55 EDT 2025 Thu Oct 16 04:44:20 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-6f96693da39a0c5fffcd2016fbd2c2ee165943167040aab39ace12f9793be4ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2706276394?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2706276394 |
| PQPubID | 2032344 |
| ParticipantIDs | unpaywall_primary_10_3390_pr10081431 proquest_journals_2706276394 gale_infotracacademiconefile_A744992220 crossref_citationtrail_10_3390_pr10081431 crossref_primary_10_3390_pr10081431 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Fan (ref_12) 2012; 41 Xiang (ref_28) 2020; 45 Wang (ref_19) 2020; 9 Chen (ref_38) 2020; 565 ref_33 Yadav (ref_41) 2020; 64 Li (ref_7) 2019; 19 Zhao (ref_30) 2003; 2003 Ding (ref_22) 2019; 176 Wei (ref_2) 2015; 43 Chardonneaua (ref_10) 2015; 75 Rezaei (ref_21) 2021; 208 ref_18 Toghyani (ref_25) 2015; 37 Pant (ref_40) 2020; 21 Fan (ref_43) 2021; 40 Liu (ref_1) 2015; 44 Yousaf (ref_24) 2020; 8 Soares (ref_32) 2021; 41 Ghritlahre (ref_37) 2018; 6 Song (ref_9) 2017; 48 Gai (ref_13) 2020; 28 Tu (ref_16) 2021; 38 Ling (ref_20) 2021; 40 Li (ref_11) 2017; 33 Yu (ref_15) 2015; 5 Liu (ref_17) 2013; 15 Rostami (ref_42) 2020; 112 Huang (ref_35) 2016; 46 Zhou (ref_23) 2021; 41 Kazemi (ref_4) 2017; 125 Jia (ref_34) 2021; 42 Wang (ref_5) 2018; 47 Wang (ref_39) 2020; 41 Huang (ref_8) 2018; 48 Zahid (ref_3) 2019; 236 Zahid (ref_14) 2019; 46 Deiab (ref_36) 2010; 18 Liu (ref_26) 2021; 80 Fan (ref_31) 2020; 48 Xie (ref_29) 2019; 12 Wang (ref_27) 2020; 37 Ibrahim (ref_6) 2017; 56 |
| References_xml | – volume: 208 start-page: 109328 year: 2021 ident: ref_21 article-title: Modeling of gas viscosity at high pressure-high temperature conditions: Integrating radial basis function neural network with evolutionary algorithms publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109328 – volume: 43 start-page: 73 year: 2015 ident: ref_2 article-title: Optimization and application of water vapor extraction process of tail acid in Puguang Purification Plant publication-title: J. Chem. Eng. – volume: 15 start-page: 63 year: 2013 ident: ref_17 article-title: Catalytic Cracking and PSO-RBF Neural Network Model of FCC Recycle Oil publication-title: J. China Pet. Proc. Petrochem. Technol. – volume: 80 start-page: 2283 year: 2021 ident: ref_26 article-title: Optimized ANN model for predicting rock mass quality ahead of tunnel face using measure-while-drilling data publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-02057-6 – volume: 46 start-page: 40 year: 2016 ident: ref_35 article-title: Analysis and countermeasures of common problems in acid water tank water seal tank of acid water vapor stripping unit publication-title: J. Pet. Refin. Eng. – volume: 112 start-page: 4370 year: 2020 ident: ref_42 article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets publication-title: Genomics doi: 10.1016/j.ygeno.2020.07.027 – volume: 33 start-page: 20 year: 2017 ident: ref_11 article-title: New measures of energy saving and consumption reduction for acid water vapor stripping unit publication-title: J. Technol.-Econ. Petrochem. – volume: 125 start-page: 449 year: 2017 ident: ref_4 article-title: Development of a novel processing system for efficient sour water stripping publication-title: Energy doi: 10.1016/j.energy.2017.02.135 – volume: 44 start-page: 116 year: 2015 ident: ref_1 article-title: Methods to improve the quality of water reuse and reduce energy consumption of acid water vapor extractor publication-title: J. Chem. Eng. Oil Gas – volume: 41 start-page: 6 year: 2021 ident: ref_23 article-title: Prediction of Outlet water Temperature in Intercooling tower Sector Based on GA-BP and PSO-BP Neural Network publication-title: J. Hunan Electr. Power – volume: 6 start-page: 226 year: 2018 ident: ref_37 article-title: Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2018.04.006 – volume: 236 start-page: 117633 year: 2019 ident: ref_3 article-title: Techno-economic evaluation and design development of sour water stripping system in the refineries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.117633 – volume: 176 start-page: 582 year: 2019 ident: ref_22 article-title: The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis publication-title: Energy doi: 10.1016/j.energy.2019.04.030 – ident: ref_33 doi: 10.3390/pr9020363 – volume: 565 start-page: 1 year: 2020 ident: ref_38 article-title: Quantification of interfacial energies associated with membrane fouling in a membrane bioreactor by using BP and GRNN artificial neural networks publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.01.003 – volume: 47 start-page: 177 year: 2018 ident: ref_5 article-title: Process design of raw water pretreatment in acid water stripping unit of refinery publication-title: J. Shandong Chem. Ind. – volume: 37 start-page: 227 year: 2020 ident: ref_27 article-title: Optimization of continuous phase modulation training sequence based on improved PSO publication-title: J. Comput. Appl. Softw. – volume: 28 start-page: 1277 year: 2020 ident: ref_13 article-title: Conceptual design of energy-saving stripping process for industrial sour water publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2019.12.020 – volume: 48 start-page: 73 year: 2020 ident: ref_31 article-title: Energy-saving optimization of acid water stripping unit publication-title: J. Chem. Eng. – volume: 37 start-page: 456 year: 2015 ident: ref_25 article-title: Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2014.986289 – volume: 48 start-page: 79 year: 2017 ident: ref_9 article-title: Analysis on the cause of unqualified acid water vapor extraction in hydrogen production unit and its solution measures publication-title: J. Petroleum Process. Petrochem. – volume: 9 start-page: 1940 year: 2020 ident: ref_19 article-title: Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm publication-title: Energy Storage Sci. Technol. – volume: 64 start-page: 191 year: 2020 ident: ref_41 article-title: PSO-GA based hybrid with Adam Optimization for ANN training with application in Medical Diagnosis publication-title: J. Cogn. Syst. Res. doi: 10.1016/j.cogsys.2020.08.011 – volume: 45 start-page: 70 year: 2020 ident: ref_28 article-title: Optimization of C3+ light hydrocarbon recovery parameters in GSP process based on PSO algorithm publication-title: J. Nat. Gas Chem. Ind. – volume: 38 start-page: 36 year: 2021 ident: ref_16 article-title: Energy saving optimization of Sour water single column pressurized side-line extraction stripping process publication-title: J. Henan Chem. Ind. – volume: 41 start-page: 63 year: 2012 ident: ref_12 article-title: Acid water vapor stripping device production technology publication-title: J. Shandong Chem. Ind. – volume: 46 start-page: 523 year: 2019 ident: ref_14 article-title: Design of a novel sour water stripping unit publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-12-818634-3.50088-6 – volume: 21 start-page: 100699 year: 2020 ident: ref_40 article-title: Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2020.100699 – volume: 41 start-page: 20 year: 2020 ident: ref_39 article-title: Optimization Design of Mine Hoist Control System Parameters Based on Improved PSO publication-title: J. Coal Mine Mach. – volume: 40 start-page: 124 year: 2021 ident: ref_20 article-title: Prediction of Corrosion Rate in Oil Pipeline Based on improved BP Neural Network publication-title: Sens. MicroSystem – volume: 8 start-page: 205696 year: 2020 ident: ref_24 article-title: A Comparative Analysis of Various Controller Techniques for Optimal Control of Smart Nano-Grid Using GA and PSO Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3038021 – volume: 41 start-page: 102012 year: 2021 ident: ref_32 article-title: Influence of operational parameters in sour water stripping process in effluents treatment publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102012 – volume: 18 start-page: 297 year: 2010 ident: ref_36 article-title: Using Artificial Neural Networks to Predict the Fatigue Life of Different Composite Materials Including the Stress Ratio Effect publication-title: Appl. Compos. Mater. – volume: 12 start-page: 78 year: 2019 ident: ref_29 article-title: Simulation of Acid Water Extraction Based on Aspen Plus publication-title: J. Ji Suan Ji Yu Xian Dai Hua – volume: 42 start-page: 72 year: 2021 ident: ref_34 article-title: Simulation Optimization of Acid Water Vapor Extraction Device Based on Aspen Plus publication-title: J. Energy Chem. Ind. – volume: 40 start-page: 3107 year: 2021 ident: ref_43 article-title: Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm publication-title: J. Chem. Prog. – volume: 5 start-page: 1 year: 2015 ident: ref_15 article-title: Process simulation and energy consumption optimization of acid water stripping unit in refinery publication-title: J. Pet. Petrochem. Energy Sav. – volume: 2003 start-page: 56 year: 2003 ident: ref_30 article-title: Introduction of a Useful Industrial Flowsheet Simulation Program, ASPEN PLUS publication-title: J. Power Syst. Eng. – volume: 19 start-page: 48 year: 2019 ident: ref_7 article-title: Process simulation and optimization of acid water stripper publication-title: J. Appl. Technol. – volume: 56 start-page: 11713 year: 2017 ident: ref_6 article-title: Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from claus furnace publication-title: J. Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02553 – volume: 75 start-page: 3071 year: 2015 ident: ref_10 article-title: Role of Toluene and Carbon Dioxide on Sulfur Recovery Efficiency in a Claus Process publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.630 – volume: 48 start-page: 7 year: 2018 ident: ref_8 article-title: Cause analysis and measures of scale formation in single tower acid extraction water vapor stripping unit publication-title: J. Pet. Refin. Eng. – ident: ref_18 doi: 10.3390/en14010167 |
| SSID | ssj0000913856 |
| Score | 2.2070715 |
| Snippet | Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1431 |
| SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Back propagation networks Catalytic cracking Cold Comparative analysis Emissions (Pollution) Emissions control Energy conservation Energy consumption Environmental protection Genetic algorithms Heat Mathematical models Mathematical optimization Neural networks Optimization algorithms Parameter sensitivity Particle swarm optimization Petroleum Petroleum refineries Process parameters Radial basis function Refining Regression analysis Sensitivity analysis United States Vacuum distillation |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7oclAOKihxFUgnkCiHYXd7eh59MhsCISQCyboRT2N3TzcS9-XsrERP_gf_Ib-EqpleXjGGhNNceqp70vX4alL1FcCmNVJpbnTQNjIPRJLKQIvEBZFLnHYxKlFODc4fD-P9vjg4iU78nNOpL6vEVPysctLUpxlITDjQtltpC0N7pzXJ3Yef_ldSh8JnSlHqMSzEEYLxBiz0D4-7X2ik3PzlmpQ0xOS-NSmIy4bk3ApDd53xIjyZjSbq17kaDG5Em73n8HV-zrrI5Pv2rNTb5vcdCscHfMgLeOaRKOvWqrMEj-xoGRZv8BMuw5K3_Cl77-mpt17CjyP0MkPfvsnGjvVQEvuMmLVgvbKoCB9OGWFZVtUjVDvUPBWMqECqR1V7fvHn77HXXNY7V8WQ3RLdHZyOi7Py2_AV9Pd2P-3sB35wQ2DCUJRB7DCJkmGuQqnaJnLOmRyBRux0zg23Fj9XVi346EGU0rjK2A53En2FtkLZcAUao_HIvgYmItQmEyYIOzD1i0LFY6O4Q1ghnU2jtAlb83vMjGc1p-EagwyzG7rz7PrOm7BxtXZSc3n8c9U7UoeMDBwlGeX7FPA8RJWVdRMhiMyXt5uwOteYzFv-NOMJET8j7hNN2LzSov_s9-Z-y97CU06dF1Xt4So0ymJm1xAPlXrd6_wlsEYG5g priority: 102 providerName: Unpaywall |
| Title | Optimization of Sour Water Stripping Unit Using Artificial Neural Network–Particle Swarm Optimization Algorithm |
| URI | https://www.proquest.com/docview/2706276394 https://www.mdpi.com/2227-9717/10/8/1431/pdf?version=1658480218 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxEB5BOLQcqkJbEaDIUpFaDisSr_fvUKG0SoqQCFHTqPS08nrtcMgfm41QLxXvwBvyJJ1xvAGqitPKkjVe7TczHntnvgE41CqRGVeZ11BJ7okoTrxMRMYLTGQyE6IS5VTgfN4NTwfi7DK4XINuVQtDaZWVT7SOOp8quiM_5hER6uJ-Kk5m1x51jaK_q1ULDelaK-SfLcXYOmxwYsaqwcaXdrf3fXXrQiyYcRAueUp9PO8fzwqit8GooflkZ_rXP2_Ci8VkJn_fyNHo0QbUeQ2vXOTIWkuot2BNT7Zh8xGf4DZsOUuds0-OTvroDVxfoFcYu3JLNjWsj5LYT4wxC9YvC0vQMGQUezKbP2BXWPJKMKLusA-bK35_e9dzmsb6N7IYsyeiW6MhfrDyavwWBp32j6-nnmu04CnfF6UXGjz0JH4u_UQ2VGCMUTkGBqHJcq641s0wSGzJPFq8lBnOUrrJTYK2nWkhtf8OapPpRO8AEwGir3wECw9aIvAlD5XkBsOAxOg4iOtwVH3kVDkWcmqGMUrxNEKApA-A1OHDau5syb3x31kfCauUDBIlKenqCvB9iNoqbUVCEPkub9Rhv4IzdZY6Tx_0qg6HK4ifWW_3eSl78JJThYTNEdyHWlks9HuMW8rsANbjzrcDp5I4Ov_TxtGg22v9-gvtcvOW |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROFAOVYGibkuppYIoh4hd20nWB4S2LWj5WxALKrfUcWx62D-yQStufQfepw_TJ2HsdRaoEDdOuVjjyPNlfpyZbwBWtRIypSoNqkpkAY_rIkh5bILQxCY1EYIosw3OR62oec73L8KLKfhb9sLYssrSJjpDnfWVvSPfpLEl1EV_yrcHV4GdGmX_rpYjNKQfrZBtOYox39hxoG9GmMINt_Z-oL7XKN3dOfveDPyUgUAxxosgMhjxC5ZJJmRVhcYYlaFXjEyaUUW1rkWhcP3iCHcpU1yldI0agcBONZeaodxXMMMZF5j8zXzbaZ2cTm55LOtmPYzGvKiMiermILd0Ohil1B55wv_9wRzMXvcG8mYkO50HDm_3LbzxkSppjKE1D1O6twBzD_gLF2DeW4Yh-erpqzcW4eoYrVDXt3eSviFtlER-Ykybk3aRO0KIS2JjXeLqFdwOYx4LYqlC3MPVpv_7c3vikU3aI5l3ySPRjc4lKqj43X0H5y9y5Esw3ev39HsgPES0KYbgwMSOh0zSSElqMOwQRtfDegU2ykNOlGc9t8M3OglmP1Yhyb1CKvBlsnYw5vp4ctW61VViDQBKUtL3MeD7WCqtpBFzbsl-abUCy6U6E28Zhsk9jiuwOlHxM_t9eF7KZ5htnh0dJod7rYOP8Jra7gxXn7gM00V-rT9hzFSkKx6YBH699LdwBzKTLbQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fTxQxEJ8gJioPRFDCKWoTMcrD5u7a7u71wZgLeIIokpxE3tZut8WH-8fekgtvfAe_jR_HT8LMbvcAY3jjaV-aadP5dWbanfkNwKY1SqfcpEHLqCyQcUcFqYxdELrYpS5CEGVU4Pz1INo9kp-Pw-MF-FPXwlBaZW0TS0OdjQ29kTd5TIS66E9l0_m0iMOd3ofJaUAdpOhPa91Oo4LIvj2f4fVt-n5vB3X9hvPex-_bu4HvMBAYIWQRRA6jfSUyLZRumdA5ZzL0iJFLM264te0oVGWtOEJd6xRHGdvmTiGoUyu1FSj3HtyPicWdqtR7n-bvO8S32QmjihFVCNVqTnIi0sH4pH3DB_7rCZbg4dloos9nejC45up6j2HZx6isW4FqBRbsaBWWrjEXrsKKtwlT9s4TV289gdNvaH-GvrCTjR3royT2A6PZnPWLvKSCOGEU5bIyU6GcoWKwYEQSUn7KrPS_F78PPaZZf6bzIbshujs4QXUUv4ZP4ehONnwNFkfjkV0HJkPEmREIC7zSyVBoHhnNHQYcytlO2GnAVr3JifF859R2Y5DgvYcUklwppAGv52MnFcvHf0e9JV0ldPRRktG-ggHXQyRaSTeWkmh-easBG7U6E28TpskVghuwOVfxLfM9u13KK3iAJyD5snew_xwecSrLKBMTN2CxyM_sCwyWivRliUoGP-_6GFwC_-crTg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7oclAOKihxFUgnkCiHYXd7eh59MhsCISQCyboRT2N3TzcS9-XsrERP_gf_Ib-EqpleXjGGhNNceqp70vX4alL1FcCmNVJpbnTQNjIPRJLKQIvEBZFLnHYxKlFODc4fD-P9vjg4iU78nNOpL6vEVPysctLUpxlITDjQtltpC0N7pzXJ3Yef_ldSh8JnSlHqMSzEEYLxBiz0D4-7X2ik3PzlmpQ0xOS-NSmIy4bk3ApDd53xIjyZjSbq17kaDG5Em73n8HV-zrrI5Pv2rNTb5vcdCscHfMgLeOaRKOvWqrMEj-xoGRZv8BMuw5K3_Cl77-mpt17CjyP0MkPfvsnGjvVQEvuMmLVgvbKoCB9OGWFZVtUjVDvUPBWMqECqR1V7fvHn77HXXNY7V8WQ3RLdHZyOi7Py2_AV9Pd2P-3sB35wQ2DCUJRB7DCJkmGuQqnaJnLOmRyBRux0zg23Fj9XVi346EGU0rjK2A53En2FtkLZcAUao_HIvgYmItQmEyYIOzD1i0LFY6O4Q1ghnU2jtAlb83vMjGc1p-EagwyzG7rz7PrOm7BxtXZSc3n8c9U7UoeMDBwlGeX7FPA8RJWVdRMhiMyXt5uwOteYzFv-NOMJET8j7hNN2LzSov_s9-Z-y97CU06dF1Xt4So0ymJm1xAPlXrd6_wlsEYG5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Sour+Water+Stripping+Unit+Using+Artificial+Neural+Network%E2%80%93Particle+Swarm+Optimization+Algorithm&rft.jtitle=Processes&rft.au=Zhang%2C+Ye&rft.au=Fan%2C+Zheng&rft.au=Genhui+Jing&rft.au=Mohammed+Maged+Ahemd+Saif&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=8&rft.spage=1431&rft_id=info:doi/10.3390%2Fpr10081431&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |