Governing convergence of Max-sum on DCOPs through damping and splitting

Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does no...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence Vol. 279; pp. 103212 - 22
Main Authors Cohen, Liel, Galiki, Rotem, Zivan, Roie
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0004-3702
1872-7921
DOI10.1016/j.artint.2019.103212

Cover

Abstract Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does not converge and explores low quality solutions. Recent attempts to address this limitation proposed versions of Max-sum that guarantee convergence, while ignoring some of the problem's constraints. Damping is a method that is often used for increasing the chances that Belief Propagation will converge. That being said, it has not been suggested for inclusion in the algorithms that propose Max-sum for solving DCOPs. In this paper we advance the research on incomplete-inference DCOP algorithms by: 1) investigating the effect of damping on Max-sum. We prove that, while damping slows down the propagation of information among agents, on tree-structured graphs, Max-sum with damping is guaranteed to converge to the optimal solution in weakly polynomial time; and 2) proposing a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split into two function-nodes, we can control the level of asymmetry for each constraint. Our empirical results demonstrate a drastic improvement in the performance of Max-sum when using damping (referred to herein as Damped Max-sum, DMS). However, in contrast to the common assumption that Max-sum performs best when converging, we demonstrate that non converging versions perform efficient exploration, and produce high quality results, when implemented within an anytime framework. On most standard benchmarks, the best results were achieved using versions with a high damping factor, which outperformed existing incomplete DCOP algorithms. In addition, our results imply that by applying DMS to SCFGs with a minor level of asymmetry, we can find high quality solutions within a small number of iterations, even without using an anytime framework. We prove that for a factor graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution. We further demonstrate that for an asymmetric split, convergence is not guaranteed.
AbstractList Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does not converge and explores low quality solutions. Recent attempts to address this limitation proposed versions of Max-sum that guarantee convergence, while ignoring some of the problem's constraints. Damping is a method that is often used for increasing the chances that Belief Propagation will converge. That being said, it has not been suggested for inclusion in the algorithms that propose Max-sum for solving DCOPs. In this paper we advance the research on incomplete-inference DCOP algorithms by: 1) investigating the effect of damping on Max-sum. We prove that, while damping slows down the propagation of information among agents, on tree-structured graphs, Max-sum with damping is guaranteed to converge to the optimal solution in weakly polynomial time; and 2) proposing a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split into two function-nodes, we can control the level of asymmetry for each constraint. Our empirical results demonstrate a drastic improvement in the performance of Max-sum when using damping (referred to herein as Damped Max-sum, DMS). However, in contrast to the common assumption that Max-sum performs best when converging, we demonstrate that non converging versions perform efficient exploration, and produce high quality results, when implemented within an anytime framework. On most standard benchmarks, the best results were achieved using versions with a high damping factor, which outperformed existing incomplete DCOP algorithms. In addition, our results imply that by applying DMS to SCFGs with a minor level of asymmetry, we can find high quality solutions within a small number of iterations, even without using an anytime framework. We prove that for a factor graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution. We further demonstrate that for an asymmetric split, convergence is not guaranteed.
Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time. Unfortunately, when the constraint graph representing the problem includes multiple cycles (as in many standard DCOP benchmarks), Max-sum does not converge and explores low quality solutions. Recent attempts to address this limitation proposed versions of Max-sum that guarantee convergence, while ignoring some of the problem's constraints. Damping is a method that is often used for increasing the chances that Belief Propagation will converge. That being said, it has not been suggested for inclusion in the algorithms that propose Max-sum for solving DCOPs. In this paper we advance the research on incomplete-inference DCOP algorithms by: 1) investigating the effect of damping on Max-sum. We prove that, while damping slows down the propagation of information among agents, on tree-structured graphs, Max-sum with damping is guaranteed to converge to the optimal solution in weakly polynomial time; and 2) proposing a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split into two function-nodes, we can control the level of asymmetry for each constraint. Our empirical results demonstrate a drastic improvement in the performance of Max-sum when using damping (referred to herein as Damped Max-sum, DMS). However, in contrast to the common assumption that Max-sum performs best when converging, we demonstrate that non converging versions perform efficient exploration, and produce high quality results, when implemented within an anytime framework. On most standard benchmarks, the best results were achieved using versions with a high damping factor, which outperformed existing incomplete DCOP algorithms. In addition, our results imply that by applying DMS to SCFGs with a minor level of asymmetry, we can find high quality solutions within a small number of iterations, even without using an anytime framework. We prove that for a factor graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution. We further demonstrate that for an asymmetric split, convergence is not guaranteed.
ArticleNumber 103212
Author Cohen, Liel
Galiki, Rotem
Zivan, Roie
Author_xml – sequence: 1
  givenname: Liel
  surname: Cohen
  fullname: Cohen, Liel
  email: lielc@bgu.ac.il
– sequence: 2
  givenname: Rotem
  surname: Galiki
  fullname: Galiki, Rotem
  email: rosha@bgu.ac.il
– sequence: 3
  givenname: Roie
  surname: Zivan
  fullname: Zivan, Roie
  email: zivanr@bgu.ac.il
BookMark eNqFkDtPwzAUhS1UJErhHzBYYk7xCzthQEIFClJRGWC2HMdJHbV2sZ0K_j2JwsQA033onHt0v1Mwcd4ZAC4wmmOE-VU7VyFZl-YE4aJfUYLJEZjiXJBMFARPwBQhxDIqEDkBpzG2_UiLAk_BcukPJjjrGqi969vGOG2gr-GL-sxit4PewfvF-jXCtAm-azawUrv9oFeugnG_tamPbs7Aca220Zz_1Bl4f3x4Wzxlq_XyeXG3yjSlLGXclLUSlSJFzrkWFAtVsjqvGcU117wkhihRcop5gctcUK4rXRjE6XXFMC4MnYHL8e4--I_OxCRb3wXXR0rCaC4wYyzvVTejSgcfYzC11DapZL1LQdmtxEgO4GQrR3ByACdHcL2Z_TLvg92p8PWf7Xa0mf79gzVBRm0HmJUNRidZefv3gW-o6Ysq
CitedBy_id crossref_primary_10_1016_j_artint_2024_104243
crossref_primary_10_1007_s10458_020_09464_9
crossref_primary_10_1007_s10458_021_09511_z
crossref_primary_10_1007_s10489_022_03992_5
crossref_primary_10_3390_app14031290
crossref_primary_10_1007_s10462_022_10288_0
crossref_primary_10_1007_s10458_024_09643_y
crossref_primary_10_1007_s10458_023_09621_w
crossref_primary_10_1016_j_engappai_2023_107074
crossref_primary_10_1016_j_artint_2023_103916
Cites_doi 10.1613/jair.2591
10.1007/s10458-010-9132-7
10.1016/j.artint.2014.03.002
10.1109/18.825794
10.1109/18.910572
10.1613/jair.2849
10.1162/089976600300015880
10.1016/j.artint.2004.09.003
10.1093/comjnl/bxq022
10.1007/s10458-017-9360-1
10.1007/s10458-018-9395-y
10.1109/TIT.2013.2259576
10.1016/j.artint.2004.10.004
10.1016/j.artint.2010.11.001
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.artint.2019.103212
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7921
EndPage 22
ExternalDocumentID 10_1016_j_artint_2019_103212
S0004370219302061
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-6ebfa7da29866c7317ab4f8f431f6c6b2e2a7b631691b8736cdc9e0635d4119e3
IEDL.DBID .~1
ISSN 0004-3702
IngestDate Mon Jul 14 07:50:49 EDT 2025
Wed Oct 01 05:21:20 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Fri Feb 23 02:49:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed Constraint Optimization
Max-sum
Incomplete inference algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-6ebfa7da29866c7317ab4f8f431f6c6b2e2a7b631691b8736cdc9e0635d4119e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2438714448
PQPubID 2038285
PageCount 22
ParticipantIDs proquest_journals_2438714448
crossref_citationtrail_10_1016_j_artint_2019_103212
crossref_primary_10_1016_j_artint_2019_103212
elsevier_sciencedirect_doi_10_1016_j_artint_2019_103212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Artificial intelligence
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Okamoto, Zivan, Nahon (br0280) 2016
Rogers, Farinelli, Stranders, Jennings (br0230) 2011; 175
Ruozzi, Tatikonda (br0330) 2013; 59
Modi, Shen, Tambe, Yokoo (br0010) 2005; 161
Pretti (br0220) 2005; 11
Farinelli, Rogers, Petcu, Jennings (br0390) 2008
Pacheco, Sudderth (br0310) 2015
Kiekintveld, Yin, Kumar, Tambe (br0400) 2010
Gershman, Meisels, Zivan (br0030) 2009; 34
Teacy, Farinelli, Grabham, Padhy, Rogers, Jennings (br0140) 2008
Tarlow, Givoni, Zemel, Frey (br0210) 2011
Murphy, Weiss, Jordan (br0250) 1999
Som (br0260) 2010
Petcu, Faltings (br0080) 2005; vol. 3709
Ihler, McAllester (br0300) 2009
Chen, Deng, Wu, He (br0130) 2018; 32
Rust, Picard, Ramparany (br0160) 2016
Dueck (br0270) 2009
Ramchurn, Farinelli, Macarthur, Jennings (br0150) 2010; 53
Yeoh, Felner, Koenig (br0040) 2010; 38
Farinelli, Rogers, Petcu, Jennings (br0090) 2008
Weiss (br0380) 2000; 12
Yanover, Meltzer, Weiss (br0170) 2006; 7
Som, Chockalingam (br0200) 2010
Zivan, Parash, Cohen, Peled, Okamoto (br0350) 2017; 31
Aji, McEliece (br0120) 2000; 46
Pearl (br0420) 1988
Verman, Stutz (br0290) 2014
Yedidsion, Zivan, Farinelli (br0370) 2014
Vinyals, Rodríguez-Aguilar, Cerquides (br0110) 2011; 22
Sontag, Meltzer, Globerson, Jaakkola, Weiss (br0360) 2008
DiMaio, Shavlik (br0410) 2006
Cohen, Zivan (br0430) 2017
Maheswaran, Pearce, Tambe (br0050) 2004
Stranders, Farinelli, Rogers, Jennings (br0100) 2009
Zivan, Peled (br0240) 2012
Kschischang, Frey, Loeliger (br0340) 2001; 47
Rebeschini, Tatikonda (br0320) 2017
Petcu, Faltings (br0020) 2005
Zhang, Xing, Wang, Wittenburg (br0060) 2005; 161
Zivan, Okamoto, Peled (br0070) 2014; 212
Lazic, Frey, Aarabi (br0190) 2010
Zivan, Parash, Naveh (br0180) 2015
Aji (10.1016/j.artint.2019.103212_br0120) 2000; 46
Kschischang (10.1016/j.artint.2019.103212_br0340) 2001; 47
Farinelli (10.1016/j.artint.2019.103212_br0390) 2008
Zhang (10.1016/j.artint.2019.103212_br0060) 2005; 161
Modi (10.1016/j.artint.2019.103212_br0010) 2005; 161
Murphy (10.1016/j.artint.2019.103212_br0250) 1999
Zivan (10.1016/j.artint.2019.103212_br0350) 2017; 31
Pearl (10.1016/j.artint.2019.103212_br0420) 1988
Petcu (10.1016/j.artint.2019.103212_br0020) 2005
Petcu (10.1016/j.artint.2019.103212_br0080) 2005; vol. 3709
Ramchurn (10.1016/j.artint.2019.103212_br0150) 2010; 53
DiMaio (10.1016/j.artint.2019.103212_br0410) 2006
Gershman (10.1016/j.artint.2019.103212_br0030) 2009; 34
Vinyals (10.1016/j.artint.2019.103212_br0110) 2011; 22
Maheswaran (10.1016/j.artint.2019.103212_br0050) 2004
Ruozzi (10.1016/j.artint.2019.103212_br0330) 2013; 59
Farinelli (10.1016/j.artint.2019.103212_br0090) 2008
Zivan (10.1016/j.artint.2019.103212_br0240) 2012
Zivan (10.1016/j.artint.2019.103212_br0180) 2015
Kiekintveld (10.1016/j.artint.2019.103212_br0400) 2010
Ihler (10.1016/j.artint.2019.103212_br0300) 2009
Lazic (10.1016/j.artint.2019.103212_br0190) 2010
Rogers (10.1016/j.artint.2019.103212_br0230) 2011; 175
Cohen (10.1016/j.artint.2019.103212_br0430) 2017
Yedidsion (10.1016/j.artint.2019.103212_br0370) 2014
Som (10.1016/j.artint.2019.103212_br0200) 2010
Rebeschini (10.1016/j.artint.2019.103212_br0320) 2017
Pacheco (10.1016/j.artint.2019.103212_br0310) 2015
Dueck (10.1016/j.artint.2019.103212_br0270) 2009
Yeoh (10.1016/j.artint.2019.103212_br0040) 2010; 38
Chen (10.1016/j.artint.2019.103212_br0130) 2018; 32
Tarlow (10.1016/j.artint.2019.103212_br0210) 2011
Som (10.1016/j.artint.2019.103212_br0260) 2010
Weiss (10.1016/j.artint.2019.103212_br0380) 2000; 12
Sontag (10.1016/j.artint.2019.103212_br0360) 2008
Stranders (10.1016/j.artint.2019.103212_br0100) 2009
Rust (10.1016/j.artint.2019.103212_br0160) 2016
Okamoto (10.1016/j.artint.2019.103212_br0280) 2016
Yanover (10.1016/j.artint.2019.103212_br0170) 2006; 7
Zivan (10.1016/j.artint.2019.103212_br0070) 2014; 212
Pretti (10.1016/j.artint.2019.103212_br0220) 2005; 11
Verman (10.1016/j.artint.2019.103212_br0290) 2014
Teacy (10.1016/j.artint.2019.103212_br0140) 2008
References_xml – volume: 38
  start-page: 85
  year: 2010
  end-page: 133
  ident: br0040
  article-title: BnB-adopt: an asynchronous branch-and-bound DCOP algorithm
  publication-title: J. Artif. Intell. Res. (JAIR)
– start-page: 639
  year: 2008
  end-page: 646
  ident: br0390
  article-title: Decentralised coordination of low-power embedded devices using the max-sum algorithm
  publication-title: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2, International Foundation for Autonomous Agents and Multiagent Systems
– volume: 59
  start-page: 5860
  year: 2013
  end-page: 5881
  ident: br0330
  article-title: Message-passing algorithms: reparameterizations and splittings
  publication-title: IEEE Trans. Inf. Theory
– year: 1988
  ident: br0420
  article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
– start-page: 503
  year: 2008
  end-page: 510
  ident: br0360
  article-title: Tightening LP relaxations for MAP using message passing
  publication-title: UAI
– volume: 34
  start-page: 25
  year: 2009
  end-page: 46
  ident: br0030
  article-title: Asynchronous forward bounding
  publication-title: J. Artif. Intell. Res.
– start-page: 549
  year: 2014
  end-page: 556
  ident: br0370
  article-title: Explorative max-sum for teams of mobile sensing agents
  publication-title: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS '14
– start-page: 299
  year: 2009
  end-page: 304
  ident: br0100
  article-title: Decentralised coordination of mobile sensors using the max-sum algorithm
  publication-title: Proceedings of the 21st International Joint Conference on Artificial Intelligence
– start-page: 1697
  year: 2008
  end-page: 1698
  ident: br0140
  article-title: Max-sum decentralized coordination for sensor systems
  publication-title: AAMAS
– start-page: 468
  year: 2016
  end-page: 474
  ident: br0160
  article-title: Using message-passing DCOP algorithms to solve energy-efficient smart environment configuration problems
  publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
– volume: 11
  year: 2005
  ident: br0220
  article-title: A message-passing algorithm with damping
  publication-title: J. Stat. Mech. Theory Exp.
– start-page: 2200
  year: 2015
  end-page: 2208
  ident: br0310
  article-title: Proteins, particles, and pseudo-max-marginals: a submodular approach
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
– start-page: 432
  year: 2004
  end-page: 439
  ident: br0050
  article-title: Distributed algorithms for DCOP: a graphical-game-based approach
  publication-title: PDCS
– volume: 32
  start-page: 822
  year: 2018
  end-page: 860
  ident: br0130
  article-title: A class of iterative refined max-sum algorithms via non-consecutive value propagation strategies
  publication-title: Auton. Agents Multi-Agent Syst.
– year: 2009
  ident: br0270
  article-title: Affinity propagation: clustering data by passing messages
– volume: 53
  start-page: 1447
  year: 2010
  end-page: 1461
  ident: br0150
  article-title: Decentralized coordination in robocup rescue
  publication-title: Comput. J.
– volume: 161
  start-page: 149
  year: 2005
  end-page: 180
  ident: br0010
  article-title: Adopt: asynchronous distributed constraints optimization with quality guarantees
  publication-title: Artif. Intell.
– start-page: 467
  year: 1999
  end-page: 475
  ident: br0250
  article-title: Loopy belief propagation for approximate inference: an empirical study
  publication-title: UAI '99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
– start-page: 1505
  year: 2017
  end-page: 1507
  ident: br0430
  article-title: Max-sum revisited: the real power of damping
  publication-title: Workshop on Multi Agent Optimization (OptMAS) at AAMAS 2017
– volume: 12
  start-page: 1
  year: 2000
  end-page: 41
  ident: br0380
  article-title: Correctness of local probability propagation in graphical models with loops
  publication-title: Neural Comput.
– start-page: 1
  year: 2010
  end-page: 5
  ident: br0200
  article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels
  publication-title: 2010 IEEE International Conference on Communications (ICC)
– start-page: 447
  year: 2016
  end-page: 453
  ident: br0280
  article-title: Distributed breakout: beyond satisfaction
  publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
– volume: 47
  start-page: 181
  year: 2001
  end-page: 208
  ident: br0340
  article-title: Factor graphs and the sum-product algorithm
  publication-title: IEEE Trans. Inf. Theory
– start-page: 639
  year: 2008
  end-page: 646
  ident: br0090
  article-title: Decentralized coordination of low-power embedded devices using the max-sum algorithm
  publication-title: AAMAS
– volume: 212
  start-page: 1
  year: 2014
  end-page: 26
  ident: br0070
  article-title: Explorative anytime local search for distributed constraint optimization
  publication-title: Artif. Intell.
– start-page: 256
  year: 2009
  end-page: 263
  ident: br0300
  article-title: Particle belief propagation
  publication-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics
– start-page: 1374
  year: 2017
  end-page: 1384
  ident: br0320
  article-title: Accelerated consensus via min-sum splitting
  publication-title: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017
– volume: 175
  start-page: 730
  year: 2011
  end-page: 759
  ident: br0230
  article-title: Bounded approximate decentralized coordination via the max-sum algorithm
  publication-title: Artif. Intell.
– volume: 7
  start-page: 1887
  year: 2006
  end-page: 1907
  ident: br0170
  article-title: Linear programming relaxations and belief propagation – an empirical study
  publication-title: J. Mach. Learn. Res.
– start-page: 133
  year: 2010
  end-page: 140
  ident: br0400
  article-title: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds
  publication-title: AAMAS
– start-page: 265
  year: 2012
  end-page: 272
  ident: br0240
  article-title: Max/min-sum distributed constraint optimization through value propagation on an alternating DAG
  publication-title: AAMAS
– year: 2014
  ident: br0290
  article-title: Solving distributed constraint optimization problems using ranks
  publication-title: AAAI Workshop: Statistical Relational Artificial Intelligence
– year: 2011
  ident: br0210
  article-title: Graph cuts is a max-product algorithm
  publication-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence
– start-page: 266
  year: 2005
  end-page: 271
  ident: br0020
  article-title: A scalable method for multiagent constraint optimization
  publication-title: IJCAI
– start-page: 1
  year: 2010
  end-page: 5
  ident: br0260
  article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels
  publication-title: 2010 IEEE International Conference on Communications (ICC)
– volume: 22
  start-page: 439
  year: 2011
  end-page: 464
  ident: br0110
  article-title: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law
  publication-title: Auton. Agents Multi-Agent Syst.
– start-page: 845
  year: 2006
  end-page: 850
  ident: br0410
  article-title: Belief propagation in large, highly connected graphs for 3d part-based object recognition
  publication-title: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006)
– volume: 46
  start-page: 325
  year: 2000
  end-page: 343
  ident: br0120
  article-title: The generalized distributive law
  publication-title: IEEE Trans. Inf. Theory
– start-page: 429
  year: 2010
  end-page: 436
  ident: br0190
  article-title: Solving the uncapacitated facility location problem using message passing algorithms
  publication-title: International Conference on Artificial Intelligence and Statistics
– start-page: 432
  year: 2015
  end-page: 439
  ident: br0180
  article-title: Applying max-sum to asymmetric distributed constraint optimization
  publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
– volume: 161
  start-page: 55
  year: 2005
  end-page: 88
  ident: br0060
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraints optimization problems in sensor networks
  publication-title: Artif. Intell.
– volume: vol. 3709
  start-page: 802
  year: 2005
  end-page: 806
  ident: br0080
  article-title: Approximations in distributed optimization
  publication-title: CP 2005
– volume: 31
  start-page: 1165
  year: 2017
  end-page: 1207
  ident: br0350
  article-title: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization
  publication-title: Auton. Agents Multi-Agent Syst.
– start-page: 468
  year: 2016
  ident: 10.1016/j.artint.2019.103212_br0160
  article-title: Using message-passing DCOP algorithms to solve energy-efficient smart environment configuration problems
– volume: 7
  start-page: 1887
  year: 2006
  ident: 10.1016/j.artint.2019.103212_br0170
  article-title: Linear programming relaxations and belief propagation – an empirical study
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 25
  year: 2009
  ident: 10.1016/j.artint.2019.103212_br0030
  article-title: Asynchronous forward bounding
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2591
– start-page: 1374
  year: 2017
  ident: 10.1016/j.artint.2019.103212_br0320
  article-title: Accelerated consensus via min-sum splitting
– start-page: 549
  year: 2014
  ident: 10.1016/j.artint.2019.103212_br0370
  article-title: Explorative max-sum for teams of mobile sensing agents
– start-page: 1697
  year: 2008
  ident: 10.1016/j.artint.2019.103212_br0140
  article-title: Max-sum decentralized coordination for sensor systems
– start-page: 429
  year: 2010
  ident: 10.1016/j.artint.2019.103212_br0190
  article-title: Solving the uncapacitated facility location problem using message passing algorithms
– volume: 22
  start-page: 439
  issue: 3
  year: 2011
  ident: 10.1016/j.artint.2019.103212_br0110
  article-title: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law
  publication-title: Auton. Agents Multi-Agent Syst.
  doi: 10.1007/s10458-010-9132-7
– volume: 11
  year: 2005
  ident: 10.1016/j.artint.2019.103212_br0220
  article-title: A message-passing algorithm with damping
  publication-title: J. Stat. Mech. Theory Exp.
– start-page: 2200
  year: 2015
  ident: 10.1016/j.artint.2019.103212_br0310
  article-title: Proteins, particles, and pseudo-max-marginals: a submodular approach
– volume: 212
  start-page: 1
  year: 2014
  ident: 10.1016/j.artint.2019.103212_br0070
  article-title: Explorative anytime local search for distributed constraint optimization
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2014.03.002
– start-page: 265
  year: 2012
  ident: 10.1016/j.artint.2019.103212_br0240
  article-title: Max/min-sum distributed constraint optimization through value propagation on an alternating DAG
– volume: 46
  start-page: 325
  issue: 2
  year: 2000
  ident: 10.1016/j.artint.2019.103212_br0120
  article-title: The generalized distributive law
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.825794
– volume: 47
  start-page: 181
  issue: 2
  year: 2001
  ident: 10.1016/j.artint.2019.103212_br0340
  article-title: Factor graphs and the sum-product algorithm
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.910572
– volume: vol. 3709
  start-page: 802
  year: 2005
  ident: 10.1016/j.artint.2019.103212_br0080
  article-title: Approximations in distributed optimization
– start-page: 467
  year: 1999
  ident: 10.1016/j.artint.2019.103212_br0250
  article-title: Loopy belief propagation for approximate inference: an empirical study
– volume: 38
  start-page: 85
  year: 2010
  ident: 10.1016/j.artint.2019.103212_br0040
  article-title: BnB-adopt: an asynchronous branch-and-bound DCOP algorithm
  publication-title: J. Artif. Intell. Res. (JAIR)
  doi: 10.1613/jair.2849
– volume: 12
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.artint.2019.103212_br0380
  article-title: Correctness of local probability propagation in graphical models with loops
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015880
– start-page: 639
  year: 2008
  ident: 10.1016/j.artint.2019.103212_br0390
  article-title: Decentralised coordination of low-power embedded devices using the max-sum algorithm
– year: 2009
  ident: 10.1016/j.artint.2019.103212_br0270
– start-page: 432
  year: 2004
  ident: 10.1016/j.artint.2019.103212_br0050
  article-title: Distributed algorithms for DCOP: a graphical-game-based approach
– volume: 161
  start-page: 149
  issue: 1–2
  year: 2005
  ident: 10.1016/j.artint.2019.103212_br0010
  article-title: Adopt: asynchronous distributed constraints optimization with quality guarantees
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2004.09.003
– start-page: 266
  year: 2005
  ident: 10.1016/j.artint.2019.103212_br0020
  article-title: A scalable method for multiagent constraint optimization
– start-page: 432
  year: 2015
  ident: 10.1016/j.artint.2019.103212_br0180
  article-title: Applying max-sum to asymmetric distributed constraint optimization
– start-page: 447
  year: 2016
  ident: 10.1016/j.artint.2019.103212_br0280
  article-title: Distributed breakout: beyond satisfaction
– start-page: 845
  year: 2006
  ident: 10.1016/j.artint.2019.103212_br0410
  article-title: Belief propagation in large, highly connected graphs for 3d part-based object recognition
– start-page: 503
  year: 2008
  ident: 10.1016/j.artint.2019.103212_br0360
  article-title: Tightening LP relaxations for MAP using message passing
– volume: 53
  start-page: 1447
  issue: 9
  year: 2010
  ident: 10.1016/j.artint.2019.103212_br0150
  article-title: Decentralized coordination in robocup rescue
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxq022
– year: 2014
  ident: 10.1016/j.artint.2019.103212_br0290
  article-title: Solving distributed constraint optimization problems using ranks
– volume: 31
  start-page: 1165
  issue: 5
  year: 2017
  ident: 10.1016/j.artint.2019.103212_br0350
  article-title: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization
  publication-title: Auton. Agents Multi-Agent Syst.
  doi: 10.1007/s10458-017-9360-1
– start-page: 639
  year: 2008
  ident: 10.1016/j.artint.2019.103212_br0090
  article-title: Decentralized coordination of low-power embedded devices using the max-sum algorithm
– volume: 32
  start-page: 822
  issue: 6
  year: 2018
  ident: 10.1016/j.artint.2019.103212_br0130
  article-title: A class of iterative refined max-sum algorithms via non-consecutive value propagation strategies
  publication-title: Auton. Agents Multi-Agent Syst.
  doi: 10.1007/s10458-018-9395-y
– start-page: 1505
  year: 2017
  ident: 10.1016/j.artint.2019.103212_br0430
  article-title: Max-sum revisited: the real power of damping
– volume: 59
  start-page: 5860
  issue: 9
  year: 2013
  ident: 10.1016/j.artint.2019.103212_br0330
  article-title: Message-passing algorithms: reparameterizations and splittings
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2259576
– start-page: 1
  year: 2010
  ident: 10.1016/j.artint.2019.103212_br0200
  article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels
– year: 2011
  ident: 10.1016/j.artint.2019.103212_br0210
  article-title: Graph cuts is a max-product algorithm
– start-page: 256
  year: 2009
  ident: 10.1016/j.artint.2019.103212_br0300
  article-title: Particle belief propagation
– start-page: 133
  year: 2010
  ident: 10.1016/j.artint.2019.103212_br0400
  article-title: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds
– year: 1988
  ident: 10.1016/j.artint.2019.103212_br0420
– volume: 161
  start-page: 55
  issue: 1–2
  year: 2005
  ident: 10.1016/j.artint.2019.103212_br0060
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraints optimization problems in sensor networks
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2004.10.004
– start-page: 299
  year: 2009
  ident: 10.1016/j.artint.2019.103212_br0100
  article-title: Decentralised coordination of mobile sensors using the max-sum algorithm
– start-page: 1
  year: 2010
  ident: 10.1016/j.artint.2019.103212_br0260
  article-title: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels
– volume: 175
  start-page: 730
  issue: 2
  year: 2011
  ident: 10.1016/j.artint.2019.103212_br0230
  article-title: Bounded approximate decentralized coordination via the max-sum algorithm
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2010.11.001
SSID ssj0003991
Score 2.4386415
Snippet Max-sum is a version of Belief Propagation, used for solving DCOPs. In tree-structured problems, Max-sum converges to the optimal solution in linear time....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103212
SubjectTerms Algorithms
Asymmetry
Benchmarks
Convergence
Damping
Distributed Constraint Optimization
Exploration
Graphical representations
Incomplete inference algorithms
Max-sum
Polynomials
Propagation
Title Governing convergence of Max-sum on DCOPs through damping and splitting
URI https://dx.doi.org/10.1016/j.artint.2019.103212
https://www.proquest.com/docview/2438714448
Volume 279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Open Access Journals (Elsevier)
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AKRWK
  dateStart: 19700301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXrz4LVZrycFrrJukye6xVmurtHqw0FtIdrNQ0W2xFTz5251ks4qCFDzukizLZDLzBt6bQegs4jYGFM4I0ywlvGMY0VxrYjiVMmMMKgKndx6NxWDCb6edaQ31Ki2Mo1WG2F_GdB-tw5t2sGZ7MZs5ja_rywM5KmGAeXwJxLl0UwzOP75pHpCAw9Q8TtzqSj7nOV5eqe8YlVHi1Oc0on-lp1-B2mef_g7aCrARd8s_20U1W-yh7WokAw43dB_dlLNzIR9hzyf30kqL5zke6XcCXofnBb7q3T8scZjQgzP94jRTWBcZXgIk9UToAzTpXz_2BiTMSiApGHRFhDW5lpmmSSxEKgEVaMPzOAd8kItUGGqplkYw1xvHxJKJNEsTC_ikk_EoSiw7RPViXtgjp-K2uTXC8CTjXF_k2nVBg0pW04413KQNxCoTqTQ0EnfzLJ5VxRh7UqVhlTOsKg3bQORr16JspLFmvaysr344hIJYv2ZnszosFS7kUlHOoDTk4HrH__7wCdqkrtr2nO0mqq9e3-wpQJKVaXmfa6GN7vBuMIan4fTyE1Ji4KY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1FD3rxW6xWzcFrrJtks92jVGvVtnpoobeQZLNQ0W2xFTz5251ks4qCFLwuye4ymcy8gfdmEDqLuG0BCmeEKWYIjzUjiitFNKdJkjEGFYHTO_cHojvid-N4XEPtSgvjaJUh9pcx3Ufr8KQZrNmcTSZO4-v68kCOShlgHlcCrfIYvgBOff7xzfOADBzG5nHillf6OU_y8lJ9R6mMUic_pxH9Kz_9itQ-_XS20EbAjfiy_LVtVLPFDtqsZjLgcEV30U05PBcSEvaEcq-ttHia4756J-B2eFrgq_bD4xyHET04Uy9ONIVVkeE5YFLPhN5Do871sN0lYVgCMWDRBRFW5yrJFE1bQpgEYIHSPG_lABByYYSmlqpEC-aa4-hWwoTJTGoBoMQZj6LUsn20UkwLe-Bk3Da3WmieZpyri1y5NmhQyioaW821qSNWmUia0EncDbR4lhVl7EmWhpXOsLI0bB2Rr12zspPGkvVJZX35wyMkBPslOxvVYclwI-eScga1IQffO_z3i0_RWnfY78ne7eD-CK1TV3p7AncDrSxe3-wx4JOFPvH-9wlZ0uE3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Governing+convergence+of+Max-sum+on+DCOPs+through+damping+and+splitting&rft.jtitle=Artificial+intelligence&rft.au=Cohen%2C+Liel&rft.au=Galiki%2C+Rotem&rft.au=Zivan%2C+Roie&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=279&rft_id=info:doi/10.1016%2Fj.artint.2019.103212&rft.externalDocID=S0004370219302061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon