Governing convergence of Max-sum on DCOPs through damping and splitting
Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does no...
Saved in:
| Published in | Artificial intelligence Vol. 279; pp. 103212 - 22 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.02.2020
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0004-3702 1872-7921 |
| DOI | 10.1016/j.artint.2019.103212 |
Cover
| Abstract | Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does not converge and explores low quality solutions. Recent attempts to address this limitation proposed versions of Max-sum that guarantee convergence, while ignoring some of the problem's constraints. Damping is a method that is often used for increasing the chances that Belief Propagation will converge. That being said, it has not been suggested for inclusion in the algorithms that propose Max-sum for solving DCOPs.
In this paper we advance the research on incomplete-inference DCOP algorithms by: 1) investigating the effect of damping on Max-sum. We prove that, while damping slows down the propagation of information among agents, on tree-structured graphs, Max-sum with damping is guaranteed to converge to the optimal solution in weakly polynomial time; and 2) proposing a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split into two function-nodes, we can control the level of asymmetry for each constraint.
Our empirical results demonstrate a drastic improvement in the performance of Max-sum when using damping (referred to herein as Damped Max-sum, DMS). However, in contrast to the common assumption that Max-sum performs best when converging, we demonstrate that non converging versions perform efficient exploration, and produce high quality results, when implemented within an anytime framework. On most standard benchmarks, the best results were achieved using versions with a high damping factor, which outperformed existing incomplete DCOP algorithms. In addition, our results imply that by applying DMS to SCFGs with a minor level of asymmetry, we can find high quality solutions within a small number of iterations, even without using an anytime framework. We prove that for a factor graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution. We further demonstrate that for an asymmetric split, convergence is not guaranteed. |
|---|---|
| AbstractList | Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does not converge and explores low quality solutions. Recent attempts to address this limitation proposed versions of Max-sum that guarantee convergence, while ignoring some of the problem's constraints. Damping is a method that is often used for increasing the chances that Belief Propagation will converge. That being said, it has not been suggested for inclusion in the algorithms that propose Max-sum for solving DCOPs. In this paper we advance the research on incomplete-inference DCOP algorithms by: 1) investigating the effect of damping on Max-sum. We prove that, while damping slows down the propagation of information among agents, on tree-structured graphs, Max-sum with damping is guaranteed to converge to the optimal solution in weakly polynomial time; and 2) proposing a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split into two function-nodes, we can control the level of asymmetry for each constraint. Our empirical results demonstrate a drastic improvement in the performance of Max-sum when using damping (referred to herein as Damped Max-sum, DMS). However, in contrast to the common assumption that Max-sum performs best when converging, we demonstrate that non converging versions perform efficient exploration, and produce high quality results, when implemented within an anytime framework. On most standard benchmarks, the best results were achieved using versions with a high damping factor, which outperformed existing incomplete DCOP algorithms. In addition, our results imply that by applying DMS to SCFGs with a minor level of asymmetry, we can find high quality solutions within a small number of iterations, even without using an anytime framework. We prove that for a factor graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution. We further demonstrate that for an asymmetric split, convergence is not guaranteed. Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does not converge and explores low quality solutions. Recent attempts to address this limitation proposed versions of Max-sum that guarantee convergence, while ignoring some of the problem's constraints. Damping is a method that is often used for increasing the chances that Belief Propagation will converge. That being said, it has not been suggested for inclusion in the algorithms that propose Max-sum for solving DCOPs. In this paper we advance the research on incomplete-inference DCOP algorithms by: 1) investigating the effect of damping on Max-sum. We prove that, while damping slows down the propagation of information among agents, on tree-structured graphs, Max-sum with damping is guaranteed to converge to the optimal solution in weakly polynomial time; and 2) proposing a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split into two function-nodes, we can control the level of asymmetry for each constraint. Our empirical results demonstrate a drastic improvement in the performance of Max-sum when using damping (referred to herein as Damped Max-sum, DMS). However, in contrast to the common assumption that Max-sum performs best when converging, we demonstrate that non converging versions perform efficient exploration, and produce high quality results, when implemented within an anytime framework. On most standard benchmarks, the best results were achieved using versions with a high damping factor, which outperformed existing incomplete DCOP algorithms. In addition, our results imply that by applying DMS to SCFGs with a minor level of asymmetry, we can find high quality solutions within a small number of iterations, even without using an anytime framework. We prove that for a factor graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution. We further demonstrate that for an asymmetric split, convergence is not guaranteed. |
| ArticleNumber | 103212 |
| Author | Cohen, Liel Galiki, Rotem Zivan, Roie |
| Author_xml | – sequence: 1 givenname: Liel surname: Cohen fullname: Cohen, Liel email: lielc@bgu.ac.il – sequence: 2 givenname: Rotem surname: Galiki fullname: Galiki, Rotem email: rosha@bgu.ac.il – sequence: 3 givenname: Roie surname: Zivan fullname: Zivan, Roie email: zivanr@bgu.ac.il |
| BookMark | eNqFkDtPwzAUhS1UJErhHzBYYk7xCzthQEIFClJRGWC2HMdJHbV2sZ0K_j2JwsQA033onHt0v1Mwcd4ZAC4wmmOE-VU7VyFZl-YE4aJfUYLJEZjiXJBMFARPwBQhxDIqEDkBpzG2_UiLAk_BcukPJjjrGqi969vGOG2gr-GL-sxit4PewfvF-jXCtAm-azawUrv9oFeugnG_tamPbs7Aca220Zz_1Bl4f3x4Wzxlq_XyeXG3yjSlLGXclLUSlSJFzrkWFAtVsjqvGcU117wkhihRcop5gctcUK4rXRjE6XXFMC4MnYHL8e4--I_OxCRb3wXXR0rCaC4wYyzvVTejSgcfYzC11DapZL1LQdmtxEgO4GQrR3ByACdHcL2Z_TLvg92p8PWf7Xa0mf79gzVBRm0HmJUNRidZefv3gW-o6Ysq |
| CitedBy_id | crossref_primary_10_1016_j_artint_2024_104243 crossref_primary_10_1007_s10458_020_09464_9 crossref_primary_10_1007_s10458_021_09511_z crossref_primary_10_1007_s10489_022_03992_5 crossref_primary_10_3390_app14031290 crossref_primary_10_1007_s10462_022_10288_0 crossref_primary_10_1007_s10458_024_09643_y crossref_primary_10_1007_s10458_023_09621_w crossref_primary_10_1016_j_engappai_2023_107074 crossref_primary_10_1016_j_artint_2023_103916 |
| Cites_doi | 10.1613/jair.2591 10.1007/s10458-010-9132-7 10.1016/j.artint.2014.03.002 10.1109/18.825794 10.1109/18.910572 10.1613/jair.2849 10.1162/089976600300015880 10.1016/j.artint.2004.09.003 10.1093/comjnl/bxq022 10.1007/s10458-017-9360-1 10.1007/s10458-018-9395-y 10.1109/TIT.2013.2259576 10.1016/j.artint.2004.10.004 10.1016/j.artint.2010.11.001 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 2020 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.artint.2019.103212 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7921 |
| EndPage | 22 |
| ExternalDocumentID | 10_1016_j_artint_2019_103212 S0004370219302061 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 6TJ 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAKPC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACWUS ACZNC ADBBV ADEZE ADMUD AEBSH AECPX AEFWE AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE IXB J1W JJJVA KOM KQ8 LG9 LY7 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 TR2 TWZ UPT UQL VQA WH7 WUQ XFK XJE XJT XPP XSW ZMT ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c334t-6ebfa7da29866c7317ab4f8f431f6c6b2e2a7b631691b8736cdc9e0635d4119e3 |
| IEDL.DBID | .~1 |
| ISSN | 0004-3702 |
| IngestDate | Mon Jul 14 07:50:49 EDT 2025 Wed Oct 01 05:21:20 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Fri Feb 23 02:49:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed Constraint Optimization Max-sum Incomplete inference algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-6ebfa7da29866c7317ab4f8f431f6c6b2e2a7b631691b8736cdc9e0635d4119e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2438714448 |
| PQPubID | 2038285 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2438714448 crossref_citationtrail_10_1016_j_artint_2019_103212 crossref_primary_10_1016_j_artint_2019_103212 elsevier_sciencedirect_doi_10_1016_j_artint_2019_103212 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Artificial intelligence |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Okamoto, Zivan, Nahon (br0280) 2016 Rogers, Farinelli, Stranders, Jennings (br0230) 2011; 175 Ruozzi, Tatikonda (br0330) 2013; 59 Modi, Shen, Tambe, Yokoo (br0010) 2005; 161 Pretti (br0220) 2005; 11 Farinelli, Rogers, Petcu, Jennings (br0390) 2008 Pacheco, Sudderth (br0310) 2015 Kiekintveld, Yin, Kumar, Tambe (br0400) 2010 Gershman, Meisels, Zivan (br0030) 2009; 34 Teacy, Farinelli, Grabham, Padhy, Rogers, Jennings (br0140) 2008 Tarlow, Givoni, Zemel, Frey (br0210) 2011 Murphy, Weiss, Jordan (br0250) 1999 Som (br0260) 2010 Petcu, Faltings (br0080) 2005; vol. 3709 Ihler, McAllester (br0300) 2009 Chen, Deng, Wu, He (br0130) 2018; 32 Rust, Picard, Ramparany (br0160) 2016 Dueck (br0270) 2009 Ramchurn, Farinelli, Macarthur, Jennings (br0150) 2010; 53 Yeoh, Felner, Koenig (br0040) 2010; 38 Farinelli, Rogers, Petcu, Jennings (br0090) 2008 Weiss (br0380) 2000; 12 Yanover, Meltzer, Weiss (br0170) 2006; 7 Som, Chockalingam (br0200) 2010 Zivan, Parash, Cohen, Peled, Okamoto (br0350) 2017; 31 Aji, McEliece (br0120) 2000; 46 Pearl (br0420) 1988 Verman, Stutz (br0290) 2014 Yedidsion, Zivan, Farinelli (br0370) 2014 Vinyals, Rodríguez-Aguilar, Cerquides (br0110) 2011; 22 Sontag, Meltzer, Globerson, Jaakkola, Weiss (br0360) 2008 DiMaio, Shavlik (br0410) 2006 Cohen, Zivan (br0430) 2017 Maheswaran, Pearce, Tambe (br0050) 2004 Stranders, Farinelli, Rogers, Jennings (br0100) 2009 Zivan, Peled (br0240) 2012 Kschischang, Frey, Loeliger (br0340) 2001; 47 Rebeschini, Tatikonda (br0320) 2017 Petcu, Faltings (br0020) 2005 Zhang, Xing, Wang, Wittenburg (br0060) 2005; 161 Zivan, Okamoto, Peled (br0070) 2014; 212 Lazic, Frey, Aarabi (br0190) 2010 Zivan, Parash, Naveh (br0180) 2015 Aji (10.1016/j.artint.2019.103212_br0120) 2000; 46 Kschischang (10.1016/j.artint.2019.103212_br0340) 2001; 47 Farinelli (10.1016/j.artint.2019.103212_br0390) 2008 Zhang (10.1016/j.artint.2019.103212_br0060) 2005; 161 Modi (10.1016/j.artint.2019.103212_br0010) 2005; 161 Murphy (10.1016/j.artint.2019.103212_br0250) 1999 Zivan (10.1016/j.artint.2019.103212_br0350) 2017; 31 Pearl (10.1016/j.artint.2019.103212_br0420) 1988 Petcu (10.1016/j.artint.2019.103212_br0020) 2005 Petcu (10.1016/j.artint.2019.103212_br0080) 2005; vol. 3709 Ramchurn (10.1016/j.artint.2019.103212_br0150) 2010; 53 DiMaio (10.1016/j.artint.2019.103212_br0410) 2006 Gershman (10.1016/j.artint.2019.103212_br0030) 2009; 34 Vinyals (10.1016/j.artint.2019.103212_br0110) 2011; 22 Maheswaran (10.1016/j.artint.2019.103212_br0050) 2004 Ruozzi (10.1016/j.artint.2019.103212_br0330) 2013; 59 Farinelli (10.1016/j.artint.2019.103212_br0090) 2008 Zivan (10.1016/j.artint.2019.103212_br0240) 2012 Zivan (10.1016/j.artint.2019.103212_br0180) 2015 Kiekintveld (10.1016/j.artint.2019.103212_br0400) 2010 Ihler (10.1016/j.artint.2019.103212_br0300) 2009 Lazic (10.1016/j.artint.2019.103212_br0190) 2010 Rogers (10.1016/j.artint.2019.103212_br0230) 2011; 175 Cohen (10.1016/j.artint.2019.103212_br0430) 2017 Yedidsion (10.1016/j.artint.2019.103212_br0370) 2014 Som (10.1016/j.artint.2019.103212_br0200) 2010 Rebeschini (10.1016/j.artint.2019.103212_br0320) 2017 Pacheco (10.1016/j.artint.2019.103212_br0310) 2015 Dueck (10.1016/j.artint.2019.103212_br0270) 2009 Yeoh (10.1016/j.artint.2019.103212_br0040) 2010; 38 Chen (10.1016/j.artint.2019.103212_br0130) 2018; 32 Tarlow (10.1016/j.artint.2019.103212_br0210) 2011 Som (10.1016/j.artint.2019.103212_br0260) 2010 Weiss (10.1016/j.artint.2019.103212_br0380) 2000; 12 Sontag (10.1016/j.artint.2019.103212_br0360) 2008 Stranders (10.1016/j.artint.2019.103212_br0100) 2009 Rust (10.1016/j.artint.2019.103212_br0160) 2016 Okamoto (10.1016/j.artint.2019.103212_br0280) 2016 Yanover (10.1016/j.artint.2019.103212_br0170) 2006; 7 Zivan (10.1016/j.artint.2019.103212_br0070) 2014; 212 Pretti (10.1016/j.artint.2019.103212_br0220) 2005; 11 Verman (10.1016/j.artint.2019.103212_br0290) 2014 Teacy (10.1016/j.artint.2019.103212_br0140) 2008 |
| References_xml | – volume: 38 start-page: 85 year: 2010 end-page: 133 ident: br0040 article-title: BnB-adopt: an asynchronous branch-and-bound DCOP algorithm publication-title: J. Artif. Intell. Res. (JAIR) – start-page: 639 year: 2008 end-page: 646 ident: br0390 article-title: Decentralised coordination of low-power embedded devices using the max-sum algorithm publication-title: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2, International Foundation for Autonomous Agents and Multiagent Systems – volume: 59 start-page: 5860 year: 2013 end-page: 5881 ident: br0330 article-title: Message-passing algorithms: reparameterizations and splittings publication-title: IEEE Trans. Inf. Theory – year: 1988 ident: br0420 article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference – start-page: 503 year: 2008 end-page: 510 ident: br0360 article-title: Tightening LP relaxations for MAP using message passing publication-title: UAI – volume: 34 start-page: 25 year: 2009 end-page: 46 ident: br0030 article-title: Asynchronous forward bounding publication-title: J. Artif. Intell. Res. – start-page: 549 year: 2014 end-page: 556 ident: br0370 article-title: Explorative max-sum for teams of mobile sensing agents publication-title: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS '14 – start-page: 299 year: 2009 end-page: 304 ident: br0100 article-title: Decentralised coordination of mobile sensors using the max-sum algorithm publication-title: Proceedings of the 21st International Joint Conference on Artificial Intelligence – start-page: 1697 year: 2008 end-page: 1698 ident: br0140 article-title: Max-sum decentralized coordination for sensor systems publication-title: AAMAS – start-page: 468 year: 2016 end-page: 474 ident: br0160 article-title: Using message-passing DCOP algorithms to solve energy-efficient smart environment configuration problems publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence – volume: 11 year: 2005 ident: br0220 article-title: A message-passing algorithm with damping publication-title: J. Stat. Mech. Theory Exp. – start-page: 2200 year: 2015 end-page: 2208 ident: br0310 article-title: Proteins, particles, and pseudo-max-marginals: a submodular approach publication-title: Proceedings of the 32nd International Conference on Machine Learning – start-page: 432 year: 2004 end-page: 439 ident: br0050 article-title: Distributed algorithms for DCOP: a graphical-game-based approach publication-title: PDCS – volume: 32 start-page: 822 year: 2018 end-page: 860 ident: br0130 article-title: A class of iterative refined max-sum algorithms via non-consecutive value propagation strategies publication-title: Auton. Agents Multi-Agent Syst. – year: 2009 ident: br0270 article-title: Affinity propagation: clustering data by passing messages – volume: 53 start-page: 1447 year: 2010 end-page: 1461 ident: br0150 article-title: Decentralized coordination in robocup rescue publication-title: Comput. J. – volume: 161 start-page: 149 year: 2005 end-page: 180 ident: br0010 article-title: Adopt: asynchronous distributed constraints optimization with quality guarantees publication-title: Artif. Intell. – start-page: 467 year: 1999 end-page: 475 ident: br0250 article-title: Loopy belief propagation for approximate inference: an empirical study publication-title: UAI '99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence – start-page: 1505 year: 2017 end-page: 1507 ident: br0430 article-title: Max-sum revisited: the real power of damping publication-title: Workshop on Multi Agent Optimization (OptMAS) at AAMAS 2017 – volume: 12 start-page: 1 year: 2000 end-page: 41 ident: br0380 article-title: Correctness of local probability propagation in graphical models with loops publication-title: Neural Comput. – start-page: 1 year: 2010 end-page: 5 ident: br0200 article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels publication-title: 2010 IEEE International Conference on Communications (ICC) – start-page: 447 year: 2016 end-page: 453 ident: br0280 article-title: Distributed breakout: beyond satisfaction publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence – volume: 47 start-page: 181 year: 2001 end-page: 208 ident: br0340 article-title: Factor graphs and the sum-product algorithm publication-title: IEEE Trans. Inf. Theory – start-page: 639 year: 2008 end-page: 646 ident: br0090 article-title: Decentralized coordination of low-power embedded devices using the max-sum algorithm publication-title: AAMAS – volume: 212 start-page: 1 year: 2014 end-page: 26 ident: br0070 article-title: Explorative anytime local search for distributed constraint optimization publication-title: Artif. Intell. – start-page: 256 year: 2009 end-page: 263 ident: br0300 article-title: Particle belief propagation publication-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics – start-page: 1374 year: 2017 end-page: 1384 ident: br0320 article-title: Accelerated consensus via min-sum splitting publication-title: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 – volume: 175 start-page: 730 year: 2011 end-page: 759 ident: br0230 article-title: Bounded approximate decentralized coordination via the max-sum algorithm publication-title: Artif. Intell. – volume: 7 start-page: 1887 year: 2006 end-page: 1907 ident: br0170 article-title: Linear programming relaxations and belief propagation – an empirical study publication-title: J. Mach. Learn. Res. – start-page: 133 year: 2010 end-page: 140 ident: br0400 article-title: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds publication-title: AAMAS – start-page: 265 year: 2012 end-page: 272 ident: br0240 article-title: Max/min-sum distributed constraint optimization through value propagation on an alternating DAG publication-title: AAMAS – year: 2014 ident: br0290 article-title: Solving distributed constraint optimization problems using ranks publication-title: AAAI Workshop: Statistical Relational Artificial Intelligence – year: 2011 ident: br0210 article-title: Graph cuts is a max-product algorithm publication-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence – start-page: 266 year: 2005 end-page: 271 ident: br0020 article-title: A scalable method for multiagent constraint optimization publication-title: IJCAI – start-page: 1 year: 2010 end-page: 5 ident: br0260 article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels publication-title: 2010 IEEE International Conference on Communications (ICC) – volume: 22 start-page: 439 year: 2011 end-page: 464 ident: br0110 article-title: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law publication-title: Auton. Agents Multi-Agent Syst. – start-page: 845 year: 2006 end-page: 850 ident: br0410 article-title: Belief propagation in large, highly connected graphs for 3d part-based object recognition publication-title: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006) – volume: 46 start-page: 325 year: 2000 end-page: 343 ident: br0120 article-title: The generalized distributive law publication-title: IEEE Trans. Inf. Theory – start-page: 429 year: 2010 end-page: 436 ident: br0190 article-title: Solving the uncapacitated facility location problem using message passing algorithms publication-title: International Conference on Artificial Intelligence and Statistics – start-page: 432 year: 2015 end-page: 439 ident: br0180 article-title: Applying max-sum to asymmetric distributed constraint optimization publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence – volume: 161 start-page: 55 year: 2005 end-page: 88 ident: br0060 article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraints optimization problems in sensor networks publication-title: Artif. Intell. – volume: vol. 3709 start-page: 802 year: 2005 end-page: 806 ident: br0080 article-title: Approximations in distributed optimization publication-title: CP 2005 – volume: 31 start-page: 1165 year: 2017 end-page: 1207 ident: br0350 article-title: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization publication-title: Auton. Agents Multi-Agent Syst. – start-page: 468 year: 2016 ident: 10.1016/j.artint.2019.103212_br0160 article-title: Using message-passing DCOP algorithms to solve energy-efficient smart environment configuration problems – volume: 7 start-page: 1887 year: 2006 ident: 10.1016/j.artint.2019.103212_br0170 article-title: Linear programming relaxations and belief propagation – an empirical study publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 25 year: 2009 ident: 10.1016/j.artint.2019.103212_br0030 article-title: Asynchronous forward bounding publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2591 – start-page: 1374 year: 2017 ident: 10.1016/j.artint.2019.103212_br0320 article-title: Accelerated consensus via min-sum splitting – start-page: 549 year: 2014 ident: 10.1016/j.artint.2019.103212_br0370 article-title: Explorative max-sum for teams of mobile sensing agents – start-page: 1697 year: 2008 ident: 10.1016/j.artint.2019.103212_br0140 article-title: Max-sum decentralized coordination for sensor systems – start-page: 429 year: 2010 ident: 10.1016/j.artint.2019.103212_br0190 article-title: Solving the uncapacitated facility location problem using message passing algorithms – volume: 22 start-page: 439 issue: 3 year: 2011 ident: 10.1016/j.artint.2019.103212_br0110 article-title: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law publication-title: Auton. Agents Multi-Agent Syst. doi: 10.1007/s10458-010-9132-7 – volume: 11 year: 2005 ident: 10.1016/j.artint.2019.103212_br0220 article-title: A message-passing algorithm with damping publication-title: J. Stat. Mech. Theory Exp. – start-page: 2200 year: 2015 ident: 10.1016/j.artint.2019.103212_br0310 article-title: Proteins, particles, and pseudo-max-marginals: a submodular approach – volume: 212 start-page: 1 year: 2014 ident: 10.1016/j.artint.2019.103212_br0070 article-title: Explorative anytime local search for distributed constraint optimization publication-title: Artif. Intell. doi: 10.1016/j.artint.2014.03.002 – start-page: 265 year: 2012 ident: 10.1016/j.artint.2019.103212_br0240 article-title: Max/min-sum distributed constraint optimization through value propagation on an alternating DAG – volume: 46 start-page: 325 issue: 2 year: 2000 ident: 10.1016/j.artint.2019.103212_br0120 article-title: The generalized distributive law publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.825794 – volume: 47 start-page: 181 issue: 2 year: 2001 ident: 10.1016/j.artint.2019.103212_br0340 article-title: Factor graphs and the sum-product algorithm publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.910572 – volume: vol. 3709 start-page: 802 year: 2005 ident: 10.1016/j.artint.2019.103212_br0080 article-title: Approximations in distributed optimization – start-page: 467 year: 1999 ident: 10.1016/j.artint.2019.103212_br0250 article-title: Loopy belief propagation for approximate inference: an empirical study – volume: 38 start-page: 85 year: 2010 ident: 10.1016/j.artint.2019.103212_br0040 article-title: BnB-adopt: an asynchronous branch-and-bound DCOP algorithm publication-title: J. Artif. Intell. Res. (JAIR) doi: 10.1613/jair.2849 – volume: 12 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.artint.2019.103212_br0380 article-title: Correctness of local probability propagation in graphical models with loops publication-title: Neural Comput. doi: 10.1162/089976600300015880 – start-page: 639 year: 2008 ident: 10.1016/j.artint.2019.103212_br0390 article-title: Decentralised coordination of low-power embedded devices using the max-sum algorithm – year: 2009 ident: 10.1016/j.artint.2019.103212_br0270 – start-page: 432 year: 2004 ident: 10.1016/j.artint.2019.103212_br0050 article-title: Distributed algorithms for DCOP: a graphical-game-based approach – volume: 161 start-page: 149 issue: 1–2 year: 2005 ident: 10.1016/j.artint.2019.103212_br0010 article-title: Adopt: asynchronous distributed constraints optimization with quality guarantees publication-title: Artif. Intell. doi: 10.1016/j.artint.2004.09.003 – start-page: 266 year: 2005 ident: 10.1016/j.artint.2019.103212_br0020 article-title: A scalable method for multiagent constraint optimization – start-page: 432 year: 2015 ident: 10.1016/j.artint.2019.103212_br0180 article-title: Applying max-sum to asymmetric distributed constraint optimization – start-page: 447 year: 2016 ident: 10.1016/j.artint.2019.103212_br0280 article-title: Distributed breakout: beyond satisfaction – start-page: 845 year: 2006 ident: 10.1016/j.artint.2019.103212_br0410 article-title: Belief propagation in large, highly connected graphs for 3d part-based object recognition – start-page: 503 year: 2008 ident: 10.1016/j.artint.2019.103212_br0360 article-title: Tightening LP relaxations for MAP using message passing – volume: 53 start-page: 1447 issue: 9 year: 2010 ident: 10.1016/j.artint.2019.103212_br0150 article-title: Decentralized coordination in robocup rescue publication-title: Comput. J. doi: 10.1093/comjnl/bxq022 – year: 2014 ident: 10.1016/j.artint.2019.103212_br0290 article-title: Solving distributed constraint optimization problems using ranks – volume: 31 start-page: 1165 issue: 5 year: 2017 ident: 10.1016/j.artint.2019.103212_br0350 article-title: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization publication-title: Auton. Agents Multi-Agent Syst. doi: 10.1007/s10458-017-9360-1 – start-page: 639 year: 2008 ident: 10.1016/j.artint.2019.103212_br0090 article-title: Decentralized coordination of low-power embedded devices using the max-sum algorithm – volume: 32 start-page: 822 issue: 6 year: 2018 ident: 10.1016/j.artint.2019.103212_br0130 article-title: A class of iterative refined max-sum algorithms via non-consecutive value propagation strategies publication-title: Auton. Agents Multi-Agent Syst. doi: 10.1007/s10458-018-9395-y – start-page: 1505 year: 2017 ident: 10.1016/j.artint.2019.103212_br0430 article-title: Max-sum revisited: the real power of damping – volume: 59 start-page: 5860 issue: 9 year: 2013 ident: 10.1016/j.artint.2019.103212_br0330 article-title: Message-passing algorithms: reparameterizations and splittings publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2013.2259576 – start-page: 1 year: 2010 ident: 10.1016/j.artint.2019.103212_br0200 article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels – year: 2011 ident: 10.1016/j.artint.2019.103212_br0210 article-title: Graph cuts is a max-product algorithm – start-page: 256 year: 2009 ident: 10.1016/j.artint.2019.103212_br0300 article-title: Particle belief propagation – start-page: 133 year: 2010 ident: 10.1016/j.artint.2019.103212_br0400 article-title: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds – year: 1988 ident: 10.1016/j.artint.2019.103212_br0420 – volume: 161 start-page: 55 issue: 1–2 year: 2005 ident: 10.1016/j.artint.2019.103212_br0060 article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraints optimization problems in sensor networks publication-title: Artif. Intell. doi: 10.1016/j.artint.2004.10.004 – start-page: 299 year: 2009 ident: 10.1016/j.artint.2019.103212_br0100 article-title: Decentralised coordination of mobile sensors using the max-sum algorithm – start-page: 1 year: 2010 ident: 10.1016/j.artint.2019.103212_br0260 article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels – volume: 175 start-page: 730 issue: 2 year: 2011 ident: 10.1016/j.artint.2019.103212_br0230 article-title: Bounded approximate decentralized coordination via the max-sum algorithm publication-title: Artif. Intell. doi: 10.1016/j.artint.2010.11.001 |
| SSID | ssj0003991 |
| Score | 2.4386415 |
| Snippet | Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103212 |
| SubjectTerms | Algorithms Asymmetry Benchmarks Convergence Damping Distributed Constraint Optimization Exploration Graphical representations Incomplete inference algorithms Max-sum Polynomials Propagation |
| Title | Governing convergence of Max-sum on DCOPs through damping and splitting |
| URI | https://dx.doi.org/10.1016/j.artint.2019.103212 https://www.proquest.com/docview/2438714448 |
| Volume | 279 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7921 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1872-7921 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7921 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-7921 dateEnd: 20211031 omitProxy: true ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Open Access Journals (Elsevier) customDbUrl: eissn: 1872-7921 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7921 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: AKRWK dateStart: 19700301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXrz4LVZrycFrrJukye6xVmurtHqw0FtIdrNQ0W2xFTz5251ks4qCFDzukizLZDLzBt6bQegs4jYGFM4I0ywlvGMY0VxrYjiVMmMMKgKndx6NxWDCb6edaQ31Ki2Mo1WG2F_GdB-tw5t2sGZ7MZs5ja_rywM5KmGAeXwJxLl0UwzOP75pHpCAw9Q8TtzqSj7nOV5eqe8YlVHi1Oc0on-lp1-B2mef_g7aCrARd8s_20U1W-yh7WokAw43dB_dlLNzIR9hzyf30kqL5zke6XcCXofnBb7q3T8scZjQgzP94jRTWBcZXgIk9UToAzTpXz_2BiTMSiApGHRFhDW5lpmmSSxEKgEVaMPzOAd8kItUGGqplkYw1xvHxJKJNEsTC_ikk_EoSiw7RPViXtgjp-K2uTXC8CTjXF_k2nVBg0pW04413KQNxCoTqTQ0EnfzLJ5VxRh7UqVhlTOsKg3bQORr16JspLFmvaysr344hIJYv2ZnszosFS7kUlHOoDTk4HrH__7wCdqkrtr2nO0mqq9e3-wpQJKVaXmfa6GN7vBuMIan4fTyE1Ji4KY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1FD3rxW6xWzcFrrJtks92jVGvVtnpoobeQZLNQ0W2xFTz5251ks4qCFLwuye4ymcy8gfdmEDqLuG0BCmeEKWYIjzUjiitFNKdJkjEGFYHTO_cHojvid-N4XEPtSgvjaJUh9pcx3Ufr8KQZrNmcTSZO4-v68kCOShlgHlcCrfIYvgBOff7xzfOADBzG5nHillf6OU_y8lJ9R6mMUic_pxH9Kz_9itQ-_XS20EbAjfiy_LVtVLPFDtqsZjLgcEV30U05PBcSEvaEcq-ttHia4756J-B2eFrgq_bD4xyHET04Uy9ONIVVkeE5YFLPhN5Do871sN0lYVgCMWDRBRFW5yrJFE1bQpgEYIHSPG_lABByYYSmlqpEC-aa4-hWwoTJTGoBoMQZj6LUsn20UkwLe-Bk3Da3WmieZpyri1y5NmhQyioaW821qSNWmUia0EncDbR4lhVl7EmWhpXOsLI0bB2Rr12zspPGkvVJZX35wyMkBPslOxvVYclwI-eScga1IQffO_z3i0_RWnfY78ne7eD-CK1TV3p7AncDrSxe3-wx4JOFPvH-9wlZ0uE3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Governing+convergence+of+Max-sum+on+DCOPs+through+damping+and+splitting&rft.jtitle=Artificial+intelligence&rft.au=Cohen%2C+Liel&rft.au=Galiki%2C+Rotem&rft.au=Zivan%2C+Roie&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=279&rft_id=info:doi/10.1016%2Fj.artint.2019.103212&rft.externalDocID=S0004370219302061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon |