The hybrid technique for DDoS detection with supervised learning algorithms

Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high efficiency in order to prevent or slow down users' access to services. In this paper, we propose a novel hybrid framework based on data stream...

Full description

Saved in:
Bibliographic Details
Published inComputer networks (Amsterdam, Netherlands : 1999) Vol. 158; pp. 35 - 45
Main Authors Hosseini, Soodeh, Azizi, Mehrdad
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 20.07.2019
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN1389-1286
1872-7069
DOI10.1016/j.comnet.2019.04.027

Cover

Abstract Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high efficiency in order to prevent or slow down users' access to services. In this paper, we propose a novel hybrid framework based on data stream approach for detecting DDoS attack with incremental learning. We use a technique which divides the computational load between client and proxy sides based on their resource to organize the task with high speed. Client side contains three steps, first is the data collecting of the client system, second is the feature extraction based on forward feature selection for each algorithm, and the divergence test. Consequently, if divergence got bigger than a threshold, the attack is detected otherwise data processed to the proxy side. We use the naïve Bayes, random forest, decision tree, multilayer perceptron (MLP), and k-nearest neighbors (K-NN) on the proxy side to make better results. Different attacks have their specific behavior, and because of different selected features for each algorithm, the appropriate performance for detecting attacks and more ability to distinguish new attack types is achieved. The results show that the random forest produces better results among other mentioned algorithms.
AbstractList Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high efficiency in order to prevent or slow down users' access to services. In this paper, we propose a novel hybrid framework based on data stream approach for detecting DDoS attack with incremental learning. We use a technique which divides the computational load between client and proxy sides based on their resource to organize the task with high speed. Client side contains three steps, first is the data collecting of the client system, second is the feature extraction based on forward feature selection for each algorithm, and the divergence test. Consequently, if divergence got bigger than a threshold, the attack is detected otherwise data processed to the proxy side. We use the naïve Bayes, random forest, decision tree, multilayer perceptron (MLP), and k-nearest neighbors (K-NN) on the proxy side to make better results. Different attacks have their specific behavior, and because of different selected features for each algorithm, the appropriate performance for detecting attacks and more ability to distinguish new attack types is achieved. The results show that the random forest produces better results among other mentioned algorithms.
Author Azizi, Mehrdad
Hosseini, Soodeh
Author_xml – sequence: 1
  givenname: Soodeh
  surname: Hosseini
  fullname: Hosseini, Soodeh
  email: so_hosseini@uk.ac.ir
  organization: Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
– sequence: 2
  givenname: Mehrdad
  surname: Azizi
  fullname: Azizi, Mehrdad
  organization: Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
BookMark eNqFkLtOwzAUhi1UJNrCGzBYYk7wrbkwIKFyFZUYKLPlOE7jKLWL7Rb17XEUJgaYjuXzf8c-3wxMjDUKgEuMUoxwdt2l0m6NCilBuEwRSxHJT8AUFzlJcpSVk3imRZlgUmRnYOZ9hxBijBRT8LpuFWyPldM1DEq2Rn_uFWysg_f39h3WKl4GbQ380qGFfr9T7qC9qmGvhDPabKDoN9bF5tafg9NG9F5d_NQ5-Hh8WC-fk9Xb08vybpVISllIFkRQhmiTkVIsFJO1YEXFyqpgsUpJUC4ExbTOcIUZymNaZjVphp4kVDZ0Dq7GuTtn42994J3dOxOf5IQsiggxlsXUzZiSznrvVMOlDmLYJTihe44RH-Txjo_y-CCPI8ajvAizX_DO6a1wx_-w2xFTcf2DVo57qZWRqtYueuS11X8P-AZJ9o38
CitedBy_id crossref_primary_10_3390_en12244768
crossref_primary_10_1007_s10586_022_03657_5
crossref_primary_10_3390_electronics11223817
crossref_primary_10_4018_IJDAI_301212
crossref_primary_10_1016_j_comnet_2023_109846
crossref_primary_10_1016_j_iot_2024_101343
crossref_primary_10_1155_2022_9663052
crossref_primary_10_1371_journal_pone_0309682
crossref_primary_10_1155_2022_3794579
crossref_primary_10_1016_j_datak_2022_102130
crossref_primary_10_1002_acs_3415
crossref_primary_10_1002_cpe_7334
crossref_primary_10_1186_s13677_021_00257_3
crossref_primary_10_3390_s22072697
crossref_primary_10_1016_j_comnet_2020_107792
crossref_primary_10_1142_S0218843023500259
crossref_primary_10_3934_nhm_2023061
crossref_primary_10_3390_s20205845
crossref_primary_10_1016_j_jnca_2020_102894
crossref_primary_10_1016_j_energy_2024_133081
crossref_primary_10_3390_electronics13204061
crossref_primary_10_1016_j_comnet_2020_107390
crossref_primary_10_1007_s12083_023_01460_6
crossref_primary_10_1016_j_comnet_2022_109269
crossref_primary_10_1109_ACCESS_2021_3126834
crossref_primary_10_1016_j_comnet_2021_108498
crossref_primary_10_1016_j_cose_2021_102392
crossref_primary_10_1007_s10586_022_03577_4
crossref_primary_10_1016_j_cose_2019_101645
crossref_primary_10_1109_ACCESS_2019_2950820
crossref_primary_10_1007_s00521_024_09622_0
crossref_primary_10_1002_nem_2160
crossref_primary_10_1007_s40745_024_00545_0
crossref_primary_10_1007_s11277_021_08626_6
crossref_primary_10_1016_j_eswa_2023_120404
crossref_primary_10_1155_2022_7866096
crossref_primary_10_37394_23209_2022_19_4
crossref_primary_10_3390_a17030099
crossref_primary_10_1109_JIOT_2021_3078292
crossref_primary_10_1007_s13369_021_05947_3
crossref_primary_10_3390_electronics10111227
crossref_primary_10_3390_electronics12041059
crossref_primary_10_1016_j_comnet_2023_109895
crossref_primary_10_1016_j_eswa_2020_114520
crossref_primary_10_1088_1757_899X_1055_1_012072
crossref_primary_10_1080_0952813X_2020_1744196
crossref_primary_10_1007_s12652_021_02907_5
crossref_primary_10_3390_app14209169
crossref_primary_10_1016_j_compeleceng_2024_109448
crossref_primary_10_1007_s41870_022_00869_1
crossref_primary_10_1515_geo_2020_0276
crossref_primary_10_1007_s11227_021_04253_x
crossref_primary_10_1016_j_cosrev_2020_100332
crossref_primary_10_1080_0954898X_2024_2443605
crossref_primary_10_1109_ACCESS_2020_2995820
crossref_primary_10_1145_3665795
crossref_primary_10_1007_s11277_020_07549_y
Cites_doi 10.11591/eei.v6i2.605
10.1007/s10489-018-1141-2
10.1016/j.comcom.2015.06.012
10.1186/s13634-016-0355-x
10.1126/science.aaa8415
10.1109/TNET.2012.2194508
10.1016/j.jnca.2018.03.024
10.1007/s11036-013-0489-0
10.1109/SURV.2013.031413.00127
10.1109/COMST.2015.2494502
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jul 20, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jul 20, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.comnet.2019.04.027
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7069
EndPage 45
ExternalDocumentID 10_1016_j_comnet_2019_04_027
S1389128618306881
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
77K
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
ZMT
~G-
29F
77I
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
ADJOM
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
F0J
FGOYB
HZ~
R2-
SEW
ZY4
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-52a3403f629a5e4cda48b49b8448bcc207aa313d61b14072a3c6d2f8bccc23cf3
IEDL.DBID .~1
ISSN 1389-1286
IngestDate Fri Jul 25 05:53:44 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Wed Oct 29 21:35:48 EDT 2025
Fri Feb 23 02:26:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Incremental learning
DDoS
Hybrid mechanism
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-52a3403f629a5e4cda48b49b8448bcc207aa313d61b14072a3c6d2f8bccc23cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2258140446
PQPubID 47119
PageCount 11
ParticipantIDs proquest_journals_2258140446
crossref_citationtrail_10_1016_j_comnet_2019_04_027
crossref_primary_10_1016_j_comnet_2019_04_027
elsevier_sciencedirect_doi_10_1016_j_comnet_2019_04_027
PublicationCentury 2000
PublicationDate 2019-07-20
PublicationDateYYYYMMDD 2019-07-20
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-20
  day: 20
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer networks (Amsterdam, Netherlands : 1999)
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References François, Aib, Boutaba (bib0021) 2012; 20
Mehta, Rissanen, Agrawal (bib0034) 1995; 21
Gupta, Joshi, Misra (bib0020) 2012; 14
Qiu, Wu, Ding, Xu, Feng (bib0008) 2016; 2016
Fadlil, Riadi, Aji (bib0023) 2017; 6
Rahmani, Sahli, Kammoun (bib0019) 2009; 2
Witten, Frank, Hall, Pal (bib0005) 2016
Chen, Mao, Liu (bib0014) 2014; 19
Kim, Lee (bib0024) 2017; 12
Singh, Panda (bib0009) 2015; 1
Nagpal, Sharma, Chauhan, Panesar (bib0003) 2015
Mallikarjunan, Bhuvaneshwaran, Sundarakantham, Shalinie (bib0028) 2019
Wang, Jones (bib0015) 2017; 7
Prasad, Reddy, Rao (bib0011) 2014; 14
Namiot (bib0017) 2015; 3
Jordan, Mitchell (bib0004) 2015; 349
Zargar, Joshi, Tipper (bib0010) 2013; 15
Buczak, Guven (bib0006) 2016; 18
Sekar, Duffield, Spatscheck, van der Merwe, Zhang (bib0018) 2006
Rodríguez-Fdez, Canosa, Mucientes, Bugarín (bib0035) 2015
Zhou, Li, Wu, Guo, Gu, Li (bib0026) 2018
Mirkovic, Prier, Reiher (bib0012) 2002
Yusof, Ali, Darus (bib0025) 2017
Criscuolo (bib0002) 2000
"Nsl-kdd data set for network-based intrusion detection systems." Available on
March 2009.
Behal, Kumar, Sachdeva (bib0013) 2018; 111
Mallikarjunan, Muthupriya, Shalinie (bib0001) 2016
Berthold, Cebron, Dill, Gabriel, Kotter, Meinl, Ohl, Sieb, Thiel, Wiswedel (bib0007) 2007
Alkasassbeh, Al-Naymat, Hassanat, Almseidin (bib0033) 2016; 7
Lemaire, Salperwyck, Bondu (bib0016) 2014
Barati, Abdullah, Udzir, Mahmod, Mustapha (bib0022) 2014
I. Cano and M.R. Khan, "ASML: aAutomatic streaming machine learning," ed.
Tavallaee, Bagheri, Lu, Ghorbani (bib0032) 2009
Xiao, Qu, Qi, Li (bib0029) 2015; 67
Idhammad, Afdel, Belouch (bib0027) 2018; 48.
Namiot (10.1016/j.comnet.2019.04.027_bib0017) 2015; 3
Zhou (10.1016/j.comnet.2019.04.027_bib0026) 2018
Zargar (10.1016/j.comnet.2019.04.027_bib0010) 2013; 15
Mirkovic (10.1016/j.comnet.2019.04.027_bib0012) 2002
10.1016/j.comnet.2019.04.027_bib0031
Mehta (10.1016/j.comnet.2019.04.027_bib0034) 1995; 21
10.1016/j.comnet.2019.04.027_bib0030
Alkasassbeh (10.1016/j.comnet.2019.04.027_bib0033) 2016; 7
Sekar (10.1016/j.comnet.2019.04.027_bib0018) 2006
Chen (10.1016/j.comnet.2019.04.027_bib0014) 2014; 19
Yusof (10.1016/j.comnet.2019.04.027_bib0025) 2017
Wang (10.1016/j.comnet.2019.04.027_bib0015) 2017; 7
Xiao (10.1016/j.comnet.2019.04.027_bib0029) 2015; 67
Berthold (10.1016/j.comnet.2019.04.027_bib0007) 2007
Qiu (10.1016/j.comnet.2019.04.027_bib0008) 2016; 2016
Idhammad (10.1016/j.comnet.2019.04.027_bib0027) 2018; 48.
Fadlil (10.1016/j.comnet.2019.04.027_bib0023) 2017; 6
Jordan (10.1016/j.comnet.2019.04.027_bib0004) 2015; 349
Mallikarjunan (10.1016/j.comnet.2019.04.027_bib0028) 2019
François (10.1016/j.comnet.2019.04.027_bib0021) 2012; 20
Gupta (10.1016/j.comnet.2019.04.027_bib0020) 2012; 14
Prasad (10.1016/j.comnet.2019.04.027_bib0011) 2014; 14
Nagpal (10.1016/j.comnet.2019.04.027_bib0003) 2015
Kim (10.1016/j.comnet.2019.04.027_bib0024) 2017; 12
Behal (10.1016/j.comnet.2019.04.027_bib0013) 2018; 111
Mallikarjunan (10.1016/j.comnet.2019.04.027_bib0001) 2016
Buczak (10.1016/j.comnet.2019.04.027_bib0006) 2016; 18
Rodríguez-Fdez (10.1016/j.comnet.2019.04.027_bib0035) 2015
Singh (10.1016/j.comnet.2019.04.027_bib0009) 2015; 1
Criscuolo (10.1016/j.comnet.2019.04.027_bib0002) 2000
Barati (10.1016/j.comnet.2019.04.027_bib0022) 2014
Tavallaee (10.1016/j.comnet.2019.04.027_bib0032) 2009
Witten (10.1016/j.comnet.2019.04.027_bib0005) 2016
Lemaire (10.1016/j.comnet.2019.04.027_bib0016) 2014
Rahmani (10.1016/j.comnet.2019.04.027_bib0019) 2009; 2
References_xml – start-page: 370
  year: 2017
  end-page: 379
  ident: bib0025
  article-title: Detection and defense algorithms of different types of DDoS attacks using machine learning
  publication-title: International Conference on Computational Science and Technology
– volume: 7
  year: 2016
  ident: bib0033
  article-title: Detecting distributed denial of service attacks using data mining techniques
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2000
  ident: bib0002
  article-title: Distributed Denial of Service: Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht, CIAC-2319
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib0035
  article-title: STAC: a web platform for the comparison of algorithms using statistical tests
  publication-title: Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on
– start-page: 268
  year: 2014
  end-page: 273
  ident: bib0022
  article-title: Distributed Denial of Service detection using hybrid machine learning technique
  publication-title: Biometrics and Security Technologies (ISBAST), 2014 International Symposium on
– volume: 21
  start-page: 216
  year: 1995
  end-page: 221
  ident: bib0034
  article-title: MDL-based decision tree pruning
  publication-title: KDD
– volume: 2016
  start-page: 67
  year: 2016
  ident: bib0008
  article-title: A survey of machine learning for big data processing
  publication-title: EURASIP J. Adv. Signal Process.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0026
  article-title: Machine-learning-based online distributed denial-of-service attack detection using spark streaming
  publication-title: in
– reference: , March 2009.
– volume: 15
  start-page: 2046
  year: 2013
  end-page: 2069
  ident: bib0010
  article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 3
  year: 2015
  ident: bib0017
  article-title: On big data stream processing
  publication-title: Int. J. Open Inf. Technol.
– reference: "Nsl-kdd data set for network-based intrusion detection systems." Available on:
– volume: 14
  start-page: 15
  year: 2014
  end-page: 32
  ident: bib0011
  article-title: DoS and DDoS attacks: defense, detection and traceback mechanisms-a survey
  publication-title: Glob. J. Comput. Sci. Technol.
– volume: 48.
  start-page: 3193
  year: 2018
  end-page: 3208
  ident: bib0027
  article-title: Semi-supervised machine learning approach for DDoS detection
  publication-title: Appl. Intell.
– volume: 20
  start-page: 1828
  year: 2012
  end-page: 1841
  ident: bib0021
  article-title: FireCol: a collaborative protection network for the detection of flooding DDoS attacks
  publication-title: IEEE/ACM Trans. Netw. (TON)
– volume: 1
  start-page: 38
  year: 2015
  end-page: 44
  ident: bib0009
  article-title: Defending against DDOS flooding attacks-a data streaming approach
  publication-title: Int. J. Comput. IT
– volume: 67
  start-page: 66
  year: 2015
  end-page: 74
  ident: bib0029
  article-title: Detecting DDoS attacks against data center with correlation analysis
  publication-title: Comput. Commun.,
– start-page: 1
  year: 2009
  end-page: 6
  ident: bib0032
  article-title: A detailed analysis of the KDD CUP 99 data set
  publication-title: Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: bib0004
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– start-page: 312
  year: 2002
  end-page: 321
  ident: bib0012
  article-title: Attacking DDoS at the source
  publication-title: Network Protocols, 2002. Proceedings. 10th IEEE International Conference on
– year: 2007
  ident: bib0007
  article-title: Studies in Classification, Data Analysis, and Knowledge Organization
– reference: I. Cano and M.R. Khan, "ASML: aAutomatic streaming machine learning," ed.
– volume: 12
  start-page: 9909
  year: 2017
  end-page: 9913
  ident: bib0024
  article-title: Detection of DDoS attack on the client side using support vector machine
  publication-title: Int. J. Appl. Eng. Res.
– start-page: 88
  year: 2014
  end-page: 125
  ident: bib0016
  article-title: A survey on supervised classification on data streams
  publication-title: European Business Intelligence Summer School
– volume: 6
  start-page: 140
  year: 2017
  end-page: 148
  ident: bib0023
  article-title: A novel DDoS attack detection based on Gaussian Naive Bayes
  publication-title: Bull. Electr. Eng. Inform.
– year: 2016
  ident: bib0005
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– start-page: 171
  year: 2006
  end-page: 184
  ident: bib0018
  article-title: LADS: large-scale automated DDoS detection system
  publication-title: USENIX Annual Technical Conference, General Track
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0001
  article-title: A survey of distributed denial of service attack
  publication-title: Intelligent Systems and Control (ISCO), 2016 10th International Conference on
– volume: 18
  start-page: 1153
  year: 2016
  end-page: 1176
  ident: bib0006
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 111
  start-page: 49
  year: 2018
  end-page: 63
  ident: bib0013
  article-title: D-FACE: an anomaly based distributed approach for early detection of DDoS attacks and flash events
  publication-title: J. Netw. Comput. Appl.
– start-page: 342
  year: 2015
  end-page: 346
  ident: bib0003
  article-title: DDoS tools: classification, analysis and comparison
  publication-title: Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on
– start-page: 261
  year: 2019
  end-page: 273
  ident: bib0028
  article-title: DDAM: detecting DDoS attacks using machine learning approach
  publication-title: Computational Intelligence: Theories, Applications and Future Directions-Volume I
– volume: 19
  start-page: 171
  year: 2014
  end-page: 209
  ident: bib0014
  article-title: Big data: a survey
  publication-title: Mob. Netw. Appl.
– volume: 7
  start-page: 24
  year: 2017
  end-page: 31
  ident: bib0015
  article-title: Big data analytics for network intrusion detection: a survey
  publication-title: Int. J. Netw. Commun.
– volume: 14
  start-page: 61
  year: 2012
  end-page: 70
  ident: bib0020
  article-title: ANN based scheme to predict number of zombies in a DDoS attack
  publication-title: IJ Netw. Secur.
– volume: 2
  start-page: 267
  year: 2009
  end-page: 271
  ident: bib0019
  article-title: Joint entropy analysis model for DDoS attack detection
  publication-title: Information Assurance and Security, 2009. IAS'09. Fifth International Conference on
– start-page: 342
  year: 2015
  ident: 10.1016/j.comnet.2019.04.027_bib0003
  article-title: DDoS tools: classification, analysis and comparison
– start-page: 370
  year: 2017
  ident: 10.1016/j.comnet.2019.04.027_bib0025
  article-title: Detection and defense algorithms of different types of DDoS attacks using machine learning
– volume: 6
  start-page: 140
  issue: 2
  year: 2017
  ident: 10.1016/j.comnet.2019.04.027_bib0023
  article-title: A novel DDoS attack detection based on Gaussian Naive Bayes
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v6i2.605
– start-page: 268
  year: 2014
  ident: 10.1016/j.comnet.2019.04.027_bib0022
  article-title: Distributed Denial of Service detection using hybrid machine learning technique
– ident: 10.1016/j.comnet.2019.04.027_bib0030
– volume: 21
  start-page: 216
  year: 1995
  ident: 10.1016/j.comnet.2019.04.027_bib0034
  article-title: MDL-based decision tree pruning
– volume: 48.
  start-page: 3193
  year: 2018
  ident: 10.1016/j.comnet.2019.04.027_bib0027
  article-title: Semi-supervised machine learning approach for DDoS detection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1141-2
– volume: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.comnet.2019.04.027_bib0033
  article-title: Detecting distributed denial of service attacks using data mining techniques
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2007
  ident: 10.1016/j.comnet.2019.04.027_bib0007
– start-page: 88
  year: 2014
  ident: 10.1016/j.comnet.2019.04.027_bib0016
  article-title: A survey on supervised classification on data streams
– volume: 67
  start-page: 66
  year: 2015
  ident: 10.1016/j.comnet.2019.04.027_bib0029
  article-title: Detecting DDoS attacks against data center with correlation analysis
  publication-title: Comput. Commun.,
  doi: 10.1016/j.comcom.2015.06.012
– volume: 14
  start-page: 15
  year: 2014
  ident: 10.1016/j.comnet.2019.04.027_bib0011
  article-title: DoS and DDoS attacks: defense, detection and traceback mechanisms-a survey
  publication-title: Glob. J. Comput. Sci. Technol.
– start-page: 1
  year: 2018
  ident: 10.1016/j.comnet.2019.04.027_bib0026
  article-title: Machine-learning-based online distributed denial-of-service attack detection using spark streaming
– volume: 3
  issue: 8
  year: 2015
  ident: 10.1016/j.comnet.2019.04.027_bib0017
  article-title: On big data stream processing
  publication-title: Int. J. Open Inf. Technol.
– volume: 7
  start-page: 24
  issue: 1
  year: 2017
  ident: 10.1016/j.comnet.2019.04.027_bib0015
  article-title: Big data analytics for network intrusion detection: a survey
  publication-title: Int. J. Netw. Commun.
– volume: 2016
  start-page: 67
  issue: 1
  year: 2016
  ident: 10.1016/j.comnet.2019.04.027_bib0008
  article-title: A survey of machine learning for big data processing
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-016-0355-x
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.comnet.2019.04.027_bib0004
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– start-page: 1
  year: 2009
  ident: 10.1016/j.comnet.2019.04.027_bib0032
  article-title: A detailed analysis of the KDD CUP 99 data set
– volume: 1
  start-page: 38
  year: 2015
  ident: 10.1016/j.comnet.2019.04.027_bib0009
  article-title: Defending against DDOS flooding attacks-a data streaming approach
  publication-title: Int. J. Comput. IT
– volume: 2
  start-page: 267
  year: 2009
  ident: 10.1016/j.comnet.2019.04.027_bib0019
  article-title: Joint entropy analysis model for DDoS attack detection
– year: 2016
  ident: 10.1016/j.comnet.2019.04.027_bib0005
– year: 2000
  ident: 10.1016/j.comnet.2019.04.027_bib0002
– start-page: 312
  year: 2002
  ident: 10.1016/j.comnet.2019.04.027_bib0012
  article-title: Attacking DDoS at the source
– volume: 20
  start-page: 1828
  issue: 6
  year: 2012
  ident: 10.1016/j.comnet.2019.04.027_bib0021
  article-title: FireCol: a collaborative protection network for the detection of flooding DDoS attacks
  publication-title: IEEE/ACM Trans. Netw. (TON)
  doi: 10.1109/TNET.2012.2194508
– volume: 111
  start-page: 49
  year: 2018
  ident: 10.1016/j.comnet.2019.04.027_bib0013
  article-title: D-FACE: an anomaly based distributed approach for early detection of DDoS attacks and flash events
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.03.024
– ident: 10.1016/j.comnet.2019.04.027_bib0031
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  ident: 10.1016/j.comnet.2019.04.027_bib0014
  article-title: Big data: a survey
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-013-0489-0
– start-page: 171
  year: 2006
  ident: 10.1016/j.comnet.2019.04.027_bib0018
  article-title: LADS: large-scale automated DDoS detection system
– volume: 15
  start-page: 2046
  issue: 4
  year: 2013
  ident: 10.1016/j.comnet.2019.04.027_bib0010
  article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.031413.00127
– volume: 14
  start-page: 61
  issue: 2
  year: 2012
  ident: 10.1016/j.comnet.2019.04.027_bib0020
  article-title: ANN based scheme to predict number of zombies in a DDoS attack
  publication-title: IJ Netw. Secur.
– start-page: 261
  year: 2019
  ident: 10.1016/j.comnet.2019.04.027_bib0028
  article-title: DDAM: detecting DDoS attacks using machine learning approach
– start-page: 1
  year: 2016
  ident: 10.1016/j.comnet.2019.04.027_bib0001
  article-title: A survey of distributed denial of service attack
– start-page: 1
  year: 2015
  ident: 10.1016/j.comnet.2019.04.027_bib0035
  article-title: STAC: a web platform for the comparison of algorithms using statistical tests
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 10.1016/j.comnet.2019.04.027_bib0006
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 12
  start-page: 9909
  issue: 20
  year: 2017
  ident: 10.1016/j.comnet.2019.04.027_bib0024
  article-title: Detection of DDoS attack on the client side using support vector machine
  publication-title: Int. J. Appl. Eng. Res.
SSID ssj0004428
Score 2.5753036
Snippet Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Bayesian analysis
Data transmission
DDoS
Decision trees
Denial of service attacks
Divergence
Feature extraction
Hybrid mechanism
Incremental learning
Machine learning
Multilayer perceptrons
Supervised learning
Title The hybrid technique for DDoS detection with supervised learning algorithms
URI https://dx.doi.org/10.1016/j.comnet.2019.04.027
https://www.proquest.com/docview/2258140446
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: .~1
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: ACRLP
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: AIKHN
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: AKRWK
  dateStart: 19990114
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_Iwokh68Tra1bN2RgARd5CASuTVttyEGB2Hz4MW_3b5uw4-YkHhaun5k-bV9fa977_cQuopclnR8ZVsJtZlFPelaglFp2RLY2lWgPENWfT_yhhN6N-1Ma6hXxcKAW2Up-wuZbqR1-aZdotlezeftsfnF5jJPL0rInGIi2KkPWQyuP77cPCg1-VWhsQWtq_A54-Olx05j8Kh0AkN4Crll_j6efglqc_oMDtB-qTbibvFlh6gWp0do7xuZ4DEK9Yzj53eIwMIbZlasdVLc7y_HOIpz43WVYrh6xdnbCqREFke4TBwxw2IxW6515Wt2giaDm8fe0CpTJViKEJprc1IQapNEIys6MVWRoEzSQDJtfUmlXNsXgjgk8hzpACWaIMqL3ATqlEtUQk5RPV2m8RnCLlNSED9gida1GHVklKjE9_Re12UZyAYiFUJclTzikM5iwSuHsRde4MoBV25TrnFtIGvTa1XwaGxp71fg8x_rgWtRv6Vns5orXu7HjGupBdRe2vY9__fAF2gXSnCx69pNVM_Xb_Gl1khy2TJLroV2urfhcATP8OEp_AS3X-IJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RRvPLCGJraTOCNqQeXRLm2lbpbtJKWopBUtAwu_nTs34SWkSoyJH4o-25_vnPN3hFykTOZhbH0vF770RGSYp6Uwnm9Qrd0mNnJi1e1O1OqLu0E4qJFGdRcGwypL7l9wumPr8k29RLM-HY3qXfeLjckIJiVmTgEXaFWELEYP7PL9K85DCJdgFWt7WL26P-eCvKDzIsOQyiBxiqeYXObv_ekXU7vt52aLbJZ2I71afNo2qWXFDtn4pia4S-5hyOnjG17Bop_SrBSMUtpsTro0zeYu7KqgePZKZ69TpIlZltIyc8SQ6vFw8gKFz7M90r-57jVaXpkrwbOcizn4k5oLn-cArQ4zYVMtpBGJkeB-GWuZH2vNA55GgQlQE01zG6UsxzLLuM35PlkpJkV2QCiT1mgeJzIHY0uKwKS5zeMIFjs8m8QcEl4hpGwpJI75LMaqihh7UgtcFeKqfKEA10PifbaaLoQ0ltSPK_DVjwmhgOuXtDypxkqVC3KmgLZQ2wuc36N_d3xO1lq99oN6uO3cH5N1LMFTXuafkJX5y2t2CubJ3Jy56fcB-NHh-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hybrid+technique+for+DDoS+detection+with+supervised+learning+algorithms&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Hosseini%2C+Soodeh&rft.au=Azizi%2C+Mehrdad&rft.date=2019-07-20&rft.pub=Elsevier+Sequoia+S.A&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=158&rft.spage=35&rft_id=info:doi/10.1016%2Fj.comnet.2019.04.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon