Optimization of Sour Water Stripping Unit Using Artificial Neural Network–Particle Swarm Optimization Algorithm

Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission reduction. This paper aims to reduce energy consumption of the unit by strengthening process parameter optimization. Firstly, the basic model i...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 10; no. 8; p. 1431
Main Authors Zhang, Ye, Fan, Zheng, Jing, Genhui, Saif, Mohammed Maged Ahemd
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr10081431

Cover

Abstract Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission reduction. This paper aims to reduce energy consumption of the unit by strengthening process parameter optimization. Firstly, the basic model is established by utilizing Aspen Plus, and the optimal model is determined by comparative analysis of back propagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) models. Then, the sensitivity analysis of Sobol is used to select the operating variables that have a significant influence on the energy consumption of the sour water stripping system. Finally, the particle swarm optimization (PSO) algorithm is used to optimize the operating conditions of the sour water stripping unit. The results show that the RBFNN model is more accurate than other models. Its network structure is 5-66-1, and the expected value has an approximately linear relationship with the output value. Through sensitivity analysis, it is found that each operating parameter has an impact on the sour water stripping process, which needs to be optimized by the PSO algorithm. After 210 iterations of the PSO algorithm, the optimal system energy consumption is obtained. In addition, the cold/hot feed ratio, sideline production position, tower bottom pressure, hot feed temperature, and cold feed temperature are 0.117, 18, 436 kPa, 146 °C, and 35 °C, respectively; the system energy consumption is 5.918 MW. Compared with value of 7.128 MW before optimization, the energy consumption of the system is greatly reduced by 16.97%, which shows that the energy-saving effect is very significant.
AbstractList Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission reduction. This paper aims to reduce energy consumption of the unit by strengthening process parameter optimization. Firstly, the basic model is established by utilizing Aspen Plus, and the optimal model is determined by comparative analysis of back propagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) models. Then, the sensitivity analysis of Sobol is used to select the operating variables that have a significant influence on the energy consumption of the sour water stripping system. Finally, the particle swarm optimization (PSO) algorithm is used to optimize the operating conditions of the sour water stripping unit. The results show that the RBFNN model is more accurate than other models. Its network structure is 5-66-1, and the expected value has an approximately linear relationship with the output value. Through sensitivity analysis, it is found that each operating parameter has an impact on the sour water stripping process, which needs to be optimized by the PSO algorithm. After 210 iterations of the PSO algorithm, the optimal system energy consumption is obtained. In addition, the cold/hot feed ratio, sideline production position, tower bottom pressure, hot feed temperature, and cold feed temperature are 0.117, 18, 436 kPa, 146 °C, and 35 °C, respectively; the system energy consumption is 5.918 MW. Compared with value of 7.128 MW before optimization, the energy consumption of the system is greatly reduced by 16.97%, which shows that the energy-saving effect is very significant.
Audience Academic
Author Saif, Mohammed Maged Ahemd
Jing, Genhui
Zhang, Ye
Fan, Zheng
Author_xml – sequence: 1
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
– sequence: 2
  givenname: Zheng
  surname: Fan
  fullname: Fan, Zheng
– sequence: 3
  givenname: Genhui
  surname: Jing
  fullname: Jing, Genhui
– sequence: 4
  givenname: Mohammed Maged Ahemd
  surname: Saif
  fullname: Saif, Mohammed Maged Ahemd
BookMark eNp9UctKAzEUDaJgrd34BQF3Smse00yzLMUXFCvU4nJIM0lNnZlMMxlKXfkP_qFfYtoRfCDmLu7l5px7T06OwH5hCwXACUY9Sjm6KB1GaIAjivdAixASd3mM4_1v9SHoVNUShcMxHfRZC6wmpTe5eRHe2AJaDae2dvBReOXg1DtTlqZYwFlhPJxV23LovNFGGpHBO1W7XfJr657fX9_uRbiUmYLTtXA5_DF6mC2sM_4pPwYHWmSV6nzmNphdXT6MbrrjyfXtaDjuSkoj32WaM8ZpKigXSPa11jIlCDM9T4kkSmHW5-GlLEYREmIeUFJhonnM6VxFQtE2OG_m1kUpNmuRZUnpTC7cJsEo2RqWfBkW0KcNunR2VavKJ8tgRBEEJiRGjMSMhnVt0GtQC5GpxBTaeidkiFTlRobf0Cb0h3EUcR5MR4GAGoJ0tqqc0ok0fmdIIJrsbyVnvyj_yP4AlWecVQ
CitedBy_id crossref_primary_10_1080_10426914_2023_2219306
Cites_doi 10.1016/j.petrol.2021.109328
10.1007/s10064-020-02057-6
10.1016/j.ygeno.2020.07.027
10.1016/j.energy.2017.02.135
10.1016/j.tsep.2018.04.006
10.1016/j.jclepro.2019.117633
10.1016/j.energy.2019.04.030
10.3390/pr9020363
10.1016/j.jcis.2020.01.003
10.1016/j.cjche.2019.12.020
10.1080/01430750.2014.986289
10.1016/j.cogsys.2020.08.011
10.1016/B978-0-12-818634-3.50088-6
10.1016/j.surfin.2020.100699
10.1109/ACCESS.2020.3038021
10.1016/j.jwpe.2021.102012
10.1021/acs.iecr.7b02553
10.1016/j.egypro.2015.07.630
10.3390/en14010167
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/pr10081431
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10.3390/pr10081431
A744992220
10_3390_pr10081431
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c334t-6f96693da39a0c5fffcd2016fbd2c2ee165943167040aab39ace12f9793be4ae3
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Sun Oct 26 03:38:39 EDT 2025
Sat Sep 06 14:16:54 EDT 2025
Mon Oct 20 16:55:55 EDT 2025
Thu Oct 16 04:44:20 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-6f96693da39a0c5fffcd2016fbd2c2ee165943167040aab39ace12f9793be4ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2706276394?pq-origsite=%requestingapplication%&accountid=15518
PQID 2706276394
PQPubID 2032344
ParticipantIDs unpaywall_primary_10_3390_pr10081431
proquest_journals_2706276394
gale_infotracacademiconefile_A744992220
crossref_citationtrail_10_3390_pr10081431
crossref_primary_10_3390_pr10081431
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fan (ref_12) 2012; 41
Xiang (ref_28) 2020; 45
Wang (ref_19) 2020; 9
Chen (ref_38) 2020; 565
ref_33
Yadav (ref_41) 2020; 64
Li (ref_7) 2019; 19
Zhao (ref_30) 2003; 2003
Ding (ref_22) 2019; 176
Wei (ref_2) 2015; 43
Chardonneaua (ref_10) 2015; 75
Rezaei (ref_21) 2021; 208
ref_18
Toghyani (ref_25) 2015; 37
Pant (ref_40) 2020; 21
Fan (ref_43) 2021; 40
Liu (ref_1) 2015; 44
Yousaf (ref_24) 2020; 8
Soares (ref_32) 2021; 41
Ghritlahre (ref_37) 2018; 6
Song (ref_9) 2017; 48
Gai (ref_13) 2020; 28
Tu (ref_16) 2021; 38
Ling (ref_20) 2021; 40
Li (ref_11) 2017; 33
Yu (ref_15) 2015; 5
Liu (ref_17) 2013; 15
Rostami (ref_42) 2020; 112
Huang (ref_35) 2016; 46
Zhou (ref_23) 2021; 41
Kazemi (ref_4) 2017; 125
Jia (ref_34) 2021; 42
Wang (ref_5) 2018; 47
Wang (ref_39) 2020; 41
Huang (ref_8) 2018; 48
Zahid (ref_3) 2019; 236
Zahid (ref_14) 2019; 46
Deiab (ref_36) 2010; 18
Liu (ref_26) 2021; 80
Fan (ref_31) 2020; 48
Xie (ref_29) 2019; 12
Wang (ref_27) 2020; 37
Ibrahim (ref_6) 2017; 56
References_xml – volume: 208
  start-page: 109328
  year: 2021
  ident: ref_21
  article-title: Modeling of gas viscosity at high pressure-high temperature conditions: Integrating radial basis function neural network with evolutionary algorithms
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109328
– volume: 43
  start-page: 73
  year: 2015
  ident: ref_2
  article-title: Optimization and application of water vapor extraction process of tail acid in Puguang Purification Plant
  publication-title: J. Chem. Eng.
– volume: 15
  start-page: 63
  year: 2013
  ident: ref_17
  article-title: Catalytic Cracking and PSO-RBF Neural Network Model of FCC Recycle Oil
  publication-title: J. China Pet. Proc. Petrochem. Technol.
– volume: 80
  start-page: 2283
  year: 2021
  ident: ref_26
  article-title: Optimized ANN model for predicting rock mass quality ahead of tunnel face using measure-while-drilling data
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-02057-6
– volume: 46
  start-page: 40
  year: 2016
  ident: ref_35
  article-title: Analysis and countermeasures of common problems in acid water tank water seal tank of acid water vapor stripping unit
  publication-title: J. Pet. Refin. Eng.
– volume: 112
  start-page: 4370
  year: 2020
  ident: ref_42
  article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.07.027
– volume: 33
  start-page: 20
  year: 2017
  ident: ref_11
  article-title: New measures of energy saving and consumption reduction for acid water vapor stripping unit
  publication-title: J. Technol.-Econ. Petrochem.
– volume: 125
  start-page: 449
  year: 2017
  ident: ref_4
  article-title: Development of a novel processing system for efficient sour water stripping
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.135
– volume: 44
  start-page: 116
  year: 2015
  ident: ref_1
  article-title: Methods to improve the quality of water reuse and reduce energy consumption of acid water vapor extractor
  publication-title: J. Chem. Eng. Oil Gas
– volume: 41
  start-page: 6
  year: 2021
  ident: ref_23
  article-title: Prediction of Outlet water Temperature in Intercooling tower Sector Based on GA-BP and PSO-BP Neural Network
  publication-title: J. Hunan Electr. Power
– volume: 6
  start-page: 226
  year: 2018
  ident: ref_37
  article-title: Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2018.04.006
– volume: 236
  start-page: 117633
  year: 2019
  ident: ref_3
  article-title: Techno-economic evaluation and design development of sour water stripping system in the refineries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117633
– volume: 176
  start-page: 582
  year: 2019
  ident: ref_22
  article-title: The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.030
– ident: ref_33
  doi: 10.3390/pr9020363
– volume: 565
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Quantification of interfacial energies associated with membrane fouling in a membrane bioreactor by using BP and GRNN artificial neural networks
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.01.003
– volume: 47
  start-page: 177
  year: 2018
  ident: ref_5
  article-title: Process design of raw water pretreatment in acid water stripping unit of refinery
  publication-title: J. Shandong Chem. Ind.
– volume: 37
  start-page: 227
  year: 2020
  ident: ref_27
  article-title: Optimization of continuous phase modulation training sequence based on improved PSO
  publication-title: J. Comput. Appl. Softw.
– volume: 28
  start-page: 1277
  year: 2020
  ident: ref_13
  article-title: Conceptual design of energy-saving stripping process for industrial sour water
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2019.12.020
– volume: 48
  start-page: 73
  year: 2020
  ident: ref_31
  article-title: Energy-saving optimization of acid water stripping unit
  publication-title: J. Chem. Eng.
– volume: 37
  start-page: 456
  year: 2015
  ident: ref_25
  article-title: Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2014.986289
– volume: 48
  start-page: 79
  year: 2017
  ident: ref_9
  article-title: Analysis on the cause of unqualified acid water vapor extraction in hydrogen production unit and its solution measures
  publication-title: J. Petroleum Process. Petrochem.
– volume: 9
  start-page: 1940
  year: 2020
  ident: ref_19
  article-title: Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm
  publication-title: Energy Storage Sci. Technol.
– volume: 64
  start-page: 191
  year: 2020
  ident: ref_41
  article-title: PSO-GA based hybrid with Adam Optimization for ANN training with application in Medical Diagnosis
  publication-title: J. Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2020.08.011
– volume: 45
  start-page: 70
  year: 2020
  ident: ref_28
  article-title: Optimization of C3+ light hydrocarbon recovery parameters in GSP process based on PSO algorithm
  publication-title: J. Nat. Gas Chem. Ind.
– volume: 38
  start-page: 36
  year: 2021
  ident: ref_16
  article-title: Energy saving optimization of Sour water single column pressurized side-line extraction stripping process
  publication-title: J. Henan Chem. Ind.
– volume: 41
  start-page: 63
  year: 2012
  ident: ref_12
  article-title: Acid water vapor stripping device production technology
  publication-title: J. Shandong Chem. Ind.
– volume: 46
  start-page: 523
  year: 2019
  ident: ref_14
  article-title: Design of a novel sour water stripping unit
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-12-818634-3.50088-6
– volume: 21
  start-page: 100699
  year: 2020
  ident: ref_40
  article-title: Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2020.100699
– volume: 41
  start-page: 20
  year: 2020
  ident: ref_39
  article-title: Optimization Design of Mine Hoist Control System Parameters Based on Improved PSO
  publication-title: J. Coal Mine Mach.
– volume: 40
  start-page: 124
  year: 2021
  ident: ref_20
  article-title: Prediction of Corrosion Rate in Oil Pipeline Based on improved BP Neural Network
  publication-title: Sens. MicroSystem
– volume: 8
  start-page: 205696
  year: 2020
  ident: ref_24
  article-title: A Comparative Analysis of Various Controller Techniques for Optimal Control of Smart Nano-Grid Using GA and PSO Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038021
– volume: 41
  start-page: 102012
  year: 2021
  ident: ref_32
  article-title: Influence of operational parameters in sour water stripping process in effluents treatment
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102012
– volume: 18
  start-page: 297
  year: 2010
  ident: ref_36
  article-title: Using Artificial Neural Networks to Predict the Fatigue Life of Different Composite Materials Including the Stress Ratio Effect
  publication-title: Appl. Compos. Mater.
– volume: 12
  start-page: 78
  year: 2019
  ident: ref_29
  article-title: Simulation of Acid Water Extraction Based on Aspen Plus
  publication-title: J. Ji Suan Ji Yu Xian Dai Hua
– volume: 42
  start-page: 72
  year: 2021
  ident: ref_34
  article-title: Simulation Optimization of Acid Water Vapor Extraction Device Based on Aspen Plus
  publication-title: J. Energy Chem. Ind.
– volume: 40
  start-page: 3107
  year: 2021
  ident: ref_43
  article-title: Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm
  publication-title: J. Chem. Prog.
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_15
  article-title: Process simulation and energy consumption optimization of acid water stripping unit in refinery
  publication-title: J. Pet. Petrochem. Energy Sav.
– volume: 2003
  start-page: 56
  year: 2003
  ident: ref_30
  article-title: Introduction of a Useful Industrial Flowsheet Simulation Program, ASPEN PLUS
  publication-title: J. Power Syst. Eng.
– volume: 19
  start-page: 48
  year: 2019
  ident: ref_7
  article-title: Process simulation and optimization of acid water stripper
  publication-title: J. Appl. Technol.
– volume: 56
  start-page: 11713
  year: 2017
  ident: ref_6
  article-title: Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from claus furnace
  publication-title: J. Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02553
– volume: 75
  start-page: 3071
  year: 2015
  ident: ref_10
  article-title: Role of Toluene and Carbon Dioxide on Sulfur Recovery Efficiency in a Claus Process
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.630
– volume: 48
  start-page: 7
  year: 2018
  ident: ref_8
  article-title: Cause analysis and measures of scale formation in single tower acid extraction water vapor stripping unit
  publication-title: J. Pet. Refin. Eng.
– ident: ref_18
  doi: 10.3390/en14010167
SSID ssj0000913856
Score 2.2070715
Snippet Sour water stripping can treat the sour water produced by crude oil processing, which has the effect of environmental protection, energy saving and emission...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1431
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Back propagation networks
Catalytic cracking
Cold
Comparative analysis
Emissions (Pollution)
Emissions control
Energy conservation
Energy consumption
Environmental protection
Genetic algorithms
Heat
Mathematical models
Mathematical optimization
Neural networks
Optimization algorithms
Parameter sensitivity
Particle swarm optimization
Petroleum
Petroleum refineries
Process parameters
Radial basis function
Refining
Regression analysis
Sensitivity analysis
United States
Vacuum distillation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7oclAOKihxFUgnkCiHYXd7eh59MhsCISQCyboRT2N3TzcS9-XsrERP_gf_Ib-EqpleXjGGhNNceqp70vX4alL1FcCmNVJpbnTQNjIPRJLKQIvEBZFLnHYxKlFODc4fD-P9vjg4iU78nNOpL6vEVPysctLUpxlITDjQtltpC0N7pzXJ3Yef_ldSh8JnSlHqMSzEEYLxBiz0D4-7X2ik3PzlmpQ0xOS-NSmIy4bk3ApDd53xIjyZjSbq17kaDG5Em73n8HV-zrrI5Pv2rNTb5vcdCscHfMgLeOaRKOvWqrMEj-xoGRZv8BMuw5K3_Cl77-mpt17CjyP0MkPfvsnGjvVQEvuMmLVgvbKoCB9OGWFZVtUjVDvUPBWMqECqR1V7fvHn77HXXNY7V8WQ3RLdHZyOi7Py2_AV9Pd2P-3sB35wQ2DCUJRB7DCJkmGuQqnaJnLOmRyBRux0zg23Fj9XVi346EGU0rjK2A53En2FtkLZcAUao_HIvgYmItQmEyYIOzD1i0LFY6O4Q1ghnU2jtAlb83vMjGc1p-EagwyzG7rz7PrOm7BxtXZSc3n8c9U7UoeMDBwlGeX7FPA8RJWVdRMhiMyXt5uwOteYzFv-NOMJET8j7hNN2LzSov_s9-Z-y97CU06dF1Xt4So0ymJm1xAPlXrd6_wlsEYG5g
  priority: 102
  providerName: Unpaywall
Title Optimization of Sour Water Stripping Unit Using Artificial Neural Network–Particle Swarm Optimization Algorithm
URI https://www.proquest.com/docview/2706276394
https://www.mdpi.com/2227-9717/10/8/1431/pdf?version=1658480218
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxEB5BOLQcqkJbEaDIUpFaDisSr_fvUKG0SoqQCFHTqPS08nrtcMgfm41QLxXvwBvyJJ1xvAGqitPKkjVe7TczHntnvgE41CqRGVeZ11BJ7okoTrxMRMYLTGQyE6IS5VTgfN4NTwfi7DK4XINuVQtDaZWVT7SOOp8quiM_5hER6uJ-Kk5m1x51jaK_q1ULDelaK-SfLcXYOmxwYsaqwcaXdrf3fXXrQiyYcRAueUp9PO8fzwqit8GooflkZ_rXP2_Ci8VkJn_fyNHo0QbUeQ2vXOTIWkuot2BNT7Zh8xGf4DZsOUuds0-OTvroDVxfoFcYu3JLNjWsj5LYT4wxC9YvC0vQMGQUezKbP2BXWPJKMKLusA-bK35_e9dzmsb6N7IYsyeiW6MhfrDyavwWBp32j6-nnmu04CnfF6UXGjz0JH4u_UQ2VGCMUTkGBqHJcq641s0wSGzJPFq8lBnOUrrJTYK2nWkhtf8OapPpRO8AEwGir3wECw9aIvAlD5XkBsOAxOg4iOtwVH3kVDkWcmqGMUrxNEKApA-A1OHDau5syb3x31kfCauUDBIlKenqCvB9iNoqbUVCEPkub9Rhv4IzdZY6Tx_0qg6HK4ifWW_3eSl78JJThYTNEdyHWlks9HuMW8rsANbjzrcDp5I4Ov_TxtGg22v9-gvtcvOW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROFAOVYGibkuppYIoh4hd20nWB4S2LWj5WxALKrfUcWx62D-yQStufQfepw_TJ2HsdRaoEDdOuVjjyPNlfpyZbwBWtRIypSoNqkpkAY_rIkh5bILQxCY1EYIosw3OR62oec73L8KLKfhb9sLYssrSJjpDnfWVvSPfpLEl1EV_yrcHV4GdGmX_rpYjNKQfrZBtOYox39hxoG9GmMINt_Z-oL7XKN3dOfveDPyUgUAxxosgMhjxC5ZJJmRVhcYYlaFXjEyaUUW1rkWhcP3iCHcpU1yldI0agcBONZeaodxXMMMZF5j8zXzbaZ2cTm55LOtmPYzGvKiMiermILd0Ohil1B55wv_9wRzMXvcG8mYkO50HDm_3LbzxkSppjKE1D1O6twBzD_gLF2DeW4Yh-erpqzcW4eoYrVDXt3eSviFtlER-Ykybk3aRO0KIS2JjXeLqFdwOYx4LYqlC3MPVpv_7c3vikU3aI5l3ySPRjc4lKqj43X0H5y9y5Esw3ev39HsgPES0KYbgwMSOh0zSSElqMOwQRtfDegU2ykNOlGc9t8M3OglmP1Yhyb1CKvBlsnYw5vp4ctW61VViDQBKUtL3MeD7WCqtpBFzbsl-abUCy6U6E28Zhsk9jiuwOlHxM_t9eF7KZ5htnh0dJod7rYOP8Jra7gxXn7gM00V-rT9hzFSkKx6YBH699LdwBzKTLbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fTxQxEJ8gJioPRFDCKWoTMcrD5u7a7u71wZgLeIIokpxE3tZut8WH-8fekgtvfAe_jR_HT8LMbvcAY3jjaV-aadP5dWbanfkNwKY1SqfcpEHLqCyQcUcFqYxdELrYpS5CEGVU4Pz1INo9kp-Pw-MF-FPXwlBaZW0TS0OdjQ29kTd5TIS66E9l0_m0iMOd3ofJaUAdpOhPa91Oo4LIvj2f4fVt-n5vB3X9hvPex-_bu4HvMBAYIWQRRA6jfSUyLZRumdA5ZzL0iJFLM264te0oVGWtOEJd6xRHGdvmTiGoUyu1FSj3HtyPicWdqtR7n-bvO8S32QmjihFVCNVqTnIi0sH4pH3DB_7rCZbg4dloos9nejC45up6j2HZx6isW4FqBRbsaBWWrjEXrsKKtwlT9s4TV289gdNvaH-GvrCTjR3royT2A6PZnPWLvKSCOGEU5bIyU6GcoWKwYEQSUn7KrPS_F78PPaZZf6bzIbshujs4QXUUv4ZP4ehONnwNFkfjkV0HJkPEmREIC7zSyVBoHhnNHQYcytlO2GnAVr3JifF859R2Y5DgvYcUklwppAGv52MnFcvHf0e9JV0ldPRRktG-ggHXQyRaSTeWkmh-easBG7U6E28TpskVghuwOVfxLfM9u13KK3iAJyD5snew_xwecSrLKBMTN2CxyM_sCwyWivRliUoGP-_6GFwC_-crTg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7oclAOKihxFUgnkCiHYXd7eh59MhsCISQCyboRT2N3TzcS9-XsrERP_gf_Ib-EqpleXjGGhNNceqp70vX4alL1FcCmNVJpbnTQNjIPRJLKQIvEBZFLnHYxKlFODc4fD-P9vjg4iU78nNOpL6vEVPysctLUpxlITDjQtltpC0N7pzXJ3Yef_ldSh8JnSlHqMSzEEYLxBiz0D4-7X2ik3PzlmpQ0xOS-NSmIy4bk3ApDd53xIjyZjSbq17kaDG5Em73n8HV-zrrI5Pv2rNTb5vcdCscHfMgLeOaRKOvWqrMEj-xoGRZv8BMuw5K3_Cl77-mpt17CjyP0MkPfvsnGjvVQEvuMmLVgvbKoCB9OGWFZVtUjVDvUPBWMqECqR1V7fvHn77HXXNY7V8WQ3RLdHZyOi7Py2_AV9Pd2P-3sB35wQ2DCUJRB7DCJkmGuQqnaJnLOmRyBRux0zg23Fj9XVi346EGU0rjK2A53En2FtkLZcAUao_HIvgYmItQmEyYIOzD1i0LFY6O4Q1ghnU2jtAlb83vMjGc1p-EagwyzG7rz7PrOm7BxtXZSc3n8c9U7UoeMDBwlGeX7FPA8RJWVdRMhiMyXt5uwOteYzFv-NOMJET8j7hNN2LzSov_s9-Z-y97CU06dF1Xt4So0ymJm1xAPlXrd6_wlsEYG5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Sour+Water+Stripping+Unit+Using+Artificial+Neural+Network%E2%80%93Particle+Swarm+Optimization+Algorithm&rft.jtitle=Processes&rft.au=Zhang%2C+Ye&rft.au=Fan%2C+Zheng&rft.au=Genhui+Jing&rft.au=Mohammed+Maged+Ahemd+Saif&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=8&rft.spage=1431&rft_id=info:doi/10.3390%2Fpr10081431&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon