Loosening detection method for hexagonal screws based on error compensation and deep learning

Screws are extensively utilised across various domains. However, the problem of screw loosening not only impacts the stability and safety of engineering structures but also poses the risk of severe accidents and losses. The hollow design of hexagonal screw heads limits the effectiveness of conventio...

Full description

Saved in:
Bibliographic Details
Published inInsight (Northampton) Vol. 66; no. 10; pp. 605 - 614
Main Authors Li, Yang, Luo, Pengzhan, Zhou, Yang
Format Journal Article
LanguageEnglish
Published The British Institute of Non-Destructive Testing 01.10.2024
Subjects
Online AccessGet full text
ISSN1354-2575
DOI10.1784/insi.2024.66.10.605

Cover

Abstract Screws are extensively utilised across various domains. However, the problem of screw loosening not only impacts the stability and safety of engineering structures but also poses the risk of severe accidents and losses. The hollow design of hexagonal screw heads limits the effectiveness of conventional methods for detecting screw loosening. Additionally, traditional visual detection methods are influenced by the surrounding environment, affecting detection accuracy. To tackle these challenges, this study introduces a novel approach based on deep learning for detecting loosened hexagonal screws. This method primarily relies on the you only look once version 8 (YOLOv8) algorithm to accurately detect the coordinates of the four key points of the hexagonal screw. By applying geometric imaging theory, equations are derived for calculating the loosening angle and length of hexagonal screws. By utilising these equations along with bolt parameters, the degree of loosening is determined. Furthermore, photos captured in low-light environments are enhanced using an improved automatic colour enhancement (ACE) algorithm, which saturates image colours to improve environmental adaptability. This enhancement facilitates better recognition of hexagonal screws even in dark environments. Four colour enhancement methods are also evaluated based on four criteria. Moreover, by employing a back-propagation (BP) neural network for error compensation, the proposed method brings predicted values closer to actual values. The experimental results demonstrate an angular identification error of less than 1° and a length identification error of less than 1 mm for loose hexagonal screws.
AbstractList Screws are extensively utilised across various domains. However, the problem of screw loosening not only impacts the stability and safety of engineering structures but also poses the risk of severe accidents and losses. The hollow design of hexagonal screw heads limits the effectiveness of conventional methods for detecting screw loosening. Additionally, traditional visual detection methods are influenced by the surrounding environment, affecting detection accuracy. To tackle these challenges, this study introduces a novel approach based on deep learning for detecting loosened hexagonal screws. This method primarily relies on the you only look once version 8 (YOLOv8) algorithm to accurately detect the coordinates of the four key points of the hexagonal screw. By applying geometric imaging theory, equations are derived for calculating the loosening angle and length of hexagonal screws. By utilising these equations along with bolt parameters, the degree of loosening is determined. Furthermore, photos captured in low-light environments are enhanced using an improved automatic colour enhancement (ACE) algorithm, which saturates image colours to improve environmental adaptability. This enhancement facilitates better recognition of hexagonal screws even in dark environments. Four colour enhancement methods are also evaluated based on four criteria. Moreover, by employing a back-propagation (BP) neural network for error compensation, the proposed method brings predicted values closer to actual values. The experimental results demonstrate an angular identification error of less than 1° and a length identification error of less than 1 mm for loose hexagonal screws.
Author Zhou, Yang
Luo, Pengzhan
Li, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China
– sequence: 2
  givenname: Pengzhan
  surname: Luo
  fullname: Luo, Pengzhan
  organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China
– sequence: 3
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China
BookMark eNp1kMtuwyAURFmkUpO0X9CNfyApL2NnWUXpQ4rULtplhTBcO44ciID09fWFuNuy4WpgjubODE2ss4DQDcFLUtX8trehX1JM-VKIZRIFLidoSljJF7Ssyks0C2GPMVsRgqfofetcANvbrjAQQcfe2eIAcedM0Tpf7OBLdc6qoQjaw2coGhXAFOkTeJ_etTscwQZ19ilrEgWOxQDKZ-YVumjVEOD6756jt_vN6_pxsX1-eFrfbReaMR4XgnOhBa2g1rXihtS0oYLishQVNYArwoymrGphJXjZJrltGkMEwU1yaE7ZHLGRq70LwUMrj74_KP8tCZa5FZlbkbkVKUQWUyvJ9TK6UlKwUcm9O_m0apC9lk1vTZS5ttya_BDCJlsmEJwGzBmWBlp1GqKMysvuRwaekJt_kCMvx-h2cUyCzyflGYdEVT7mibNfo06MxA
Cites_doi 10.1177/14759217231158540
10.1016/j.ymssp.2019.04.010
10.1177/09544062211039882
10.1109/TIE.2019.2899555
10.1109/JSEN.2023.3271607
10.1016/j.ymssp.2013.05.023
10.1177/1475921719837509
10.1111/mice.13023
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1784/insi.2024.66.10.605
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 614
ExternalDocumentID 10_1784_insi_2024_66_10_605
bindt/insight/2024/00000066/00000010/art00004
GroupedDBID 5GY
ABDBF
AENEX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
ESX
I-F
IPNFZ
RIG
SC5
TUS
~8M
AAYXX
ACUHS
ADMLS
CITATION
ID FETCH-LOGICAL-c334t-6446c627e8c8a4d182b262055672de0713dc237fe9645f556fbbd1610be8cc423
ISSN 1354-2575
IngestDate Tue Jul 01 03:41:30 EDT 2025
Thu Oct 10 23:23:54 EDT 2024
Fri Oct 11 21:50:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-6446c627e8c8a4d182b262055672de0713dc237fe9645f556fbbd1610be8cc423
Notes 1354-2575(20241001)66:10L.605;1-
PageCount 10
ParticipantIDs ingenta_journals_bindt_insight_2024_00000066_00000010_art00004
crossref_primary_10_1784_insi_2024_66_10_605
ingenta_journals_ic_bindt_13542575_v66n10_20241010_0430_default_tar_gz_s4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241001
2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241001
  day: 01
PublicationDecade 2020
PublicationTitle Insight (Northampton)
PublicationTitleAbbrev Insight
PublicationYear 2024
Publisher The British Institute of Non-Destructive Testing
Publisher_xml – name: The British Institute of Non-Destructive Testing
References (R26_322_311) 2013; 40
(R26_434_644) 2020; 19
(R26_218_644) 2023; 22
(R26_452_460) 2019; 128
(R26_424_207) 2022; 236
(R26_254_518) 2020; 33
(R26_322_426) 2022; 44
(R26_379_610) 2023; 38
(R26_322_127) 2023; 23
(R26_486_495) 2020; 67
(R26_102_483) 2013; 9
References_xml – volume: 22
  start-page: 4264
  issn: 14759217
  issue: 6
  year: 2023
  ident: R26_218_644
  publication-title: Structural Health Monitoring
  doi: 10.1177/14759217231158540
– volume: 128
  start-page: 588
  issn: 08883270
  year: 2019
  ident: R26_452_460
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.04.010
– volume: 236
  start-page: 3277
  issn: 09544062
  issue: 7
  year: 2022
  ident: R26_424_207
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
  doi: 10.1177/09544062211039882
– volume: 44
  start-page: 1303
  issn: 03111563
  year: 2022
  ident: R26_322_426
  publication-title: STRUCTURES REPORT- DEPARTMENT OF ARCHITECTURAL SCIENCE UNIVERSITY OF SYDNEY
– volume: 9
  start-page: 255
  issn: 02780895
  issue: 12
  year: 2013
  ident: R26_102_483
  publication-title: International Journal of Distributed Sensor Networks
– volume: 67
  start-page: 1366
  issn: 02780046
  issue: 2
  year: 2020
  ident: R26_486_495
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2019.2899555
– volume: 23
  start-page: 13292
  issn: 1530437X
  issue: 12
  year: 2023
  ident: R26_322_127
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2023.3271607
– volume: 40
  start-page: 589
  issn: 08883270
  issue: 2
  year: 2013
  ident: R26_322_311
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.05.023
– volume: 19
  start-page: 105
  issn: 14759217
  issue: 1
  year: 2020
  ident: R26_434_644
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921719837509
– volume: 33
  start-page: 40
  issn: 05776686
  issue: 4
  year: 2020
  ident: R26_254_518
  publication-title: Chinese Journal of Mechanical Engineering
– volume: 38
  start-page: 2443
  issn: 10939687
  issue: 17
  year: 2023
  ident: R26_379_610
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.13023
SSID ssj0039110
Score 2.3429062
Snippet Screws are extensively utilised across various domains. However, the problem of screw loosening not only impacts the stability and safety of engineering...
SourceID crossref
ingenta
SourceType Index Database
Enrichment Source
Publisher
StartPage 605
SubjectTerms Ace Algorithm
Bp Neural Network
Hexagonal Screws
Loosening Detection
Yolov8
Title Loosening detection method for hexagonal screws based on error compensation and deep learning
URI https://www.ingentaconnect.com/content/bindt/insight/2024/00000066/00000010/art00004
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1354-2575
  databaseCode: ABDBF
  dateStart: 20040801
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0039110
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1354-2575
  databaseCode: ADMLS
  dateStart: 20040801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0039110
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdKd4HDxKcoA-QDt5HSJraTXZAmYNpQtwudNJCQFX-knTSSqk0n1P-F_5X3bCdLtR34uESRa1vu-_38_Ow8v0fIm6zQIgNLIkJjIWKwxkYZ50VkzYEpBI91xvCi8OmZOD5nny_4Ra_3q-O1tK7VUG_uvFfyL6hCGeCKt2T_Atm2UyiAd8AXnoAwPP8I40lVraw72DC2tj7pt08J7bwH5_ZnPnMnfaAbQJnt45Jl8POAXS7hd3Qnh12spwAeoBtrF00eiVnXbD0pV7iJd6l78ENP_mPhbMb2FGHinAK-5qEZlqwr7_9bzjbzGwp-m1frrarhxCFmre-a58g0OC5gxKUtj4azqoxwt-zi3l7b_SnGCSlnHe2acBaBjuBd9euTrjQ0G3WUqRjxzros_GXTWyo_zRjgdAlyGOJgh0IMobhtuxVLW-EdiVDbHX0cYZPgYonWV_s6RsdLANbtoe6RnRgWjVGf7Bx-PJ18aZb6BFYKfw09_K8Q1gqG9O6OAW2ZPs3duY41M31IdsM2hB56Tj0iPVs-Jg86wSmfkO8tu2jLLurZRYFdtGUX9eyijl0UKjl20S67KLCLIrtow66n5Pzo0_TDcRSScUQ6SVgdgd0stIhTm-ksZwa2pQpzGXAu0thYPOswOk7Swh4IxgsoLpQyoARGClpoMNqfkX5ZlfY5oTHTYERqWE10ztKU59rGYzWO44Inigk1IG8bOcmFj7kica8KYpUoVolilUJgIYh1QN4HWcowN1fSAS0DzL5-A7FsAJYNvANycquDSx36QGwRWnktRAmNsK8xtsZgedLYIl9f1bLOl3K2kSv24n8Hs0fu38y5l6QPs8m-Aru3Vq8D-34DNGerIQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loosening+detection+method+for+hexagonal+screws+based+on+error+compensation+and+deep+learning&rft.jtitle=Insight+%28Northampton%29&rft.au=Li%2C+Yang&rft.au=Luo%2C+Pengzhan&rft.au=Zhou%2C+Yang&rft.date=2024-10-01&rft.pub=The+British+Institute+of+Non-Destructive+Testing&rft.issn=1354-2575&rft.volume=66&rft.issue=10&rft.spage=605&rft.epage=614&rft_id=info:doi/10.1784%2Finsi.2024.66.10.605&rft.externalDocID=bindt%2Finsight%2F2024%2F00000066%2F00000010%2Fart00004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-2575&client=summon