Classification of myocardial infarction with multi-lead ECG signals and deep CNN
•An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different MI types.•Experiments with the public physiobank (PTB) ECG database.•Accuracy and sensitivity performance over 99.00% on all lead ECG signals....
Saved in:
Published in | Pattern recognition letters Vol. 122; pp. 23 - 30 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2019.02.016 |
Cover
Abstract | •An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different MI types.•Experiments with the public physiobank (PTB) ECG database.•Accuracy and sensitivity performance over 99.00% on all lead ECG signals.
Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units.
[Display omitted] |
---|---|
AbstractList | •An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different MI types.•Experiments with the public physiobank (PTB) ECG database.•Accuracy and sensitivity performance over 99.00% on all lead ECG signals.
Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units.
[Display omitted] Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units. |
Author | Acharya, U Rajendra Baloglu, Ulas Baran Talo, Muhammed Yildirim, Ozal Tan, Ru San |
Author_xml | – sequence: 1 givenname: Ulas Baran surname: Baloglu fullname: Baloglu, Ulas Baran organization: Department of Computer Engineering, Munzur University, Tunceli 62000, Turkey – sequence: 2 givenname: Muhammed surname: Talo fullname: Talo, Muhammed organization: Department of Computer Engineering, Munzur University, Tunceli 62000, Turkey – sequence: 3 givenname: Ozal orcidid: 0000-0001-5375-3012 surname: Yildirim fullname: Yildirim, Ozal email: oyildirim@munzur.edu.tr organization: Department of Computer Engineering, Munzur University, Tunceli 62000, Turkey – sequence: 4 givenname: Ru San surname: Tan fullname: Tan, Ru San organization: Department of Cardiology, National Heart Centre Singapore, Singapore – sequence: 5 givenname: U Rajendra surname: Acharya fullname: Acharya, U Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore |
BookMark | eNqFkM1KAzEUhYNUsK2-gYuA6xmTTJofF4IMtQqlutB1SJOMpkxnapIqfXvT1pULXV0495zDvd8IDLq-cwBcYlRihNn1qtzoFJwpCcKyRKTM4gkYYsFJwStKB2CYFV4INpmcgVGMK4QQq6QYgue61TH6xhudfN_BvoHrXW90sF630HeNDuaw-PLpHa63bfJF67SF03oGo3_rdBuh7iy0zm1gvVicg9Mma-7iZ47B6_30pX4o5k-zx_puXpiqoqlgesIRR2yJrTS6sVRwLZcWNaISopFGVJRInbfEMsMoYoxI4zATfLmkbCKrMbg69m5C_7F1MalVvw37cxQhWBDJKOfZRY8uE_oYg2vUJvi1DjuFkdqzUyt1ZKf27BQiKos5dvMrZnw6AEpB-_a_8O0x7PL7n94FFY13nXHWZ2tStvd_F3wDq0aOJQ |
CitedBy_id | crossref_primary_10_32604_cmc_2023_032765 crossref_primary_10_1016_j_artmed_2021_102192 crossref_primary_10_1016_j_bspc_2024_106693 crossref_primary_10_1109_ACCESS_2022_3165966 crossref_primary_10_1007_s00500_020_05465_8 crossref_primary_10_3389_fcvm_2022_1001982 crossref_primary_10_3390_s22093283 crossref_primary_10_3390_s22166195 crossref_primary_10_1016_j_bspc_2023_104671 crossref_primary_10_1088_1361_6579_ac7695 crossref_primary_10_1016_j_bspc_2023_105766 crossref_primary_10_1016_j_compbiomed_2021_104457 crossref_primary_10_4097_kja_19475 crossref_primary_10_1016_j_ejmp_2020_01_007 crossref_primary_10_1109_JIOT_2021_3097946 crossref_primary_10_1371_journal_pone_0313390 crossref_primary_10_1016_j_ejmp_2019_05_004 crossref_primary_10_3390_s22134919 crossref_primary_10_1016_j_medntd_2024_100322 crossref_primary_10_1109_ACCESS_2020_2990167 crossref_primary_10_1109_TBME_2021_3090051 crossref_primary_10_1007_s11042_023_15123_4 crossref_primary_10_1016_j_bspc_2022_104041 crossref_primary_10_1016_j_bspc_2021_103331 crossref_primary_10_1109_ACCESS_2023_3236189 crossref_primary_10_1016_j_compbiomed_2023_106768 crossref_primary_10_1016_j_eswa_2021_115131 crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_1007_s13198_022_01650_0 crossref_primary_10_1038_s41598_024_75531_w crossref_primary_10_1049_htl2_12045 crossref_primary_10_3390_ijerph191710707 crossref_primary_10_1038_s41598_024_71700_z crossref_primary_10_1016_j_compeleceng_2020_106621 crossref_primary_10_1016_j_heliyon_2024_e41195 crossref_primary_10_1051_itmconf_20246401023 crossref_primary_10_1016_j_bspc_2023_104772 crossref_primary_10_1155_2021_6455053 crossref_primary_10_3390_app11135861 crossref_primary_10_1109_TMI_2024_3367409 crossref_primary_10_1109_ACCESS_2021_3128134 crossref_primary_10_1016_j_compbiomed_2023_107743 crossref_primary_10_1016_j_cmpb_2021_106190 crossref_primary_10_1007_s13721_022_00354_6 crossref_primary_10_1016_j_firesaf_2023_103852 crossref_primary_10_3390_diagnostics12020414 crossref_primary_10_1088_1361_6579_ad46e1 crossref_primary_10_1109_JBHI_2020_2981526 crossref_primary_10_1145_3357253 crossref_primary_10_1016_j_ins_2023_03_078 crossref_primary_10_1063_5_0046582 crossref_primary_10_1371_journal_pone_0264002 crossref_primary_10_1371_journal_pone_0285165 crossref_primary_10_3390_polym14142875 crossref_primary_10_1109_ACCESS_2021_3136793 crossref_primary_10_3390_s20174777 crossref_primary_10_32604_cmes_2021_016485 crossref_primary_10_1016_j_cmpbup_2023_100097 crossref_primary_10_1038_s41528_020_00092_7 crossref_primary_10_1007_s12065_020_00367_y crossref_primary_10_3390_s20216318 crossref_primary_10_3389_fphys_2021_727210 crossref_primary_10_3390_electronics10212572 crossref_primary_10_1016_j_irbm_2021_04_002 crossref_primary_10_1109_JIOT_2022_3188771 crossref_primary_10_1016_j_asoc_2023_110919 crossref_primary_10_1088_1361_6579_ac7938 crossref_primary_10_1007_s10916_019_1337_y crossref_primary_10_1016_j_cmpb_2021_106379 crossref_primary_10_1109_TIM_2023_3301047 crossref_primary_10_1016_j_bspc_2021_102692 crossref_primary_10_1155_2021_7167891 crossref_primary_10_1016_j_bspc_2022_104105 crossref_primary_10_3390_app11073163 crossref_primary_10_32604_iasc_2022_019877 crossref_primary_10_1109_ACCESS_2023_3338853 crossref_primary_10_1155_2020_8843963 crossref_primary_10_1016_j_ins_2021_12_083 crossref_primary_10_1007_s13721_024_00487_w crossref_primary_10_1016_j_asoc_2020_106383 crossref_primary_10_3390_sym11050725 crossref_primary_10_1515_bmt_2023_0099 crossref_primary_10_3390_info11120556 crossref_primary_10_36222_ejt_1336342 crossref_primary_10_2174_1574362417666220518120229 crossref_primary_10_1016_j_cogsys_2019_09_001 crossref_primary_10_3389_fcvm_2022_860032 crossref_primary_10_1007_s10489_024_05364_7 crossref_primary_10_1016_j_bspc_2024_106388 crossref_primary_10_3390_electronics11233976 crossref_primary_10_1016_j_cmpb_2021_106024 crossref_primary_10_1007_s11571_022_09870_7 crossref_primary_10_1016_j_bspc_2022_104238 crossref_primary_10_3390_s23094372 crossref_primary_10_1007_s11517_022_02656_3 crossref_primary_10_3390_s21051906 crossref_primary_10_1016_j_knosys_2023_110298 crossref_primary_10_1016_j_bbe_2020_04_004 crossref_primary_10_1007_s00521_020_05238_2 crossref_primary_10_1016_j_eswa_2024_125619 crossref_primary_10_1007_s11831_023_09927_8 crossref_primary_10_1016_j_cmpb_2019_03_012 crossref_primary_10_1016_j_knosys_2021_107187 crossref_primary_10_61186_rbmb_12_1_159 crossref_primary_10_1016_j_bspc_2021_102474 crossref_primary_10_1016_j_bspc_2022_104497 crossref_primary_10_1016_j_bspc_2023_105420 crossref_primary_10_1016_j_cmpb_2019_105138 crossref_primary_10_1007_s11082_020_02667_0 crossref_primary_10_1016_j_cmpb_2021_106035 crossref_primary_10_1145_3417958 crossref_primary_10_3390_s20164400 crossref_primary_10_1016_j_media_2024_103087 crossref_primary_10_1016_j_bspc_2021_103317 crossref_primary_10_1016_j_jneumeth_2021_109145 crossref_primary_10_1109_LSENS_2024_3450176 crossref_primary_10_1109_JBHI_2023_3246241 crossref_primary_10_3390_app12168368 crossref_primary_10_1109_JSEN_2024_3523035 crossref_primary_10_31801_cfsuasmas_1202806 crossref_primary_10_3390_bioengineering10050607 crossref_primary_10_3390_s23104805 crossref_primary_10_1016_j_cmpb_2019_105120 crossref_primary_10_1016_j_imu_2020_100479 crossref_primary_10_1109_JSEN_2021_3079241 crossref_primary_10_1088_1361_6579_acaa1a crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1016_j_artmed_2020_101848 crossref_primary_10_1109_TBME_2021_3129459 crossref_primary_10_4028_p_6yc34j crossref_primary_10_1109_TIM_2023_3241997 crossref_primary_10_3390_bioengineering11010058 crossref_primary_10_1038_s41467_023_39472_8 crossref_primary_10_1007_s00500_021_06555_x crossref_primary_10_1016_j_health_2022_100121 crossref_primary_10_1016_j_micpro_2022_104627 crossref_primary_10_1038_s41598_024_78028_8 crossref_primary_10_3390_mi14061155 crossref_primary_10_1016_j_neulet_2020_135194 crossref_primary_10_1109_JSEN_2020_2984493 crossref_primary_10_12677_CSA_2023_137146 crossref_primary_10_3233_AIC_210009 crossref_primary_10_1007_s12652_021_03484_3 crossref_primary_10_1016_j_bspc_2019_101700 crossref_primary_10_3390_math12172693 crossref_primary_10_1038_s41598_025_87115_3 crossref_primary_10_1080_21681163_2023_2228930 crossref_primary_10_1111_exsy_13011 crossref_primary_10_2478_jce_2023_0019 crossref_primary_10_26599_TST_2022_9010008 crossref_primary_10_1016_j_compbiomed_2020_103801 crossref_primary_10_3349_ymj_2022_63_7_692 crossref_primary_10_1016_j_irbm_2019_09_003 crossref_primary_10_1109_ACCESS_2020_3006707 crossref_primary_10_3390_bioengineering9090430 crossref_primary_10_3390_polym13213790 crossref_primary_10_1007_s11517_021_02322_0 crossref_primary_10_1007_s12530_023_09559_0 crossref_primary_10_3389_fphys_2022_783184 crossref_primary_10_3390_diagnostics13061099 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_1016_j_compbiomed_2024_107984 crossref_primary_10_1016_j_bspc_2022_104202 crossref_primary_10_1109_JBHI_2021_3101117 crossref_primary_10_1631_FITEE_2100519 crossref_primary_10_1007_s13369_022_07188_4 crossref_primary_10_1149_2162_8777_abb3b0 crossref_primary_10_3390_app11167758 crossref_primary_10_1155_2021_4123471 crossref_primary_10_1007_s00530_020_00728_8 crossref_primary_10_1109_JSEN_2024_3351918 crossref_primary_10_1109_ACCESS_2024_3385787 crossref_primary_10_1016_j_bspc_2020_102260 crossref_primary_10_3389_fninf_2020_00029 crossref_primary_10_1016_j_artmed_2019_101789 crossref_primary_10_1016_j_eswa_2025_126901 crossref_primary_10_1515_hsz_2020_0169 crossref_primary_10_3390_jpm12030336 crossref_primary_10_3389_fcvm_2024_1473482 crossref_primary_10_1016_j_cmpb_2022_107124 crossref_primary_10_1109_ACCESS_2019_2955555 crossref_primary_10_1016_j_compbiomed_2025_109737 crossref_primary_10_1016_j_patrec_2020_03_011 crossref_primary_10_1007_s10462_022_10262_w crossref_primary_10_1109_TIM_2021_3132833 crossref_primary_10_3389_fphys_2021_811661 crossref_primary_10_1007_s13042_022_01718_0 crossref_primary_10_1038_s41467_020_17804_2 crossref_primary_10_1007_s00500_019_04383_8 crossref_primary_10_1007_s13042_021_01389_3 crossref_primary_10_1007_s42979_023_02120_5 crossref_primary_10_1166_jmihi_2022_3945 crossref_primary_10_1007_s11042_021_11594_5 crossref_primary_10_1016_j_cmpb_2021_106009 crossref_primary_10_1016_j_cmpb_2019_105286 crossref_primary_10_1016_j_heliyon_2024_e26548 crossref_primary_10_1016_j_asoc_2024_112031 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1016_j_cmpb_2019_104992 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_1109_ACCESS_2022_3192390 crossref_primary_10_3390_app12115603 crossref_primary_10_3390_healthcare11071000 crossref_primary_10_1016_j_compbiomed_2022_105550 crossref_primary_10_3390_s20041020 crossref_primary_10_1088_2057_1976_ad40b0 crossref_primary_10_1016_j_jksuci_2022_01_002 crossref_primary_10_1063_5_0167477 crossref_primary_10_3390_s24165087 crossref_primary_10_2139_ssrn_4132904 crossref_primary_10_4103_jmss_JMSS_24_20 crossref_primary_10_3389_fphys_2022_840011 crossref_primary_10_1007_s00500_022_07729_x crossref_primary_10_3390_app12189208 crossref_primary_10_1109_ACCESS_2020_3001284 crossref_primary_10_34133_hds_0221 crossref_primary_10_3390_computers13050109 crossref_primary_10_3389_fmed_2022_878858 crossref_primary_10_1056_AIoa2300297 crossref_primary_10_1016_j_iswa_2022_200127 crossref_primary_10_1109_TCSII_2024_3355016 crossref_primary_10_1080_10255842_2024_2382817 crossref_primary_10_1088_1361_6579_ac7fd9 crossref_primary_10_1016_j_compbiomed_2019_103387 crossref_primary_10_1145_3637440 crossref_primary_10_3390_su142416572 crossref_primary_10_1016_j_apmt_2024_102332 crossref_primary_10_1016_j_asoc_2019_04_007 crossref_primary_10_1007_s10489_021_02696_6 crossref_primary_10_1016_j_bspc_2021_103374 crossref_primary_10_1142_S0218001421590072 crossref_primary_10_1007_s12652_020_02536_4 crossref_primary_10_56038_ejrnd_v4i1_421 crossref_primary_10_1186_s12874_024_02223_4 crossref_primary_10_1007_s12652_019_01306_1 crossref_primary_10_12688_f1000research_154316_1 crossref_primary_10_1109_ACCESS_2019_2919068 crossref_primary_10_1016_j_patrec_2021_02_004 crossref_primary_10_1016_j_knosys_2023_110555 crossref_primary_10_1016_j_engappai_2023_107599 crossref_primary_10_3390_biomed2040031 crossref_primary_10_3390_jcm13041033 crossref_primary_10_3390_electronics9060951 crossref_primary_10_1016_j_ins_2022_05_070 crossref_primary_10_1109_ACCESS_2019_2930770 crossref_primary_10_1016_j_cmpb_2019_06_021 crossref_primary_10_1109_TSMC_2023_3257022 crossref_primary_10_3390_s20247246 crossref_primary_10_1002_mco2_760 crossref_primary_10_1155_2022_6348424 crossref_primary_10_1016_j_patrec_2019_08_028 crossref_primary_10_1109_JBHI_2021_3060433 crossref_primary_10_3390_jcm11154578 crossref_primary_10_3390_en17061396 crossref_primary_10_1016_j_knosys_2019_04_023 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1109_TCSI_2023_3294181 crossref_primary_10_1007_s11431_023_2460_2 crossref_primary_10_1080_13682199_2023_2178608 crossref_primary_10_3390_biomedicines10082013 crossref_primary_10_1002_ett_4169 |
Cites_doi | 10.1161/01.CIR.101.23.e215 10.1109/TBME.2018.2877649 10.1007/s00521-018-03980-2 10.1142/S0219519417400048 10.1016/j.cmpb.2018.04.005 10.1016/j.knosys.2016.01.040 10.1016/j.swevo.2017.10.002 10.1049/htl.2014.0080 10.1016/j.compbiomed.2018.06.002 10.1186/s40064-015-1379-7 10.1016/j.hrthm.2015.11.035 10.1007/s11760-017-1146-z 10.1016/j.eswa.2017.09.022 10.1016/j.knosys.2017.06.026 10.1016/j.compbiomed.2018.07.005 10.1016/j.bspc.2016.07.007 10.1016/j.knosys.2018.09.001 10.1016/j.compbiomed.2018.09.009 10.1016/j.asoc.2017.12.001 10.3390/e19090488 10.1016/j.imu.2018.08.002 10.24003/emitter.v6i1.265 10.1007/s10916-016-0505-6 10.1109/TBME.2012.2213597 10.1016/j.ins.2017.06.027 10.1007/s10916-009-9314-5 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. May 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. May 1, 2019 |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2019.02.016 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_patrec_2019_02_016 S016786551930056X |
GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW SSH VOH WUQ Y6R 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-6a570706b1d9cafd487a9bd0f8388f9c83429ab1d2d6c6406629ce1687bb46593 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Fri Jul 25 04:01:22 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Tue Jul 01 02:40:38 EDT 2025 Fri Feb 23 02:24:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Myocardial infarction Deep learning Biomedical signal Multi-lead ECG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-6a570706b1d9cafd487a9bd0f8388f9c83429ab1d2d6c6406629ce1687bb46593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5375-3012 |
PQID | 2218296477 |
PQPubID | 2047552 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2218296477 crossref_primary_10_1016_j_patrec_2019_02_016 crossref_citationtrail_10_1016_j_patrec_2019_02_016 elsevier_sciencedirect_doi_10_1016_j_patrec_2019_02_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Barstuğan, Ceylan (bib0022) 2018 Faust, Hagiwara, Hong, Lih, Acharya (bib0027) 2018; 161 Tripathy, Dandapat (bib0004) 2016; 40 Dohare, Kumar, Kumar (bib0014) 2018; 64 Sharma, Sunkaria (bib0010) 2018; 12 Fujita, Sudarshan (bib0001) 2017 Weng, Lin, Chen, Chang (bib0012) 2014 Chollet, F. Keras: dDeep learning library for theano and tensorflow. URL Sharma, San Tan, Acharya (bib0005) 2018; 102 Goldberger, Amaral (bib0031) 2000; 101 Tao, Zhang (bib0023) 2018 Lodhi, Qureshi, Sharif, Ashiq (bib0024) 2018 Yıldırım, Baloglu, Acharya (bib0034) 2018 Kenttä, Nearing (bib0002) 2016; 13 Sun, Lu, Yang, Li (bib0007) 2012; 59 Sadhukhan, Pal, Mitra (bib0018) 2018; 67 Pławiak (bib0021) 2018; 92 Oh, Ng, San Tan, Acharya (bib0030) 2018; 102 Tripathy, Sharma, Dandapat (bib0016) 2014; 1 Yıldırım, Pławiak, Tan, Acharya (bib0028) 2018; 102 Sopic, Aminifar, Aminifar, Atienza (bib0017) 2018; 12 He, Tan, Xing (bib0015) 2019; 163 Acharya, Fujita (bib0008) 2016; 99 Kora, Kalva (bib0013) 2015; 4 Assodiky, Syarif, Badriyah (bib0029) 2018; 6 Pławiak (bib0035) 2018; 39 Jayachandran (bib0037) 2010; 34 Acharya, Fujita (bib0003) 2017; 132 Lu, Ong, Chia (bib0006) 2000 Kumar, Pachori, Acharya (bib0009) 2017; 19 Padhy, Dandapat (bib0019) 2017; 31 Oh, Hagiwara (bib0011) 2017; 17 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0026) 2017; 415 io, 7(8), 2015. Pławiak, Acharya (bib0036) 2019 Lui, Chow (bib0025) 2018; 13 Zhu, Zeng, Wang (bib0033) 2010; 19 Martis, Chakraborty, Ray (bib0020) 2009 Sadhukhan (10.1016/j.patrec.2019.02.016_bib0018) 2018; 67 Padhy (10.1016/j.patrec.2019.02.016_bib0019) 2017; 31 Lui (10.1016/j.patrec.2019.02.016_bib0025) 2018; 13 Kenttä (10.1016/j.patrec.2019.02.016_bib0002) 2016; 13 Dohare (10.1016/j.patrec.2019.02.016_bib0014) 2018; 64 Martis (10.1016/j.patrec.2019.02.016_bib0020) 2009 Assodiky (10.1016/j.patrec.2019.02.016_bib0029) 2018; 6 Weng (10.1016/j.patrec.2019.02.016_bib0012) 2014 Tripathy (10.1016/j.patrec.2019.02.016_bib0016) 2014; 1 Tripathy (10.1016/j.patrec.2019.02.016_bib0004) 2016; 40 Sun (10.1016/j.patrec.2019.02.016_bib0007) 2012; 59 Tao (10.1016/j.patrec.2019.02.016_bib0023) 2018 Acharya (10.1016/j.patrec.2019.02.016_bib0026) 2017; 415 Oh (10.1016/j.patrec.2019.02.016_bib0030) 2018; 102 Oh (10.1016/j.patrec.2019.02.016_bib0011) 2017; 17 Goldberger (10.1016/j.patrec.2019.02.016_bib0031) 2000; 101 Faust (10.1016/j.patrec.2019.02.016_bib0027) 2018; 161 10.1016/j.patrec.2019.02.016_bib0032 Sharma (10.1016/j.patrec.2019.02.016_bib0010) 2018; 12 Barstuğan (10.1016/j.patrec.2019.02.016_bib0022) 2018 Yıldırım (10.1016/j.patrec.2019.02.016_bib0028) 2018; 102 Jayachandran (10.1016/j.patrec.2019.02.016_bib0037) 2010; 34 Pławiak (10.1016/j.patrec.2019.02.016_bib0021) 2018; 92 Acharya (10.1016/j.patrec.2019.02.016_bib0008) 2016; 99 Lodhi (10.1016/j.patrec.2019.02.016_bib0024) 2018 Acharya (10.1016/j.patrec.2019.02.016_bib0003) 2017; 132 Kumar (10.1016/j.patrec.2019.02.016_bib0009) 2017; 19 Sharma (10.1016/j.patrec.2019.02.016_bib0005) 2018; 102 Sopic (10.1016/j.patrec.2019.02.016_bib0017) 2018; 12 Kora (10.1016/j.patrec.2019.02.016_bib0013) 2015; 4 He (10.1016/j.patrec.2019.02.016_bib0015) 2019; 163 Pławiak (10.1016/j.patrec.2019.02.016_bib0035) 2018; 39 Lu (10.1016/j.patrec.2019.02.016_bib0006) 2000 Pławiak (10.1016/j.patrec.2019.02.016_bib0036) 2019 Fujita (10.1016/j.patrec.2019.02.016_bib0001) 2017 Yıldırım (10.1016/j.patrec.2019.02.016_bib0034) 2018 Zhu (10.1016/j.patrec.2019.02.016_bib0033) 2010; 19 |
References_xml | – start-page: 1 year: 2018 end-page: 12 ident: bib0034 article-title: A deep convolutional neural network model for automated identification of abnormal EEG signals publication-title: Neur. Comp. Appl. – volume: 13 start-page: 713 year: 2016 end-page: 720 ident: bib0002 article-title: Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms publication-title: Heart Rhythm – volume: 31 start-page: 71 year: 2017 end-page: 78 ident: bib0019 article-title: Third-order tensor based analysis of multilead ECG for classification of myocardial infarction publication-title: Biomed. Signal Process. Control – volume: 4 start-page: 666 year: 2015 ident: bib0013 article-title: Improved Bat algorithm for the detection of myocardial infarction publication-title: SpringerPlus – start-page: 259 year: 2017 end-page: 266 ident: bib0001 article-title: Characterization of cardiovascular diseases using wavelet packet decomposition and nonlinear measures of electrocardiogram signal publication-title: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: bib0030 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – volume: 67 start-page: 1 year: 2018 end-page: 11 ident: bib0018 article-title: Automated identification of myocardial infarction using harmonic phase distribution pattern of ECG data publication-title: IEEE Trans. Instrum. Meas. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0031 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 34 start-page: 985 year: 2010 end-page: 992 ident: bib0037 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J. Med. Syst. – volume: 132 start-page: 156 year: 2017 end-page: 166 ident: bib0003 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowledge-Based Syst. – volume: 163 start-page: 392 year: 2019 end-page: 403 ident: bib0015 article-title: Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering publication-title: Knowledge-Based Syst. – year: 2019 ident: bib0036 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neur. Comp. Appl. – start-page: 689 year: 2014 end-page: 699 ident: bib0012 article-title: Myocardial infarction classification by morphological feature extraction from big 12-lead ECG data publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 99 start-page: 146 year: 2016 end-page: 156 ident: bib0008 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowledge-Based Syst. – volume: 12 start-page: 199 year: 2018 end-page: 206 ident: bib0010 article-title: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal publication-title: Image Video Process. – start-page: 1 year: 2009 end-page: 4 ident: bib0020 article-title: An integrated ECG feature extraction scheme using PCA and wavelet transform publication-title: India Conference (INDICON) – volume: 13 start-page: 26 year: 2018 end-page: 33 ident: bib0025 article-title: Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices publication-title: Informat. Med. Unlock. – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: bib0027 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput. Methods Programs Biomed. – volume: 59 start-page: 3348 year: 2012 end-page: 3356 ident: bib0007 article-title: ECG analysis using multiple instance learning for myocardial infarction detection publication-title: IEEE Trans. Biomed. Eng. – volume: 19 start-page: 488 year: 2017 ident: bib0009 article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework publication-title: Entropy – reference: Chollet, F. Keras: dDeep learning library for theano and tensorflow. URL: – volume: 102 start-page: 341 year: 2018 end-page: 356 ident: bib0005 article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank publication-title: Comput. Biol. Med. – volume: 1 start-page: 98 year: 2014 end-page: 103 ident: bib0016 article-title: A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification publication-title: Healthcare Technol. Lett. – volume: 415 start-page: 190 year: 2017 end-page: 198 ident: bib0026 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inform. Sci. – volume: 12 start-page: 1 year: 2018 end-page: 11 ident: bib0017 article-title: Real-time event-driven classification technique for early detection and prevention of myocardial infarction on wearable systems publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 92 start-page: 334 year: 2018 end-page: 349 ident: bib0021 article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system publication-title: Expert Syst. Appl. – volume: 39 start-page: 192 year: 2018 end-page: 208 ident: bib0035 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm Evolution. Comp. – year: 2018 ident: bib0023 article-title: Magnetocardiography based ischemic heart disease detection and localization using machine learning methods publication-title: IEEE Trans. Biomed. Eng. – volume: 102 start-page: 411 year: 2018 end-page: 420 ident: bib0028 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. – volume: 17 year: 2017 ident: bib0011 article-title: Shockable versus nonshockable life-threatening ventricular arrhythmias using DWT and nonlinear features of ECG signals publication-title: J. Mech. Med. Biol. – year: 2018 ident: bib0022 article-title: The effect of dictionary learning on weight update of adaboost and ECG classification publication-title: J. King Saud Univ.-Comp. Inform. Sci. – reference: . io, 7(8), 2015. – volume: 40 start-page: 143 year: 2016 ident: bib0004 article-title: Detection of cardiac abnormalities from multilead ECG using multiscale phase alternation features publication-title: J. Med. Syst. – volume: 64 start-page: 138 year: 2018 end-page: 147 ident: bib0014 article-title: Detection of myocardial infarction in 12 lead ECG using support vector machine publication-title: Appl. Soft Comput. – start-page: 387 year: 2000 end-page: 390 ident: bib0006 article-title: An automated ECG classification system based on a neuro-fuzzy system publication-title: Computers in Cardiology 2000 – start-page: 337 year: 2018 end-page: 352 ident: bib0024 article-title: A novel approach using voting from ecg leads to detect myocardial infarction publication-title: Proceedings of SAI Intelligent Systems Conference – volume: 6 start-page: 75 year: 2018 end-page: 91 ident: bib0029 article-title: Arrhythmia classification using long short-term memory with adaptive learning rate publication-title: EMITTER Int. J. Eng. Technol. – volume: 19 start-page: 67 year: 2010 ident: bib0033 article-title: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations publication-title: NESUG proceedings: health care and life sciences – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.patrec.2019.02.016_bib0031 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – start-page: 259 year: 2017 ident: 10.1016/j.patrec.2019.02.016_bib0001 article-title: Characterization of cardiovascular diseases using wavelet packet decomposition and nonlinear measures of electrocardiogram signal – year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0023 article-title: Magnetocardiography based ischemic heart disease detection and localization using machine learning methods publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2877649 – year: 2019 ident: 10.1016/j.patrec.2019.02.016_bib0036 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neur. Comp. Appl. doi: 10.1007/s00521-018-03980-2 – volume: 17 issue: 07 year: 2017 ident: 10.1016/j.patrec.2019.02.016_bib0011 article-title: Shockable versus nonshockable life-threatening ventricular arrhythmias using DWT and nonlinear features of ECG signals publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400048 – year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0022 article-title: The effect of dictionary learning on weight update of adaboost and ECG classification publication-title: J. King Saud Univ.-Comp. Inform. Sci. – volume: 161 start-page: 1 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0027 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.005 – volume: 99 start-page: 146 year: 2016 ident: 10.1016/j.patrec.2019.02.016_bib0008 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2016.01.040 – volume: 39 start-page: 192 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0035 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm Evolution. Comp. doi: 10.1016/j.swevo.2017.10.002 – start-page: 387 year: 2000 ident: 10.1016/j.patrec.2019.02.016_bib0006 article-title: An automated ECG classification system based on a neuro-fuzzy system – volume: 1 start-page: 98 issue: 4 year: 2014 ident: 10.1016/j.patrec.2019.02.016_bib0016 article-title: A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification publication-title: Healthcare Technol. Lett. doi: 10.1049/htl.2014.0080 – volume: 102 start-page: 278 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0030 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – volume: 4 start-page: 666 issue: 1 year: 2015 ident: 10.1016/j.patrec.2019.02.016_bib0013 article-title: Improved Bat algorithm for the detection of myocardial infarction publication-title: SpringerPlus doi: 10.1186/s40064-015-1379-7 – ident: 10.1016/j.patrec.2019.02.016_bib0032 – volume: 19 start-page: 67 year: 2010 ident: 10.1016/j.patrec.2019.02.016_bib0033 article-title: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations – volume: 13 start-page: 713 issue: 3 year: 2016 ident: 10.1016/j.patrec.2019.02.016_bib0002 article-title: Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.11.035 – volume: 12 start-page: 199 issue: 2 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0010 article-title: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal publication-title: Image Video Process. doi: 10.1007/s11760-017-1146-z – volume: 92 start-page: 334 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0021 article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.022 – volume: 132 start-page: 156 year: 2017 ident: 10.1016/j.patrec.2019.02.016_bib0003 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2017.06.026 – volume: 102 start-page: 341 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0005 article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.005 – volume: 31 start-page: 71 year: 2017 ident: 10.1016/j.patrec.2019.02.016_bib0019 article-title: Third-order tensor based analysis of multilead ECG for classification of myocardial infarction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.07.007 – volume: 163 start-page: 392 year: 2019 ident: 10.1016/j.patrec.2019.02.016_bib0015 article-title: Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2018.09.001 – volume: 102 start-page: 411 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0028 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.09.009 – volume: 64 start-page: 138 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0014 article-title: Detection of myocardial infarction in 12 lead ECG using support vector machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.001 – start-page: 337 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0024 article-title: A novel approach using voting from ecg leads to detect myocardial infarction – volume: 19 start-page: 488 issue: 9 year: 2017 ident: 10.1016/j.patrec.2019.02.016_bib0009 article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework publication-title: Entropy doi: 10.3390/e19090488 – start-page: 1 year: 2009 ident: 10.1016/j.patrec.2019.02.016_bib0020 article-title: An integrated ECG feature extraction scheme using PCA and wavelet transform – volume: 13 start-page: 26 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0025 article-title: Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices publication-title: Informat. Med. Unlock. doi: 10.1016/j.imu.2018.08.002 – volume: 6 start-page: 75 issue: 1 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0029 article-title: Arrhythmia classification using long short-term memory with adaptive learning rate publication-title: EMITTER Int. J. Eng. Technol. doi: 10.24003/emitter.v6i1.265 – volume: 67 start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0018 article-title: Automated identification of myocardial infarction using harmonic phase distribution pattern of ECG data publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0034 article-title: A deep convolutional neural network model for automated identification of abnormal EEG signals publication-title: Neur. Comp. Appl. – volume: 40 start-page: 143 issue: 6 year: 2016 ident: 10.1016/j.patrec.2019.02.016_bib0004 article-title: Detection of cardiac abnormalities from multilead ECG using multiscale phase alternation features publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0505-6 – volume: 59 start-page: 3348 issue: 12 year: 2012 ident: 10.1016/j.patrec.2019.02.016_bib0007 article-title: ECG analysis using multiple instance learning for myocardial infarction detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2213597 – volume: 415 start-page: 190 year: 2017 ident: 10.1016/j.patrec.2019.02.016_bib0026 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.06.027 – start-page: 689 year: 2014 ident: 10.1016/j.patrec.2019.02.016_bib0012 article-title: Myocardial infarction classification by morphological feature extraction from big 12-lead ECG data – volume: 12 start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.patrec.2019.02.016_bib0017 article-title: Real-time event-driven classification technique for early detection and prevention of myocardial infarction on wearable systems publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 34 start-page: 985 issue: 6 year: 2010 ident: 10.1016/j.patrec.2019.02.016_bib0037 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9314-5 |
SSID | ssj0006398 |
Score | 2.6553102 |
Snippet | •An efficient deep learning model for the diagnosis of MI from the standard 12 lead ECG.•The proposed model can successfully distinguish between 10 different... Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Artificial neural networks Biomedical signal Blood Cardiac muscle Deep learning Diagnosis Echocardiography EKG Electrocardiography Heart Heart attacks Intensive care units Machine learning Multi-lead ECG Muscles Myocardial infarction Neural networks Response time Time lag |
Title | Classification of myocardial infarction with multi-lead ECG signals and deep CNN |
URI | https://dx.doi.org/10.1016/j.patrec.2019.02.016 https://www.proquest.com/docview/2218296477 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6V8jIe2GAgyhjyA6-mSZw4zmNVUbpNq5AAqW-WYzsSqLTVVh544W_nznHQNk1C4jH-EUV357uL9d13AGe5K1xqC8ebxEqeW5Fxk3nBU5lZo1Jrk1Ak9nMmp7f593kx78G4q4UhWGX0_a1PD946jgyjNIfru7vhNQHoqawSUxAitJxvwXYmKln0YXv07cd09uqQMQirjuKbNnQVdAHmRVfOnrgM0yqQd1Lj8_9HqH98dQhAk0-wGzNHNmo_bg96frkPH7uuDCwe0n3Y-YNi8DNcha6XhAcKKmCrhj08Yfwiu1gwNC809DBBF7IswAv5AvXOLsaXjMAdaJ7MLB1z3q_ZeDY7gNvJxc14ymMXBW6FyDdcmqLEcy3r1FXWNA7_UExVu6RRQqmmskpgSDI4mzlpZU6M8JX1qVRlXeeyqMQh9JerpT8CZhOLGYcvnCldbpWslDeYr1mT-tKgNQxAdJLTNlKMU6eLhe6wZPe6lbcmeesk0zg4AP66a91SbLyxvuyUov8yFY1R4I2dJ50OdTyqv3VGHPahHvf43S_-Ah_oqQVCnkB_8-vRf8VkZVOfwtb5c3oaTfIFTU3pEA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6F9AAc2vISAdrugesS22uv18cqIg0UIiQSKbfVenctgUKIaHrgwm9nZm2XFiEh9bovWTOzM-PVN98AHKcuc7HNHK8iK3lqRcJN4gWPZWKNiq2NQpHY5ViOpun5LJt1YNDWwhCssvH9tU8P3roZ6TfS7C9vbvrXBKCnskpMQYjQcrYGH9JM5ITrO3l6wXlgCFYtwTctb-vnAsiLHpw9MRnGRaDupLbnb8enV546hJ_hZ_jY5I3se_1pW9Dxi2341PZkYM0V3YbNvwgGd-Aq9LwkNFBQALuv2N0jRi-yijlD40IzDxP0HMsCuJDPUevsdPCDEbQDjZOZhWPO-yUbjMe7MB2eTgYj3vRQ4FaIdMWlyXK81bKMXWFN5fD_xBSliyollKoKqwQGJIOziZNWpsQHX1gfS5WXZSqzQuxBd3G_8PvAbGQx3_CZM7lLrZKF8gazNWtinxu0hR6IVnLaNgTj1Odirlsk2a2u5a1J3jpKNA72gP_ZtawJNt5Zn7dK0f8YisYY8M7Oo1aHurmov3RCDPahGvfgvw_-BuujyeWFvjgb_zyEDZqpIZFH0F09_PZfMG1ZlV-DWT4DQ-Pp2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+myocardial+infarction+with+multi-lead+ECG+signals+and+deep+CNN&rft.jtitle=Pattern+recognition+letters&rft.au=Baloglu%2C+Ulas+Baran&rft.au=Talo%2C+Muhammed&rft.au=Yildirim%2C+Ozal&rft.au=Tan%2C+Ru+San&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=122&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.patrec.2019.02.016&rft.externalDocID=S016786551930056X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |