Classification of myocardial infarction with multi-lead ECG signals and deep CNN

•An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different MI types.•Experiments with the public physiobank (PTB) ECG database.•Accuracy and sensitivity performance over 99.00% on all lead ECG signals....

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 122; pp. 23 - 30
Main Authors Baloglu, Ulas Baran, Talo, Muhammed, Yildirim, Ozal, Tan, Ru San, Acharya, U Rajendra
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2019.02.016

Cover

Abstract •An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different MI types.•Experiments with the public physiobank (PTB) ECG database.•Accuracy and sensitivity performance over 99.00% on all lead ECG signals. Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units. [Display omitted]
AbstractList •An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different MI types.•Experiments with the public physiobank (PTB) ECG database.•Accuracy and sensitivity performance over 99.00% on all lead ECG signals. Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units. [Display omitted]
Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units.
Author Acharya, U Rajendra
Baloglu, Ulas Baran
Talo, Muhammed
Yildirim, Ozal
Tan, Ru San
Author_xml – sequence: 1
  givenname: Ulas Baran
  surname: Baloglu
  fullname: Baloglu, Ulas Baran
  organization: Department of Computer Engineering, Munzur University, Tunceli 62000, Turkey
– sequence: 2
  givenname: Muhammed
  surname: Talo
  fullname: Talo, Muhammed
  organization: Department of Computer Engineering, Munzur University, Tunceli 62000, Turkey
– sequence: 3
  givenname: Ozal
  orcidid: 0000-0001-5375-3012
  surname: Yildirim
  fullname: Yildirim, Ozal
  email: oyildirim@munzur.edu.tr
  organization: Department of Computer Engineering, Munzur University, Tunceli 62000, Turkey
– sequence: 4
  givenname: Ru San
  surname: Tan
  fullname: Tan, Ru San
  organization: Department of Cardiology, National Heart Centre Singapore, Singapore
– sequence: 5
  givenname: U Rajendra
  surname: Acharya
  fullname: Acharya, U Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BookMark eNqFkM1KAzEUhYNUsK2-gYuA6xmTTJofF4IMtQqlutB1SJOMpkxnapIqfXvT1pULXV0495zDvd8IDLq-cwBcYlRihNn1qtzoFJwpCcKyRKTM4gkYYsFJwStKB2CYFV4INpmcgVGMK4QQq6QYgue61TH6xhudfN_BvoHrXW90sF630HeNDuaw-PLpHa63bfJF67SF03oGo3_rdBuh7iy0zm1gvVicg9Mma-7iZ47B6_30pX4o5k-zx_puXpiqoqlgesIRR2yJrTS6sVRwLZcWNaISopFGVJRInbfEMsMoYoxI4zATfLmkbCKrMbg69m5C_7F1MalVvw37cxQhWBDJKOfZRY8uE_oYg2vUJvi1DjuFkdqzUyt1ZKf27BQiKos5dvMrZnw6AEpB-_a_8O0x7PL7n94FFY13nXHWZ2tStvd_F3wDq0aOJQ
CitedBy_id crossref_primary_10_32604_cmc_2023_032765
crossref_primary_10_1016_j_artmed_2021_102192
crossref_primary_10_1016_j_bspc_2024_106693
crossref_primary_10_1109_ACCESS_2022_3165966
crossref_primary_10_1007_s00500_020_05465_8
crossref_primary_10_3389_fcvm_2022_1001982
crossref_primary_10_3390_s22093283
crossref_primary_10_3390_s22166195
crossref_primary_10_1016_j_bspc_2023_104671
crossref_primary_10_1088_1361_6579_ac7695
crossref_primary_10_1016_j_bspc_2023_105766
crossref_primary_10_1016_j_compbiomed_2021_104457
crossref_primary_10_4097_kja_19475
crossref_primary_10_1016_j_ejmp_2020_01_007
crossref_primary_10_1109_JIOT_2021_3097946
crossref_primary_10_1371_journal_pone_0313390
crossref_primary_10_1016_j_ejmp_2019_05_004
crossref_primary_10_3390_s22134919
crossref_primary_10_1016_j_medntd_2024_100322
crossref_primary_10_1109_ACCESS_2020_2990167
crossref_primary_10_1109_TBME_2021_3090051
crossref_primary_10_1007_s11042_023_15123_4
crossref_primary_10_1016_j_bspc_2022_104041
crossref_primary_10_1016_j_bspc_2021_103331
crossref_primary_10_1109_ACCESS_2023_3236189
crossref_primary_10_1016_j_compbiomed_2023_106768
crossref_primary_10_1016_j_eswa_2021_115131
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1007_s13198_022_01650_0
crossref_primary_10_1038_s41598_024_75531_w
crossref_primary_10_1049_htl2_12045
crossref_primary_10_3390_ijerph191710707
crossref_primary_10_1038_s41598_024_71700_z
crossref_primary_10_1016_j_compeleceng_2020_106621
crossref_primary_10_1016_j_heliyon_2024_e41195
crossref_primary_10_1051_itmconf_20246401023
crossref_primary_10_1016_j_bspc_2023_104772
crossref_primary_10_1155_2021_6455053
crossref_primary_10_3390_app11135861
crossref_primary_10_1109_TMI_2024_3367409
crossref_primary_10_1109_ACCESS_2021_3128134
crossref_primary_10_1016_j_compbiomed_2023_107743
crossref_primary_10_1016_j_cmpb_2021_106190
crossref_primary_10_1007_s13721_022_00354_6
crossref_primary_10_1016_j_firesaf_2023_103852
crossref_primary_10_3390_diagnostics12020414
crossref_primary_10_1088_1361_6579_ad46e1
crossref_primary_10_1109_JBHI_2020_2981526
crossref_primary_10_1145_3357253
crossref_primary_10_1016_j_ins_2023_03_078
crossref_primary_10_1063_5_0046582
crossref_primary_10_1371_journal_pone_0264002
crossref_primary_10_1371_journal_pone_0285165
crossref_primary_10_3390_polym14142875
crossref_primary_10_1109_ACCESS_2021_3136793
crossref_primary_10_3390_s20174777
crossref_primary_10_32604_cmes_2021_016485
crossref_primary_10_1016_j_cmpbup_2023_100097
crossref_primary_10_1038_s41528_020_00092_7
crossref_primary_10_1007_s12065_020_00367_y
crossref_primary_10_3390_s20216318
crossref_primary_10_3389_fphys_2021_727210
crossref_primary_10_3390_electronics10212572
crossref_primary_10_1016_j_irbm_2021_04_002
crossref_primary_10_1109_JIOT_2022_3188771
crossref_primary_10_1016_j_asoc_2023_110919
crossref_primary_10_1088_1361_6579_ac7938
crossref_primary_10_1007_s10916_019_1337_y
crossref_primary_10_1016_j_cmpb_2021_106379
crossref_primary_10_1109_TIM_2023_3301047
crossref_primary_10_1016_j_bspc_2021_102692
crossref_primary_10_1155_2021_7167891
crossref_primary_10_1016_j_bspc_2022_104105
crossref_primary_10_3390_app11073163
crossref_primary_10_32604_iasc_2022_019877
crossref_primary_10_1109_ACCESS_2023_3338853
crossref_primary_10_1155_2020_8843963
crossref_primary_10_1016_j_ins_2021_12_083
crossref_primary_10_1007_s13721_024_00487_w
crossref_primary_10_1016_j_asoc_2020_106383
crossref_primary_10_3390_sym11050725
crossref_primary_10_1515_bmt_2023_0099
crossref_primary_10_3390_info11120556
crossref_primary_10_36222_ejt_1336342
crossref_primary_10_2174_1574362417666220518120229
crossref_primary_10_1016_j_cogsys_2019_09_001
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1007_s10489_024_05364_7
crossref_primary_10_1016_j_bspc_2024_106388
crossref_primary_10_3390_electronics11233976
crossref_primary_10_1016_j_cmpb_2021_106024
crossref_primary_10_1007_s11571_022_09870_7
crossref_primary_10_1016_j_bspc_2022_104238
crossref_primary_10_3390_s23094372
crossref_primary_10_1007_s11517_022_02656_3
crossref_primary_10_3390_s21051906
crossref_primary_10_1016_j_knosys_2023_110298
crossref_primary_10_1016_j_bbe_2020_04_004
crossref_primary_10_1007_s00521_020_05238_2
crossref_primary_10_1016_j_eswa_2024_125619
crossref_primary_10_1007_s11831_023_09927_8
crossref_primary_10_1016_j_cmpb_2019_03_012
crossref_primary_10_1016_j_knosys_2021_107187
crossref_primary_10_61186_rbmb_12_1_159
crossref_primary_10_1016_j_bspc_2021_102474
crossref_primary_10_1016_j_bspc_2022_104497
crossref_primary_10_1016_j_bspc_2023_105420
crossref_primary_10_1016_j_cmpb_2019_105138
crossref_primary_10_1007_s11082_020_02667_0
crossref_primary_10_1016_j_cmpb_2021_106035
crossref_primary_10_1145_3417958
crossref_primary_10_3390_s20164400
crossref_primary_10_1016_j_media_2024_103087
crossref_primary_10_1016_j_bspc_2021_103317
crossref_primary_10_1016_j_jneumeth_2021_109145
crossref_primary_10_1109_LSENS_2024_3450176
crossref_primary_10_1109_JBHI_2023_3246241
crossref_primary_10_3390_app12168368
crossref_primary_10_1109_JSEN_2024_3523035
crossref_primary_10_31801_cfsuasmas_1202806
crossref_primary_10_3390_bioengineering10050607
crossref_primary_10_3390_s23104805
crossref_primary_10_1016_j_cmpb_2019_105120
crossref_primary_10_1016_j_imu_2020_100479
crossref_primary_10_1109_JSEN_2021_3079241
crossref_primary_10_1088_1361_6579_acaa1a
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1016_j_artmed_2020_101848
crossref_primary_10_1109_TBME_2021_3129459
crossref_primary_10_4028_p_6yc34j
crossref_primary_10_1109_TIM_2023_3241997
crossref_primary_10_3390_bioengineering11010058
crossref_primary_10_1038_s41467_023_39472_8
crossref_primary_10_1007_s00500_021_06555_x
crossref_primary_10_1016_j_health_2022_100121
crossref_primary_10_1016_j_micpro_2022_104627
crossref_primary_10_1038_s41598_024_78028_8
crossref_primary_10_3390_mi14061155
crossref_primary_10_1016_j_neulet_2020_135194
crossref_primary_10_1109_JSEN_2020_2984493
crossref_primary_10_12677_CSA_2023_137146
crossref_primary_10_3233_AIC_210009
crossref_primary_10_1007_s12652_021_03484_3
crossref_primary_10_1016_j_bspc_2019_101700
crossref_primary_10_3390_math12172693
crossref_primary_10_1038_s41598_025_87115_3
crossref_primary_10_1080_21681163_2023_2228930
crossref_primary_10_1111_exsy_13011
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_26599_TST_2022_9010008
crossref_primary_10_1016_j_compbiomed_2020_103801
crossref_primary_10_3349_ymj_2022_63_7_692
crossref_primary_10_1016_j_irbm_2019_09_003
crossref_primary_10_1109_ACCESS_2020_3006707
crossref_primary_10_3390_bioengineering9090430
crossref_primary_10_3390_polym13213790
crossref_primary_10_1007_s11517_021_02322_0
crossref_primary_10_1007_s12530_023_09559_0
crossref_primary_10_3389_fphys_2022_783184
crossref_primary_10_3390_diagnostics13061099
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_1016_j_compbiomed_2024_107984
crossref_primary_10_1016_j_bspc_2022_104202
crossref_primary_10_1109_JBHI_2021_3101117
crossref_primary_10_1631_FITEE_2100519
crossref_primary_10_1007_s13369_022_07188_4
crossref_primary_10_1149_2162_8777_abb3b0
crossref_primary_10_3390_app11167758
crossref_primary_10_1155_2021_4123471
crossref_primary_10_1007_s00530_020_00728_8
crossref_primary_10_1109_JSEN_2024_3351918
crossref_primary_10_1109_ACCESS_2024_3385787
crossref_primary_10_1016_j_bspc_2020_102260
crossref_primary_10_3389_fninf_2020_00029
crossref_primary_10_1016_j_artmed_2019_101789
crossref_primary_10_1016_j_eswa_2025_126901
crossref_primary_10_1515_hsz_2020_0169
crossref_primary_10_3390_jpm12030336
crossref_primary_10_3389_fcvm_2024_1473482
crossref_primary_10_1016_j_cmpb_2022_107124
crossref_primary_10_1109_ACCESS_2019_2955555
crossref_primary_10_1016_j_compbiomed_2025_109737
crossref_primary_10_1016_j_patrec_2020_03_011
crossref_primary_10_1007_s10462_022_10262_w
crossref_primary_10_1109_TIM_2021_3132833
crossref_primary_10_3389_fphys_2021_811661
crossref_primary_10_1007_s13042_022_01718_0
crossref_primary_10_1038_s41467_020_17804_2
crossref_primary_10_1007_s00500_019_04383_8
crossref_primary_10_1007_s13042_021_01389_3
crossref_primary_10_1007_s42979_023_02120_5
crossref_primary_10_1166_jmihi_2022_3945
crossref_primary_10_1007_s11042_021_11594_5
crossref_primary_10_1016_j_cmpb_2021_106009
crossref_primary_10_1016_j_cmpb_2019_105286
crossref_primary_10_1016_j_heliyon_2024_e26548
crossref_primary_10_1016_j_asoc_2024_112031
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1016_j_cmpb_2019_104992
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_1109_ACCESS_2022_3192390
crossref_primary_10_3390_app12115603
crossref_primary_10_3390_healthcare11071000
crossref_primary_10_1016_j_compbiomed_2022_105550
crossref_primary_10_3390_s20041020
crossref_primary_10_1088_2057_1976_ad40b0
crossref_primary_10_1016_j_jksuci_2022_01_002
crossref_primary_10_1063_5_0167477
crossref_primary_10_3390_s24165087
crossref_primary_10_2139_ssrn_4132904
crossref_primary_10_4103_jmss_JMSS_24_20
crossref_primary_10_3389_fphys_2022_840011
crossref_primary_10_1007_s00500_022_07729_x
crossref_primary_10_3390_app12189208
crossref_primary_10_1109_ACCESS_2020_3001284
crossref_primary_10_34133_hds_0221
crossref_primary_10_3390_computers13050109
crossref_primary_10_3389_fmed_2022_878858
crossref_primary_10_1056_AIoa2300297
crossref_primary_10_1016_j_iswa_2022_200127
crossref_primary_10_1109_TCSII_2024_3355016
crossref_primary_10_1080_10255842_2024_2382817
crossref_primary_10_1088_1361_6579_ac7fd9
crossref_primary_10_1016_j_compbiomed_2019_103387
crossref_primary_10_1145_3637440
crossref_primary_10_3390_su142416572
crossref_primary_10_1016_j_apmt_2024_102332
crossref_primary_10_1016_j_asoc_2019_04_007
crossref_primary_10_1007_s10489_021_02696_6
crossref_primary_10_1016_j_bspc_2021_103374
crossref_primary_10_1142_S0218001421590072
crossref_primary_10_1007_s12652_020_02536_4
crossref_primary_10_56038_ejrnd_v4i1_421
crossref_primary_10_1186_s12874_024_02223_4
crossref_primary_10_1007_s12652_019_01306_1
crossref_primary_10_12688_f1000research_154316_1
crossref_primary_10_1109_ACCESS_2019_2919068
crossref_primary_10_1016_j_patrec_2021_02_004
crossref_primary_10_1016_j_knosys_2023_110555
crossref_primary_10_1016_j_engappai_2023_107599
crossref_primary_10_3390_biomed2040031
crossref_primary_10_3390_jcm13041033
crossref_primary_10_3390_electronics9060951
crossref_primary_10_1016_j_ins_2022_05_070
crossref_primary_10_1109_ACCESS_2019_2930770
crossref_primary_10_1016_j_cmpb_2019_06_021
crossref_primary_10_1109_TSMC_2023_3257022
crossref_primary_10_3390_s20247246
crossref_primary_10_1002_mco2_760
crossref_primary_10_1155_2022_6348424
crossref_primary_10_1016_j_patrec_2019_08_028
crossref_primary_10_1109_JBHI_2021_3060433
crossref_primary_10_3390_jcm11154578
crossref_primary_10_3390_en17061396
crossref_primary_10_1016_j_knosys_2019_04_023
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1109_TCSI_2023_3294181
crossref_primary_10_1007_s11431_023_2460_2
crossref_primary_10_1080_13682199_2023_2178608
crossref_primary_10_3390_biomedicines10082013
crossref_primary_10_1002_ett_4169
Cites_doi 10.1161/01.CIR.101.23.e215
10.1109/TBME.2018.2877649
10.1007/s00521-018-03980-2
10.1142/S0219519417400048
10.1016/j.cmpb.2018.04.005
10.1016/j.knosys.2016.01.040
10.1016/j.swevo.2017.10.002
10.1049/htl.2014.0080
10.1016/j.compbiomed.2018.06.002
10.1186/s40064-015-1379-7
10.1016/j.hrthm.2015.11.035
10.1007/s11760-017-1146-z
10.1016/j.eswa.2017.09.022
10.1016/j.knosys.2017.06.026
10.1016/j.compbiomed.2018.07.005
10.1016/j.bspc.2016.07.007
10.1016/j.knosys.2018.09.001
10.1016/j.compbiomed.2018.09.009
10.1016/j.asoc.2017.12.001
10.3390/e19090488
10.1016/j.imu.2018.08.002
10.24003/emitter.v6i1.265
10.1007/s10916-016-0505-6
10.1109/TBME.2012.2213597
10.1016/j.ins.2017.06.027
10.1007/s10916-009-9314-5
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. May 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. May 1, 2019
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2019.02.016
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 30
ExternalDocumentID 10_1016_j_patrec_2019_02_016
S016786551930056X
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
SSH
VOH
WUQ
Y6R
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-6a570706b1d9cafd487a9bd0f8388f9c83429ab1d2d6c6406629ce1687bb46593
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Fri Jul 25 04:01:22 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Tue Jul 01 02:40:38 EDT 2025
Fri Feb 23 02:24:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
Deep learning
Biomedical signal
Multi-lead ECG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-6a570706b1d9cafd487a9bd0f8388f9c83429ab1d2d6c6406629ce1687bb46593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5375-3012
PQID 2218296477
PQPubID 2047552
PageCount 8
ParticipantIDs proquest_journals_2218296477
crossref_primary_10_1016_j_patrec_2019_02_016
crossref_citationtrail_10_1016_j_patrec_2019_02_016
elsevier_sciencedirect_doi_10_1016_j_patrec_2019_02_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Barstuğan, Ceylan (bib0022) 2018
Faust, Hagiwara, Hong, Lih, Acharya (bib0027) 2018; 161
Tripathy, Dandapat (bib0004) 2016; 40
Dohare, Kumar, Kumar (bib0014) 2018; 64
Sharma, Sunkaria (bib0010) 2018; 12
Fujita, Sudarshan (bib0001) 2017
Weng, Lin, Chen, Chang (bib0012) 2014
Chollet, F. Keras: dDeep learning library for theano and tensorflow. URL
Sharma, San Tan, Acharya (bib0005) 2018; 102
Goldberger, Amaral (bib0031) 2000; 101
Tao, Zhang (bib0023) 2018
Lodhi, Qureshi, Sharif, Ashiq (bib0024) 2018
Yıldırım, Baloglu, Acharya (bib0034) 2018
Kenttä, Nearing (bib0002) 2016; 13
Sun, Lu, Yang, Li (bib0007) 2012; 59
Sadhukhan, Pal, Mitra (bib0018) 2018; 67
Pławiak (bib0021) 2018; 92
Oh, Ng, San Tan, Acharya (bib0030) 2018; 102
Tripathy, Sharma, Dandapat (bib0016) 2014; 1
Yıldırım, Pławiak, Tan, Acharya (bib0028) 2018; 102
Sopic, Aminifar, Aminifar, Atienza (bib0017) 2018; 12
He, Tan, Xing (bib0015) 2019; 163
Acharya, Fujita (bib0008) 2016; 99
Kora, Kalva (bib0013) 2015; 4
Assodiky, Syarif, Badriyah (bib0029) 2018; 6
Pławiak (bib0035) 2018; 39
Jayachandran (bib0037) 2010; 34
Acharya, Fujita (bib0003) 2017; 132
Lu, Ong, Chia (bib0006) 2000
Kumar, Pachori, Acharya (bib0009) 2017; 19
Padhy, Dandapat (bib0019) 2017; 31
Oh, Hagiwara (bib0011) 2017; 17
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0026) 2017; 415
io, 7(8), 2015.
Pławiak, Acharya (bib0036) 2019
Lui, Chow (bib0025) 2018; 13
Zhu, Zeng, Wang (bib0033) 2010; 19
Martis, Chakraborty, Ray (bib0020) 2009
Sadhukhan (10.1016/j.patrec.2019.02.016_bib0018) 2018; 67
Padhy (10.1016/j.patrec.2019.02.016_bib0019) 2017; 31
Lui (10.1016/j.patrec.2019.02.016_bib0025) 2018; 13
Kenttä (10.1016/j.patrec.2019.02.016_bib0002) 2016; 13
Dohare (10.1016/j.patrec.2019.02.016_bib0014) 2018; 64
Martis (10.1016/j.patrec.2019.02.016_bib0020) 2009
Assodiky (10.1016/j.patrec.2019.02.016_bib0029) 2018; 6
Weng (10.1016/j.patrec.2019.02.016_bib0012) 2014
Tripathy (10.1016/j.patrec.2019.02.016_bib0016) 2014; 1
Tripathy (10.1016/j.patrec.2019.02.016_bib0004) 2016; 40
Sun (10.1016/j.patrec.2019.02.016_bib0007) 2012; 59
Tao (10.1016/j.patrec.2019.02.016_bib0023) 2018
Acharya (10.1016/j.patrec.2019.02.016_bib0026) 2017; 415
Oh (10.1016/j.patrec.2019.02.016_bib0030) 2018; 102
Oh (10.1016/j.patrec.2019.02.016_bib0011) 2017; 17
Goldberger (10.1016/j.patrec.2019.02.016_bib0031) 2000; 101
Faust (10.1016/j.patrec.2019.02.016_bib0027) 2018; 161
10.1016/j.patrec.2019.02.016_bib0032
Sharma (10.1016/j.patrec.2019.02.016_bib0010) 2018; 12
Barstuğan (10.1016/j.patrec.2019.02.016_bib0022) 2018
Yıldırım (10.1016/j.patrec.2019.02.016_bib0028) 2018; 102
Jayachandran (10.1016/j.patrec.2019.02.016_bib0037) 2010; 34
Pławiak (10.1016/j.patrec.2019.02.016_bib0021) 2018; 92
Acharya (10.1016/j.patrec.2019.02.016_bib0008) 2016; 99
Lodhi (10.1016/j.patrec.2019.02.016_bib0024) 2018
Acharya (10.1016/j.patrec.2019.02.016_bib0003) 2017; 132
Kumar (10.1016/j.patrec.2019.02.016_bib0009) 2017; 19
Sharma (10.1016/j.patrec.2019.02.016_bib0005) 2018; 102
Sopic (10.1016/j.patrec.2019.02.016_bib0017) 2018; 12
Kora (10.1016/j.patrec.2019.02.016_bib0013) 2015; 4
He (10.1016/j.patrec.2019.02.016_bib0015) 2019; 163
Pławiak (10.1016/j.patrec.2019.02.016_bib0035) 2018; 39
Lu (10.1016/j.patrec.2019.02.016_bib0006) 2000
Pławiak (10.1016/j.patrec.2019.02.016_bib0036) 2019
Fujita (10.1016/j.patrec.2019.02.016_bib0001) 2017
Yıldırım (10.1016/j.patrec.2019.02.016_bib0034) 2018
Zhu (10.1016/j.patrec.2019.02.016_bib0033) 2010; 19
References_xml – start-page: 1
  year: 2018
  end-page: 12
  ident: bib0034
  article-title: A deep convolutional neural network model for automated identification of abnormal EEG signals
  publication-title: Neur. Comp. Appl.
– volume: 13
  start-page: 713
  year: 2016
  end-page: 720
  ident: bib0002
  article-title: Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms
  publication-title: Heart Rhythm
– volume: 31
  start-page: 71
  year: 2017
  end-page: 78
  ident: bib0019
  article-title: Third-order tensor based analysis of multilead ECG for classification of myocardial infarction
  publication-title: Biomed. Signal Process. Control
– volume: 4
  start-page: 666
  year: 2015
  ident: bib0013
  article-title: Improved Bat algorithm for the detection of myocardial infarction
  publication-title: SpringerPlus
– start-page: 259
  year: 2017
  end-page: 266
  ident: bib0001
  article-title: Characterization of cardiovascular diseases using wavelet packet decomposition and nonlinear measures of electrocardiogram signal
  publication-title: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: bib0030
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– volume: 67
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0018
  article-title: Automated identification of myocardial infarction using harmonic phase distribution pattern of ECG data
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0031
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 34
  start-page: 985
  year: 2010
  end-page: 992
  ident: bib0037
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J. Med. Syst.
– volume: 132
  start-page: 156
  year: 2017
  end-page: 166
  ident: bib0003
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowledge-Based Syst.
– volume: 163
  start-page: 392
  year: 2019
  end-page: 403
  ident: bib0015
  article-title: Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering
  publication-title: Knowledge-Based Syst.
– year: 2019
  ident: bib0036
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neur. Comp. Appl.
– start-page: 689
  year: 2014
  end-page: 699
  ident: bib0012
  article-title: Myocardial infarction classification by morphological feature extraction from big 12-lead ECG data
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 99
  start-page: 146
  year: 2016
  end-page: 156
  ident: bib0008
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowledge-Based Syst.
– volume: 12
  start-page: 199
  year: 2018
  end-page: 206
  ident: bib0010
  article-title: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal
  publication-title: Image Video Process.
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib0020
  article-title: An integrated ECG feature extraction scheme using PCA and wavelet transform
  publication-title: India Conference (INDICON)
– volume: 13
  start-page: 26
  year: 2018
  end-page: 33
  ident: bib0025
  article-title: Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices
  publication-title: Informat. Med. Unlock.
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0027
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput. Methods Programs Biomed.
– volume: 59
  start-page: 3348
  year: 2012
  end-page: 3356
  ident: bib0007
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 19
  start-page: 488
  year: 2017
  ident: bib0009
  article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework
  publication-title: Entropy
– reference: Chollet, F. Keras: dDeep learning library for theano and tensorflow. URL:
– volume: 102
  start-page: 341
  year: 2018
  end-page: 356
  ident: bib0005
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
– volume: 1
  start-page: 98
  year: 2014
  end-page: 103
  ident: bib0016
  article-title: A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification
  publication-title: Healthcare Technol. Lett.
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: bib0026
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0017
  article-title: Real-time event-driven classification technique for early detection and prevention of myocardial infarction on wearable systems
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 92
  start-page: 334
  year: 2018
  end-page: 349
  ident: bib0021
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 192
  year: 2018
  end-page: 208
  ident: bib0035
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm Evolution. Comp.
– year: 2018
  ident: bib0023
  article-title: Magnetocardiography based ischemic heart disease detection and localization using machine learning methods
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib0028
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
– volume: 17
  year: 2017
  ident: bib0011
  article-title: Shockable versus nonshockable life-threatening ventricular arrhythmias using DWT and nonlinear features of ECG signals
  publication-title: J. Mech. Med. Biol.
– year: 2018
  ident: bib0022
  article-title: The effect of dictionary learning on weight update of adaboost and ECG classification
  publication-title: J. King Saud Univ.-Comp. Inform. Sci.
– reference: . io, 7(8), 2015.
– volume: 40
  start-page: 143
  year: 2016
  ident: bib0004
  article-title: Detection of cardiac abnormalities from multilead ECG using multiscale phase alternation features
  publication-title: J. Med. Syst.
– volume: 64
  start-page: 138
  year: 2018
  end-page: 147
  ident: bib0014
  article-title: Detection of myocardial infarction in 12 lead ECG using support vector machine
  publication-title: Appl. Soft Comput.
– start-page: 387
  year: 2000
  end-page: 390
  ident: bib0006
  article-title: An automated ECG classification system based on a neuro-fuzzy system
  publication-title: Computers in Cardiology 2000
– start-page: 337
  year: 2018
  end-page: 352
  ident: bib0024
  article-title: A novel approach using voting from ecg leads to detect myocardial infarction
  publication-title: Proceedings of SAI Intelligent Systems Conference
– volume: 6
  start-page: 75
  year: 2018
  end-page: 91
  ident: bib0029
  article-title: Arrhythmia classification using long short-term memory with adaptive learning rate
  publication-title: EMITTER Int. J. Eng. Technol.
– volume: 19
  start-page: 67
  year: 2010
  ident: bib0033
  article-title: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations
  publication-title: NESUG proceedings: health care and life sciences
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.patrec.2019.02.016_bib0031
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 259
  year: 2017
  ident: 10.1016/j.patrec.2019.02.016_bib0001
  article-title: Characterization of cardiovascular diseases using wavelet packet decomposition and nonlinear measures of electrocardiogram signal
– year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0023
  article-title: Magnetocardiography based ischemic heart disease detection and localization using machine learning methods
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2877649
– year: 2019
  ident: 10.1016/j.patrec.2019.02.016_bib0036
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neur. Comp. Appl.
  doi: 10.1007/s00521-018-03980-2
– volume: 17
  issue: 07
  year: 2017
  ident: 10.1016/j.patrec.2019.02.016_bib0011
  article-title: Shockable versus nonshockable life-threatening ventricular arrhythmias using DWT and nonlinear features of ECG signals
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400048
– year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0022
  article-title: The effect of dictionary learning on weight update of adaboost and ECG classification
  publication-title: J. King Saud Univ.-Comp. Inform. Sci.
– volume: 161
  start-page: 1
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0027
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 99
  start-page: 146
  year: 2016
  ident: 10.1016/j.patrec.2019.02.016_bib0008
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.01.040
– volume: 39
  start-page: 192
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0035
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm Evolution. Comp.
  doi: 10.1016/j.swevo.2017.10.002
– start-page: 387
  year: 2000
  ident: 10.1016/j.patrec.2019.02.016_bib0006
  article-title: An automated ECG classification system based on a neuro-fuzzy system
– volume: 1
  start-page: 98
  issue: 4
  year: 2014
  ident: 10.1016/j.patrec.2019.02.016_bib0016
  article-title: A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification
  publication-title: Healthcare Technol. Lett.
  doi: 10.1049/htl.2014.0080
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0030
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 4
  start-page: 666
  issue: 1
  year: 2015
  ident: 10.1016/j.patrec.2019.02.016_bib0013
  article-title: Improved Bat algorithm for the detection of myocardial infarction
  publication-title: SpringerPlus
  doi: 10.1186/s40064-015-1379-7
– ident: 10.1016/j.patrec.2019.02.016_bib0032
– volume: 19
  start-page: 67
  year: 2010
  ident: 10.1016/j.patrec.2019.02.016_bib0033
  article-title: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations
– volume: 13
  start-page: 713
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2019.02.016_bib0002
  article-title: Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2015.11.035
– volume: 12
  start-page: 199
  issue: 2
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0010
  article-title: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal
  publication-title: Image Video Process.
  doi: 10.1007/s11760-017-1146-z
– volume: 92
  start-page: 334
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0021
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.022
– volume: 132
  start-page: 156
  year: 2017
  ident: 10.1016/j.patrec.2019.02.016_bib0003
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2017.06.026
– volume: 102
  start-page: 341
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0005
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.005
– volume: 31
  start-page: 71
  year: 2017
  ident: 10.1016/j.patrec.2019.02.016_bib0019
  article-title: Third-order tensor based analysis of multilead ECG for classification of myocardial infarction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.007
– volume: 163
  start-page: 392
  year: 2019
  ident: 10.1016/j.patrec.2019.02.016_bib0015
  article-title: Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.09.001
– volume: 102
  start-page: 411
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0028
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 64
  start-page: 138
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0014
  article-title: Detection of myocardial infarction in 12 lead ECG using support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.001
– start-page: 337
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0024
  article-title: A novel approach using voting from ecg leads to detect myocardial infarction
– volume: 19
  start-page: 488
  issue: 9
  year: 2017
  ident: 10.1016/j.patrec.2019.02.016_bib0009
  article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework
  publication-title: Entropy
  doi: 10.3390/e19090488
– start-page: 1
  year: 2009
  ident: 10.1016/j.patrec.2019.02.016_bib0020
  article-title: An integrated ECG feature extraction scheme using PCA and wavelet transform
– volume: 13
  start-page: 26
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0025
  article-title: Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices
  publication-title: Informat. Med. Unlock.
  doi: 10.1016/j.imu.2018.08.002
– volume: 6
  start-page: 75
  issue: 1
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0029
  article-title: Arrhythmia classification using long short-term memory with adaptive learning rate
  publication-title: EMITTER Int. J. Eng. Technol.
  doi: 10.24003/emitter.v6i1.265
– volume: 67
  start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0018
  article-title: Automated identification of myocardial infarction using harmonic phase distribution pattern of ECG data
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0034
  article-title: A deep convolutional neural network model for automated identification of abnormal EEG signals
  publication-title: Neur. Comp. Appl.
– volume: 40
  start-page: 143
  issue: 6
  year: 2016
  ident: 10.1016/j.patrec.2019.02.016_bib0004
  article-title: Detection of cardiac abnormalities from multilead ECG using multiscale phase alternation features
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0505-6
– volume: 59
  start-page: 3348
  issue: 12
  year: 2012
  ident: 10.1016/j.patrec.2019.02.016_bib0007
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213597
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.patrec.2019.02.016_bib0026
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.06.027
– start-page: 689
  year: 2014
  ident: 10.1016/j.patrec.2019.02.016_bib0012
  article-title: Myocardial infarction classification by morphological feature extraction from big 12-lead ECG data
– volume: 12
  start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.patrec.2019.02.016_bib0017
  article-title: Real-time event-driven classification technique for early detection and prevention of myocardial infarction on wearable systems
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 34
  start-page: 985
  issue: 6
  year: 2010
  ident: 10.1016/j.patrec.2019.02.016_bib0037
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9314-5
SSID ssj0006398
Score 2.6553102
Snippet •An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different...
Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Artificial neural networks
Biomedical signal
Blood
Cardiac muscle
Deep learning
Diagnosis
Echocardiography
EKG
Electrocardiography
Heart
Heart attacks
Intensive care units
Machine learning
Multi-lead ECG
Muscles
Myocardial infarction
Neural networks
Response time
Time lag
Title Classification of myocardial infarction with multi-lead ECG signals and deep CNN
URI https://dx.doi.org/10.1016/j.patrec.2019.02.016
https://www.proquest.com/docview/2218296477
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6V8jIe2GAgyhjyA6-mSZw4zmNVUbpNq5AAqW-WYzsSqLTVVh544W_nznHQNk1C4jH-EUV357uL9d13AGe5K1xqC8ebxEqeW5Fxk3nBU5lZo1Jrk1Ak9nMmp7f593kx78G4q4UhWGX0_a1PD946jgyjNIfru7vhNQHoqawSUxAitJxvwXYmKln0YXv07cd09uqQMQirjuKbNnQVdAHmRVfOnrgM0yqQd1Lj8_9HqH98dQhAk0-wGzNHNmo_bg96frkPH7uuDCwe0n3Y-YNi8DNcha6XhAcKKmCrhj08Yfwiu1gwNC809DBBF7IswAv5AvXOLsaXjMAdaJ7MLB1z3q_ZeDY7gNvJxc14ymMXBW6FyDdcmqLEcy3r1FXWNA7_UExVu6RRQqmmskpgSDI4mzlpZU6M8JX1qVRlXeeyqMQh9JerpT8CZhOLGYcvnCldbpWslDeYr1mT-tKgNQxAdJLTNlKMU6eLhe6wZPe6lbcmeesk0zg4AP66a91SbLyxvuyUov8yFY1R4I2dJ50OdTyqv3VGHPahHvf43S_-Ah_oqQVCnkB_8-vRf8VkZVOfwtb5c3oaTfIFTU3pEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6F9AAc2vISAdrugesS22uv18cqIg0UIiQSKbfVenctgUKIaHrgwm9nZm2XFiEh9bovWTOzM-PVN98AHKcuc7HNHK8iK3lqRcJN4gWPZWKNiq2NQpHY5ViOpun5LJt1YNDWwhCssvH9tU8P3roZ6TfS7C9vbvrXBKCnskpMQYjQcrYGH9JM5ITrO3l6wXlgCFYtwTctb-vnAsiLHpw9MRnGRaDupLbnb8enV546hJ_hZ_jY5I3se_1pW9Dxi2341PZkYM0V3YbNvwgGd-Aq9LwkNFBQALuv2N0jRi-yijlD40IzDxP0HMsCuJDPUevsdPCDEbQDjZOZhWPO-yUbjMe7MB2eTgYj3vRQ4FaIdMWlyXK81bKMXWFN5fD_xBSliyollKoKqwQGJIOziZNWpsQHX1gfS5WXZSqzQuxBd3G_8PvAbGQx3_CZM7lLrZKF8gazNWtinxu0hR6IVnLaNgTj1Odirlsk2a2u5a1J3jpKNA72gP_ZtawJNt5Zn7dK0f8YisYY8M7Oo1aHurmov3RCDPahGvfgvw_-BuujyeWFvjgb_zyEDZqpIZFH0F09_PZfMG1ZlV-DWT4DQ-Pp2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+myocardial+infarction+with+multi-lead+ECG+signals+and+deep+CNN&rft.jtitle=Pattern+recognition+letters&rft.au=Baloglu%2C+Ulas+Baran&rft.au=Talo%2C+Muhammed&rft.au=Yildirim%2C+Ozal&rft.au=Tan%2C+Ru+San&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=122&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.patrec.2019.02.016&rft.externalDocID=S016786551930056X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon