The hybrid technique for DDoS detection with supervised learning algorithms
Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high efficiency in order to prevent or slow down users' access to services. In this paper, we propose a novel hybrid framework based on data stream...
        Saved in:
      
    
          | Published in | Computer networks (Amsterdam, Netherlands : 1999) Vol. 158; pp. 35 - 45 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        20.07.2019
     Elsevier Sequoia S.A  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1389-1286 1872-7069  | 
| DOI | 10.1016/j.comnet.2019.04.027 | 
Cover
| Abstract | Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high efficiency in order to prevent or slow down users' access to services. In this paper, we propose a novel hybrid framework based on data stream approach for detecting DDoS attack with incremental learning. We use a technique which divides the computational load between client and proxy sides based on their resource to organize the task with high speed. Client side contains three steps, first is the data collecting of the client system, second is the feature extraction based on forward feature selection for each algorithm, and the divergence test. Consequently, if divergence got bigger than a threshold, the attack is detected otherwise data processed to the proxy side. We use the naïve Bayes, random forest, decision tree, multilayer perceptron (MLP), and k-nearest neighbors (K-NN) on the proxy side to make better results. Different attacks have their specific behavior, and because of different selected features for each algorithm, the appropriate performance for detecting attacks and more ability to distinguish new attack types is achieved. The results show that the random forest produces better results among other mentioned algorithms. | 
    
|---|---|
| AbstractList | Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high efficiency in order to prevent or slow down users' access to services. In this paper, we propose a novel hybrid framework based on data stream approach for detecting DDoS attack with incremental learning. We use a technique which divides the computational load between client and proxy sides based on their resource to organize the task with high speed. Client side contains three steps, first is the data collecting of the client system, second is the feature extraction based on forward feature selection for each algorithm, and the divergence test. Consequently, if divergence got bigger than a threshold, the attack is detected otherwise data processed to the proxy side. We use the naïve Bayes, random forest, decision tree, multilayer perceptron (MLP), and k-nearest neighbors (K-NN) on the proxy side to make better results. Different attacks have their specific behavior, and because of different selected features for each algorithm, the appropriate performance for detecting attacks and more ability to distinguish new attack types is achieved. The results show that the random forest produces better results among other mentioned algorithms. | 
    
| Author | Azizi, Mehrdad Hosseini, Soodeh  | 
    
| Author_xml | – sequence: 1 givenname: Soodeh surname: Hosseini fullname: Hosseini, Soodeh email: so_hosseini@uk.ac.ir organization: Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran – sequence: 2 givenname: Mehrdad surname: Azizi fullname: Azizi, Mehrdad organization: Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran  | 
    
| BookMark | eNqFkLtOwzAUhi1UJNrCGzBYYk7wrbkwIKFyFZUYKLPlOE7jKLWL7Rb17XEUJgaYjuXzf8c-3wxMjDUKgEuMUoxwdt2l0m6NCilBuEwRSxHJT8AUFzlJcpSVk3imRZlgUmRnYOZ9hxBijBRT8LpuFWyPldM1DEq2Rn_uFWysg_f39h3WKl4GbQ380qGFfr9T7qC9qmGvhDPabKDoN9bF5tafg9NG9F5d_NQ5-Hh8WC-fk9Xb08vybpVISllIFkRQhmiTkVIsFJO1YEXFyqpgsUpJUC4ExbTOcIUZymNaZjVphp4kVDZ0Dq7GuTtn42994J3dOxOf5IQsiggxlsXUzZiSznrvVMOlDmLYJTihe44RH-Txjo_y-CCPI8ajvAizX_DO6a1wx_-w2xFTcf2DVo57qZWRqtYueuS11X8P-AZJ9o38 | 
    
| CitedBy_id | crossref_primary_10_3390_en12244768 crossref_primary_10_1007_s10586_022_03657_5 crossref_primary_10_3390_electronics11223817 crossref_primary_10_4018_IJDAI_301212 crossref_primary_10_1016_j_comnet_2023_109846 crossref_primary_10_1016_j_iot_2024_101343 crossref_primary_10_1155_2022_9663052 crossref_primary_10_1371_journal_pone_0309682 crossref_primary_10_1155_2022_3794579 crossref_primary_10_1016_j_datak_2022_102130 crossref_primary_10_1002_acs_3415 crossref_primary_10_1002_cpe_7334 crossref_primary_10_1186_s13677_021_00257_3 crossref_primary_10_3390_s22072697 crossref_primary_10_1016_j_comnet_2020_107792 crossref_primary_10_1142_S0218843023500259 crossref_primary_10_3934_nhm_2023061 crossref_primary_10_3390_s20205845 crossref_primary_10_1016_j_jnca_2020_102894 crossref_primary_10_1016_j_energy_2024_133081 crossref_primary_10_3390_electronics13204061 crossref_primary_10_1016_j_comnet_2020_107390 crossref_primary_10_1007_s12083_023_01460_6 crossref_primary_10_1016_j_comnet_2022_109269 crossref_primary_10_1109_ACCESS_2021_3126834 crossref_primary_10_1016_j_comnet_2021_108498 crossref_primary_10_1016_j_cose_2021_102392 crossref_primary_10_1007_s10586_022_03577_4 crossref_primary_10_1016_j_cose_2019_101645 crossref_primary_10_1109_ACCESS_2019_2950820 crossref_primary_10_1007_s00521_024_09622_0 crossref_primary_10_1002_nem_2160 crossref_primary_10_1007_s40745_024_00545_0 crossref_primary_10_1007_s11277_021_08626_6 crossref_primary_10_1016_j_eswa_2023_120404 crossref_primary_10_1155_2022_7866096 crossref_primary_10_37394_23209_2022_19_4 crossref_primary_10_3390_a17030099 crossref_primary_10_1109_JIOT_2021_3078292 crossref_primary_10_1007_s13369_021_05947_3 crossref_primary_10_3390_electronics10111227 crossref_primary_10_3390_electronics12041059 crossref_primary_10_1016_j_comnet_2023_109895 crossref_primary_10_1016_j_eswa_2020_114520 crossref_primary_10_1088_1757_899X_1055_1_012072 crossref_primary_10_1080_0952813X_2020_1744196 crossref_primary_10_1007_s12652_021_02907_5 crossref_primary_10_3390_app14209169 crossref_primary_10_1016_j_compeleceng_2024_109448 crossref_primary_10_1007_s41870_022_00869_1 crossref_primary_10_1515_geo_2020_0276 crossref_primary_10_1007_s11227_021_04253_x crossref_primary_10_1016_j_cosrev_2020_100332 crossref_primary_10_1080_0954898X_2024_2443605 crossref_primary_10_1109_ACCESS_2020_2995820 crossref_primary_10_1145_3665795 crossref_primary_10_1007_s11277_020_07549_y  | 
    
| Cites_doi | 10.11591/eei.v6i2.605 10.1007/s10489-018-1141-2 10.1016/j.comcom.2015.06.012 10.1186/s13634-016-0355-x 10.1126/science.aaa8415 10.1109/TNET.2012.2194508 10.1016/j.jnca.2018.03.024 10.1007/s11036-013-0489-0 10.1109/SURV.2013.031413.00127 10.1109/COMST.2015.2494502  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Sequoia S.A. Jul 20, 2019  | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Jul 20, 2019  | 
    
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.comnet.2019.04.027 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1872-7069 | 
    
| EndPage | 45 | 
    
| ExternalDocumentID | 10_1016_j_comnet_2019_04_027 S1389128618306881  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 77K 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. PQQKQ Q38 RIG ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TAE TN5 ZMT ~G- 29F 77I AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABXDB ACLOT ACNNM ACVFH ADCNI ADJOM AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS F0J FGOYB HZ~ R2- SEW ZY4 ~HD 7SC 8FD AFXIZ AGCQF AGRNS E3H F2A JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c334t-52a3403f629a5e4cda48b49b8448bcc207aa313d61b14072a3c6d2f8bccc23cf3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1389-1286 | 
    
| IngestDate | Fri Jul 25 05:53:44 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Oct 29 21:35:48 EDT 2025 Fri Feb 23 02:26:21 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Incremental learning DDoS Hybrid mechanism Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c334t-52a3403f629a5e4cda48b49b8448bcc207aa313d61b14072a3c6d2f8bccc23cf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2258140446 | 
    
| PQPubID | 47119 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_2258140446 crossref_citationtrail_10_1016_j_comnet_2019_04_027 crossref_primary_10_1016_j_comnet_2019_04_027 elsevier_sciencedirect_doi_10_1016_j_comnet_2019_04_027  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-07-20 | 
    
| PublicationDateYYYYMMDD | 2019-07-20 | 
    
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-20 day: 20  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Computer networks (Amsterdam, Netherlands : 1999) | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V Elsevier Sequoia S.A  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia S.A  | 
    
| References | François, Aib, Boutaba (bib0021) 2012; 20 Mehta, Rissanen, Agrawal (bib0034) 1995; 21 Gupta, Joshi, Misra (bib0020) 2012; 14 Qiu, Wu, Ding, Xu, Feng (bib0008) 2016; 2016 Fadlil, Riadi, Aji (bib0023) 2017; 6 Rahmani, Sahli, Kammoun (bib0019) 2009; 2 Witten, Frank, Hall, Pal (bib0005) 2016 Chen, Mao, Liu (bib0014) 2014; 19 Kim, Lee (bib0024) 2017; 12 Singh, Panda (bib0009) 2015; 1 Nagpal, Sharma, Chauhan, Panesar (bib0003) 2015 Mallikarjunan, Bhuvaneshwaran, Sundarakantham, Shalinie (bib0028) 2019 Wang, Jones (bib0015) 2017; 7 Prasad, Reddy, Rao (bib0011) 2014; 14 Namiot (bib0017) 2015; 3 Jordan, Mitchell (bib0004) 2015; 349 Zargar, Joshi, Tipper (bib0010) 2013; 15 Buczak, Guven (bib0006) 2016; 18 Sekar, Duffield, Spatscheck, van der Merwe, Zhang (bib0018) 2006 Rodríguez-Fdez, Canosa, Mucientes, Bugarín (bib0035) 2015 Zhou, Li, Wu, Guo, Gu, Li (bib0026) 2018 Mirkovic, Prier, Reiher (bib0012) 2002 Yusof, Ali, Darus (bib0025) 2017 Criscuolo (bib0002) 2000 "Nsl-kdd data set for network-based intrusion detection systems." Available on March 2009. Behal, Kumar, Sachdeva (bib0013) 2018; 111 Mallikarjunan, Muthupriya, Shalinie (bib0001) 2016 Berthold, Cebron, Dill, Gabriel, Kotter, Meinl, Ohl, Sieb, Thiel, Wiswedel (bib0007) 2007 Alkasassbeh, Al-Naymat, Hassanat, Almseidin (bib0033) 2016; 7 Lemaire, Salperwyck, Bondu (bib0016) 2014 Barati, Abdullah, Udzir, Mahmod, Mustapha (bib0022) 2014 I. Cano and M.R. Khan, "ASML: aAutomatic streaming machine learning," ed. Tavallaee, Bagheri, Lu, Ghorbani (bib0032) 2009 Xiao, Qu, Qi, Li (bib0029) 2015; 67 Idhammad, Afdel, Belouch (bib0027) 2018; 48. Namiot (10.1016/j.comnet.2019.04.027_bib0017) 2015; 3 Zhou (10.1016/j.comnet.2019.04.027_bib0026) 2018 Zargar (10.1016/j.comnet.2019.04.027_bib0010) 2013; 15 Mirkovic (10.1016/j.comnet.2019.04.027_bib0012) 2002 10.1016/j.comnet.2019.04.027_bib0031 Mehta (10.1016/j.comnet.2019.04.027_bib0034) 1995; 21 10.1016/j.comnet.2019.04.027_bib0030 Alkasassbeh (10.1016/j.comnet.2019.04.027_bib0033) 2016; 7 Sekar (10.1016/j.comnet.2019.04.027_bib0018) 2006 Chen (10.1016/j.comnet.2019.04.027_bib0014) 2014; 19 Yusof (10.1016/j.comnet.2019.04.027_bib0025) 2017 Wang (10.1016/j.comnet.2019.04.027_bib0015) 2017; 7 Xiao (10.1016/j.comnet.2019.04.027_bib0029) 2015; 67 Berthold (10.1016/j.comnet.2019.04.027_bib0007) 2007 Qiu (10.1016/j.comnet.2019.04.027_bib0008) 2016; 2016 Idhammad (10.1016/j.comnet.2019.04.027_bib0027) 2018; 48. Fadlil (10.1016/j.comnet.2019.04.027_bib0023) 2017; 6 Jordan (10.1016/j.comnet.2019.04.027_bib0004) 2015; 349 Mallikarjunan (10.1016/j.comnet.2019.04.027_bib0028) 2019 François (10.1016/j.comnet.2019.04.027_bib0021) 2012; 20 Gupta (10.1016/j.comnet.2019.04.027_bib0020) 2012; 14 Prasad (10.1016/j.comnet.2019.04.027_bib0011) 2014; 14 Nagpal (10.1016/j.comnet.2019.04.027_bib0003) 2015 Kim (10.1016/j.comnet.2019.04.027_bib0024) 2017; 12 Behal (10.1016/j.comnet.2019.04.027_bib0013) 2018; 111 Mallikarjunan (10.1016/j.comnet.2019.04.027_bib0001) 2016 Buczak (10.1016/j.comnet.2019.04.027_bib0006) 2016; 18 Rodríguez-Fdez (10.1016/j.comnet.2019.04.027_bib0035) 2015 Singh (10.1016/j.comnet.2019.04.027_bib0009) 2015; 1 Criscuolo (10.1016/j.comnet.2019.04.027_bib0002) 2000 Barati (10.1016/j.comnet.2019.04.027_bib0022) 2014 Tavallaee (10.1016/j.comnet.2019.04.027_bib0032) 2009 Witten (10.1016/j.comnet.2019.04.027_bib0005) 2016 Lemaire (10.1016/j.comnet.2019.04.027_bib0016) 2014 Rahmani (10.1016/j.comnet.2019.04.027_bib0019) 2009; 2  | 
    
| References_xml | – start-page: 370 year: 2017 end-page: 379 ident: bib0025 article-title: Detection and defense algorithms of different types of DDoS attacks using machine learning publication-title: International Conference on Computational Science and Technology – volume: 7 year: 2016 ident: bib0033 article-title: Detecting distributed denial of service attacks using data mining techniques publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2000 ident: bib0002 article-title: Distributed Denial of Service: Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht, CIAC-2319 – start-page: 1 year: 2015 end-page: 8 ident: bib0035 article-title: STAC: a web platform for the comparison of algorithms using statistical tests publication-title: Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on – start-page: 268 year: 2014 end-page: 273 ident: bib0022 article-title: Distributed Denial of Service detection using hybrid machine learning technique publication-title: Biometrics and Security Technologies (ISBAST), 2014 International Symposium on – volume: 21 start-page: 216 year: 1995 end-page: 221 ident: bib0034 article-title: MDL-based decision tree pruning publication-title: KDD – volume: 2016 start-page: 67 year: 2016 ident: bib0008 article-title: A survey of machine learning for big data processing publication-title: EURASIP J. Adv. Signal Process. – start-page: 1 year: 2018 end-page: 6 ident: bib0026 article-title: Machine-learning-based online distributed denial-of-service attack detection using spark streaming publication-title: in – reference: , March 2009. – volume: 15 start-page: 2046 year: 2013 end-page: 2069 ident: bib0010 article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks publication-title: IEEE Commun. Surv. Tutor. – volume: 3 year: 2015 ident: bib0017 article-title: On big data stream processing publication-title: Int. J. Open Inf. Technol. – reference: "Nsl-kdd data set for network-based intrusion detection systems." Available on: – volume: 14 start-page: 15 year: 2014 end-page: 32 ident: bib0011 article-title: DoS and DDoS attacks: defense, detection and traceback mechanisms-a survey publication-title: Glob. J. Comput. Sci. Technol. – volume: 48. start-page: 3193 year: 2018 end-page: 3208 ident: bib0027 article-title: Semi-supervised machine learning approach for DDoS detection publication-title: Appl. Intell. – volume: 20 start-page: 1828 year: 2012 end-page: 1841 ident: bib0021 article-title: FireCol: a collaborative protection network for the detection of flooding DDoS attacks publication-title: IEEE/ACM Trans. Netw. (TON) – volume: 1 start-page: 38 year: 2015 end-page: 44 ident: bib0009 article-title: Defending against DDOS flooding attacks-a data streaming approach publication-title: Int. J. Comput. IT – volume: 67 start-page: 66 year: 2015 end-page: 74 ident: bib0029 article-title: Detecting DDoS attacks against data center with correlation analysis publication-title: Comput. Commun., – start-page: 1 year: 2009 end-page: 6 ident: bib0032 article-title: A detailed analysis of the KDD CUP 99 data set publication-title: Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: bib0004 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – start-page: 312 year: 2002 end-page: 321 ident: bib0012 article-title: Attacking DDoS at the source publication-title: Network Protocols, 2002. Proceedings. 10th IEEE International Conference on – year: 2007 ident: bib0007 article-title: Studies in Classification, Data Analysis, and Knowledge Organization – reference: I. Cano and M.R. Khan, "ASML: aAutomatic streaming machine learning," ed. – volume: 12 start-page: 9909 year: 2017 end-page: 9913 ident: bib0024 article-title: Detection of DDoS attack on the client side using support vector machine publication-title: Int. J. Appl. Eng. Res. – start-page: 88 year: 2014 end-page: 125 ident: bib0016 article-title: A survey on supervised classification on data streams publication-title: European Business Intelligence Summer School – volume: 6 start-page: 140 year: 2017 end-page: 148 ident: bib0023 article-title: A novel DDoS attack detection based on Gaussian Naive Bayes publication-title: Bull. Electr. Eng. Inform. – year: 2016 ident: bib0005 article-title: Data Mining: Practical Machine Learning Tools and Techniques – start-page: 171 year: 2006 end-page: 184 ident: bib0018 article-title: LADS: large-scale automated DDoS detection system publication-title: USENIX Annual Technical Conference, General Track – start-page: 1 year: 2016 end-page: 6 ident: bib0001 article-title: A survey of distributed denial of service attack publication-title: Intelligent Systems and Control (ISCO), 2016 10th International Conference on – volume: 18 start-page: 1153 year: 2016 end-page: 1176 ident: bib0006 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. – volume: 111 start-page: 49 year: 2018 end-page: 63 ident: bib0013 article-title: D-FACE: an anomaly based distributed approach for early detection of DDoS attacks and flash events publication-title: J. Netw. Comput. Appl. – start-page: 342 year: 2015 end-page: 346 ident: bib0003 article-title: DDoS tools: classification, analysis and comparison publication-title: Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on – start-page: 261 year: 2019 end-page: 273 ident: bib0028 article-title: DDAM: detecting DDoS attacks using machine learning approach publication-title: Computational Intelligence: Theories, Applications and Future Directions-Volume I – volume: 19 start-page: 171 year: 2014 end-page: 209 ident: bib0014 article-title: Big data: a survey publication-title: Mob. Netw. Appl. – volume: 7 start-page: 24 year: 2017 end-page: 31 ident: bib0015 article-title: Big data analytics for network intrusion detection: a survey publication-title: Int. J. Netw. Commun. – volume: 14 start-page: 61 year: 2012 end-page: 70 ident: bib0020 article-title: ANN based scheme to predict number of zombies in a DDoS attack publication-title: IJ Netw. Secur. – volume: 2 start-page: 267 year: 2009 end-page: 271 ident: bib0019 article-title: Joint entropy analysis model for DDoS attack detection publication-title: Information Assurance and Security, 2009. IAS'09. Fifth International Conference on – start-page: 342 year: 2015 ident: 10.1016/j.comnet.2019.04.027_bib0003 article-title: DDoS tools: classification, analysis and comparison – start-page: 370 year: 2017 ident: 10.1016/j.comnet.2019.04.027_bib0025 article-title: Detection and defense algorithms of different types of DDoS attacks using machine learning – volume: 6 start-page: 140 issue: 2 year: 2017 ident: 10.1016/j.comnet.2019.04.027_bib0023 article-title: A novel DDoS attack detection based on Gaussian Naive Bayes publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v6i2.605 – start-page: 268 year: 2014 ident: 10.1016/j.comnet.2019.04.027_bib0022 article-title: Distributed Denial of Service detection using hybrid machine learning technique – ident: 10.1016/j.comnet.2019.04.027_bib0030 – volume: 21 start-page: 216 year: 1995 ident: 10.1016/j.comnet.2019.04.027_bib0034 article-title: MDL-based decision tree pruning – volume: 48. start-page: 3193 year: 2018 ident: 10.1016/j.comnet.2019.04.027_bib0027 article-title: Semi-supervised machine learning approach for DDoS detection publication-title: Appl. Intell. doi: 10.1007/s10489-018-1141-2 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.comnet.2019.04.027_bib0033 article-title: Detecting distributed denial of service attacks using data mining techniques publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2007 ident: 10.1016/j.comnet.2019.04.027_bib0007 – start-page: 88 year: 2014 ident: 10.1016/j.comnet.2019.04.027_bib0016 article-title: A survey on supervised classification on data streams – volume: 67 start-page: 66 year: 2015 ident: 10.1016/j.comnet.2019.04.027_bib0029 article-title: Detecting DDoS attacks against data center with correlation analysis publication-title: Comput. Commun., doi: 10.1016/j.comcom.2015.06.012 – volume: 14 start-page: 15 year: 2014 ident: 10.1016/j.comnet.2019.04.027_bib0011 article-title: DoS and DDoS attacks: defense, detection and traceback mechanisms-a survey publication-title: Glob. J. Comput. Sci. Technol. – start-page: 1 year: 2018 ident: 10.1016/j.comnet.2019.04.027_bib0026 article-title: Machine-learning-based online distributed denial-of-service attack detection using spark streaming – volume: 3 issue: 8 year: 2015 ident: 10.1016/j.comnet.2019.04.027_bib0017 article-title: On big data stream processing publication-title: Int. J. Open Inf. Technol. – volume: 7 start-page: 24 issue: 1 year: 2017 ident: 10.1016/j.comnet.2019.04.027_bib0015 article-title: Big data analytics for network intrusion detection: a survey publication-title: Int. J. Netw. Commun. – volume: 2016 start-page: 67 issue: 1 year: 2016 ident: 10.1016/j.comnet.2019.04.027_bib0008 article-title: A survey of machine learning for big data processing publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-016-0355-x – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.comnet.2019.04.027_bib0004 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – start-page: 1 year: 2009 ident: 10.1016/j.comnet.2019.04.027_bib0032 article-title: A detailed analysis of the KDD CUP 99 data set – volume: 1 start-page: 38 year: 2015 ident: 10.1016/j.comnet.2019.04.027_bib0009 article-title: Defending against DDOS flooding attacks-a data streaming approach publication-title: Int. J. Comput. IT – volume: 2 start-page: 267 year: 2009 ident: 10.1016/j.comnet.2019.04.027_bib0019 article-title: Joint entropy analysis model for DDoS attack detection – year: 2016 ident: 10.1016/j.comnet.2019.04.027_bib0005 – year: 2000 ident: 10.1016/j.comnet.2019.04.027_bib0002 – start-page: 312 year: 2002 ident: 10.1016/j.comnet.2019.04.027_bib0012 article-title: Attacking DDoS at the source – volume: 20 start-page: 1828 issue: 6 year: 2012 ident: 10.1016/j.comnet.2019.04.027_bib0021 article-title: FireCol: a collaborative protection network for the detection of flooding DDoS attacks publication-title: IEEE/ACM Trans. Netw. (TON) doi: 10.1109/TNET.2012.2194508 – volume: 111 start-page: 49 year: 2018 ident: 10.1016/j.comnet.2019.04.027_bib0013 article-title: D-FACE: an anomaly based distributed approach for early detection of DDoS attacks and flash events publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.03.024 – ident: 10.1016/j.comnet.2019.04.027_bib0031 – volume: 19 start-page: 171 issue: 2 year: 2014 ident: 10.1016/j.comnet.2019.04.027_bib0014 article-title: Big data: a survey publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-013-0489-0 – start-page: 171 year: 2006 ident: 10.1016/j.comnet.2019.04.027_bib0018 article-title: LADS: large-scale automated DDoS detection system – volume: 15 start-page: 2046 issue: 4 year: 2013 ident: 10.1016/j.comnet.2019.04.027_bib0010 article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.031413.00127 – volume: 14 start-page: 61 issue: 2 year: 2012 ident: 10.1016/j.comnet.2019.04.027_bib0020 article-title: ANN based scheme to predict number of zombies in a DDoS attack publication-title: IJ Netw. Secur. – start-page: 261 year: 2019 ident: 10.1016/j.comnet.2019.04.027_bib0028 article-title: DDAM: detecting DDoS attacks using machine learning approach – start-page: 1 year: 2016 ident: 10.1016/j.comnet.2019.04.027_bib0001 article-title: A survey of distributed denial of service attack – start-page: 1 year: 2015 ident: 10.1016/j.comnet.2019.04.027_bib0035 article-title: STAC: a web platform for the comparison of algorithms using statistical tests – volume: 18 start-page: 1153 issue: 2 year: 2016 ident: 10.1016/j.comnet.2019.04.027_bib0006 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2494502 – volume: 12 start-page: 9909 issue: 20 year: 2017 ident: 10.1016/j.comnet.2019.04.027_bib0024 article-title: Detection of DDoS attack on the client side using support vector machine publication-title: Int. J. Appl. Eng. Res.  | 
    
| SSID | ssj0004428 | 
    
| Score | 2.5753036 | 
    
| Snippet | Distributed denial of service (DDoS) is still one of the main threats of the online services. Attackers are able to run DDoS with simple steps and high... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 35 | 
    
| SubjectTerms | Algorithms Bayesian analysis Data transmission DDoS Decision trees Denial of service attacks Divergence Feature extraction Hybrid mechanism Incremental learning Machine learning Multilayer perceptrons Supervised learning  | 
    
| Title | The hybrid technique for DDoS detection with supervised learning algorithms | 
    
| URI | https://dx.doi.org/10.1016/j.comnet.2019.04.027 https://www.proquest.com/docview/2258140446  | 
    
| Volume | 158 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: .~1 dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: ACRLP dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: AIKHN dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: AKRWK dateStart: 19990114 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_Iwokh68Tra1bN2RgARd5CASuTVttyEGB2Hz4MW_3b5uw4-YkHhaun5k-bV9fa977_cQuopclnR8ZVsJtZlFPelaglFp2RLY2lWgPENWfT_yhhN6N-1Ma6hXxcKAW2Up-wuZbqR1-aZdotlezeftsfnF5jJPL0rInGIi2KkPWQyuP77cPCg1-VWhsQWtq_A54-Olx05j8Kh0AkN4Crll_j6efglqc_oMDtB-qTbibvFlh6gWp0do7xuZ4DEK9Yzj53eIwMIbZlasdVLc7y_HOIpz43WVYrh6xdnbCqREFke4TBwxw2IxW6515Wt2giaDm8fe0CpTJViKEJprc1IQapNEIys6MVWRoEzSQDJtfUmlXNsXgjgk8hzpACWaIMqL3ATqlEtUQk5RPV2m8RnCLlNSED9gida1GHVklKjE9_Re12UZyAYiFUJclTzikM5iwSuHsRde4MoBV25TrnFtIGvTa1XwaGxp71fg8x_rgWtRv6Vns5orXu7HjGupBdRe2vY9__fAF2gXSnCx69pNVM_Xb_Gl1khy2TJLroV2urfhcATP8OEp_AS3X-IJ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RRvPLCGJraTOCNqQeXRLm2lbpbtJKWopBUtAwu_nTs34SWkSoyJH4o-25_vnPN3hFykTOZhbH0vF770RGSYp6Uwnm9Qrd0mNnJi1e1O1OqLu0E4qJFGdRcGwypL7l9wumPr8k29RLM-HY3qXfeLjckIJiVmTgEXaFWELEYP7PL9K85DCJdgFWt7WL26P-eCvKDzIsOQyiBxiqeYXObv_ekXU7vt52aLbJZ2I71afNo2qWXFDtn4pia4S-5hyOnjG17Bop_SrBSMUtpsTro0zeYu7KqgePZKZ69TpIlZltIyc8SQ6vFw8gKFz7M90r-57jVaXpkrwbOcizn4k5oLn-cArQ4zYVMtpBGJkeB-GWuZH2vNA55GgQlQE01zG6UsxzLLuM35PlkpJkV2QCiT1mgeJzIHY0uKwKS5zeMIFjs8m8QcEl4hpGwpJI75LMaqihh7UgtcFeKqfKEA10PifbaaLoQ0ltSPK_DVjwmhgOuXtDypxkqVC3KmgLZQ2wuc36N_d3xO1lq99oN6uO3cH5N1LMFTXuafkJX5y2t2CubJ3Jy56fcB-NHh-w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hybrid+technique+for+DDoS+detection+with+supervised+learning+algorithms&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Hosseini%2C+Soodeh&rft.au=Azizi%2C+Mehrdad&rft.date=2019-07-20&rft.pub=Elsevier+Sequoia+S.A&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=158&rft.spage=35&rft_id=info:doi/10.1016%2Fj.comnet.2019.04.027&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon |