Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity
This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in a bounded domain Ω⊂Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions und...
        Saved in:
      
    
          | Published in | Nonlinear analysis: real world applications Vol. 51; p. 102968 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Ltd
    
        01.02.2020
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1468-1218 1878-5719  | 
| DOI | 10.1016/j.nonrwa.2019.102968 | 
Cover
| Abstract | This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in a bounded domain Ω⊂Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique. | 
    
|---|---|
| AbstractList | This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt - Δu - Δut = φp (u)log|u| in a bounded domain Ω ⊂ Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique. This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in a bounded domain Ω⊂Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique.  | 
    
| ArticleNumber | 102968 | 
    
| Author | Shang, Yadong Di, Huafei Song, Zefang  | 
    
| Author_xml | – sequence: 1 givenname: Huafei surname: Di fullname: Di, Huafei email: dihuafei@yeah.net organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, PR China – sequence: 2 givenname: Yadong surname: Shang fullname: Shang, Yadong email: gzydshang@126.com organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, PR China – sequence: 3 givenname: Zefang surname: Song fullname: Song, Zefang email: song_zefang@163.com organization: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, PR China  | 
    
| BookMark | eNqFkEFv3CAQhVG1kZJN8g9yQOrZW8DYxj1UqlZNEylSL-0ZYTykrDDsAt7V_vuSuKcckrnMaPTewPvWaOWDB4TuKNlQQtsvu01ZxJPaMEL7smJ9Kz6hKyo6UTUd7Vdl5q2oKKPiEq1T2hFCO1rTKzQ_eputcngIsx9VPOOjcjPgfQyDgwmbELHC2qmUcDA45Rj8szvjUU17GHGCyTrrQUV8UkfAcJhVtsEnfLL5L3bhWcUyTFbj8sVFafP5Bl0Y5RLc_u_X6M_9j9_bh-rp18_H7fenStc1z1XD2lK804YR0_RibAgHACX0QEjHNTNC83aEUXBmWFvzoQgbYqDVujVsqK_R5-VuiXOYIWW5C3P05UnJatJ0ouesL6qvi0rHkFIEI7XNrzFyVNZJSuQLZrmTC2b5glkumIuZvzHvo50KyI9s3xYblPhHC1EmbcFrGG0EneUY7PsH_gHsYJ5d | 
    
| CitedBy_id | crossref_primary_10_1007_s00009_022_02221_0 crossref_primary_10_3934_cam_2024025 crossref_primary_10_1080_00036811_2021_1998463 crossref_primary_10_1007_s13370_024_01212_6 crossref_primary_10_1016_j_na_2020_111898 crossref_primary_10_1186_s13662_020_02694_x crossref_primary_10_3934_eect_2021019 crossref_primary_10_1142_S0219891624500152 crossref_primary_10_3390_math10224194 crossref_primary_10_3934_eect_2020101 crossref_primary_10_1016_j_jmaa_2022_126023 crossref_primary_10_11650_tjm_230705 crossref_primary_10_2298_FIL2316485I crossref_primary_10_33773_jum_956729 crossref_primary_10_1002_mma_9007 crossref_primary_10_1002_mma_7466 crossref_primary_10_1186_s13662_021_03469_8 crossref_primary_10_1002_mma_7964 crossref_primary_10_1016_j_jde_2021_10_036 crossref_primary_10_3934_math_2023572 crossref_primary_10_1515_anona_2022_0267 crossref_primary_10_1134_S0965542523060192 crossref_primary_10_1016_j_nonrwa_2022_103587 crossref_primary_10_1016_j_aml_2023_108954 crossref_primary_10_3934_eect_2021025 crossref_primary_10_1007_s13324_023_00782_1 crossref_primary_10_1016_j_chaos_2022_112553 crossref_primary_10_1111_sapm_12498 crossref_primary_10_1002_mma_10100 crossref_primary_10_1007_s00025_023_01893_8 crossref_primary_10_2989_16073606_2022_2046196 crossref_primary_10_1002_mma_7016 crossref_primary_10_1016_j_nonrwa_2024_104149 crossref_primary_10_1186_s13660_023_03072_3 crossref_primary_10_1515_anona_2022_0310 crossref_primary_10_1016_j_apnum_2022_12_017  | 
    
| Cites_doi | 10.1016/j.na.2005.06.021 10.1007/s10440-017-0106-5 10.4153/CJM-1980-049-5 10.1016/j.anihpc.2005.02.007 10.1007/s00030-017-0491-5 10.1016/j.jmaa.2004.05.044 10.1007/BF00263041 10.1017/S0308210500023787 10.1016/j.na.2006.10.038 10.3934/dcds.2017244 10.1016/j.jfa.2018.01.005 10.1002/mma.4766 10.3934/dcdsb.2016.21.781 10.1007/s11868-017-0216-x 10.1016/j.jde.2015.01.038 10.1088/0951-7715/19/7/001 10.1006/jdeq.1998.3447 10.1016/j.camwa.2017.02.030 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Feb 2020  | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2020  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1016/j.nonrwa.2019.102968 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1878-5719 | 
    
| ExternalDocumentID | 10_1016_j_nonrwa_2019_102968 S1468121819302500  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c334t-52666647cf20f598d504eeea8cb0074c2f8c46ded842f2634bf2050fe6cc6f2b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1468-1218 | 
    
| IngestDate | Mon Jul 14 07:01:04 EDT 2025 Wed Oct 29 21:27:47 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 23 02:27:11 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Wave equation Logarithmic nonlinearity Strong damping Polynomial and exponential decay Finite time blow-up  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c334t-52666647cf20f598d504eeea8cb0074c2f8c46ded842f2634bf2050fe6cc6f2b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2305789429 | 
    
| PQPubID | 2045088 | 
    
| ParticipantIDs | proquest_journals_2305789429 crossref_citationtrail_10_1016_j_nonrwa_2019_102968 crossref_primary_10_1016_j_nonrwa_2019_102968 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2019_102968  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2020 2020-02-00 20200201  | 
    
| PublicationDateYYYYMMDD | 2020-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Nonlinear analysis: real world applications | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Pata, Zelik (b2) 2006; 19 Levine (b29) 1973; 51 Gazzola, Squassina (b9) 2006; 23 Liu, Liu (b4) 1988; 16 Webb (b3) 1980; 32 Ohta (b6) 1998; 8 Ikehata, Inoue (b10) 2008; 68 Drábek, Pohozaev (b24) 1997; 127 Ma, Fang (b11) 2018; 41 Gazzola, Squassina (b28) 2006; 23 Cao, Liu (b17) 2018; 2018 Ono (b5) 1997; 20 Liu, Yu (b21) 2018; 274 Cholewa, Dlotko (b8) 2006; 64 Nhan, Truong (b16) 2017; 73 Liu, Zhuang (b12) 2017; 24 Liu, Zhu, Li (b14) 2019 Górka (b1) 2009; 40 Li, Yu, Liu (b20) 2017; 8 Lions (b26) 1969 Chen, Wang, Wang (b27) 2004; 299 Le, Le (b18) 2017; 151 Xu (b13) 2017; 37 Simon (b25) 1987; 146 Chen, Tian (b15) 2015; 258 Di, Shang, Zheng (b19) 2016; 21 Ladyzhenskaia, Solonnikov, Ural’tseva (b23) 1988 DiBenedetto (b22) 1993 Chen, Guo, Wang (b7) 1998; 147 Chen (10.1016/j.nonrwa.2019.102968_b27) 2004; 299 Ono (10.1016/j.nonrwa.2019.102968_b5) 1997; 20 Gazzola (10.1016/j.nonrwa.2019.102968_b9) 2006; 23 DiBenedetto (10.1016/j.nonrwa.2019.102968_b22) 1993 Ma (10.1016/j.nonrwa.2019.102968_b11) 2018; 41 Webb (10.1016/j.nonrwa.2019.102968_b3) 1980; 32 Li (10.1016/j.nonrwa.2019.102968_b20) 2017; 8 Nhan (10.1016/j.nonrwa.2019.102968_b16) 2017; 73 Chen (10.1016/j.nonrwa.2019.102968_b7) 1998; 147 Cao (10.1016/j.nonrwa.2019.102968_b17) 2018; 2018 Chen (10.1016/j.nonrwa.2019.102968_b15) 2015; 258 Liu (10.1016/j.nonrwa.2019.102968_b4) 1988; 16 Di (10.1016/j.nonrwa.2019.102968_b19) 2016; 21 Levine (10.1016/j.nonrwa.2019.102968_b29) 1973; 51 Gazzola (10.1016/j.nonrwa.2019.102968_b28) 2006; 23 Ikehata (10.1016/j.nonrwa.2019.102968_b10) 2008; 68 Ohta (10.1016/j.nonrwa.2019.102968_b6) 1998; 8 Cholewa (10.1016/j.nonrwa.2019.102968_b8) 2006; 64 Pata (10.1016/j.nonrwa.2019.102968_b2) 2006; 19 Liu (10.1016/j.nonrwa.2019.102968_b12) 2017; 24 Liu (10.1016/j.nonrwa.2019.102968_b14) 2019 Ladyzhenskaia (10.1016/j.nonrwa.2019.102968_b23) 1988 Liu (10.1016/j.nonrwa.2019.102968_b21) 2018; 274 Xu (10.1016/j.nonrwa.2019.102968_b13) 2017; 37 Drábek (10.1016/j.nonrwa.2019.102968_b24) 1997; 127 Le (10.1016/j.nonrwa.2019.102968_b18) 2017; 151 Górka (10.1016/j.nonrwa.2019.102968_b1) 2009; 40 Simon (10.1016/j.nonrwa.2019.102968_b25) 1987; 146 Lions (10.1016/j.nonrwa.2019.102968_b26) 1969  | 
    
| References_xml | – volume: 32 start-page: 631 year: 1980 end-page: 643 ident: b3 article-title: Existence and asymptotic behavior for a strongly damped nonlinear wave equation publication-title: Canad. J. Math. – volume: 64 start-page: 174 year: 2006 end-page: 187 ident: b8 article-title: Strongly damped wave equation in uniform spaces publication-title: Nonlinear Anal. – volume: 146 start-page: 65 year: 1987 end-page: 96 ident: b25 article-title: Compact sets in the space publication-title: Ann. Mat. Pura Appl. – volume: 16 start-page: 169 year: 1988 end-page: 173 ident: b4 article-title: The initial–boundary value problem for the equation publication-title: J. Huazhong Univ. Sci. Technol. – volume: 19 start-page: 1495 year: 2006 end-page: 1506 ident: b2 article-title: Smooth attractors for strongly damped wave equations publication-title: Nonlinearity – volume: 274 start-page: 1276 year: 2018 end-page: 1283 ident: b21 article-title: A note on blow-up of solution for a class of semilinear pseudo-parabolic equations publication-title: J. Funct. Anal. – volume: 20 start-page: 151 year: 1997 end-page: 177 ident: b5 article-title: On global existence asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation publication-title: Math. Methods Appl. Sci. – volume: 258 start-page: 4424 year: 2015 end-page: 4442 ident: b15 article-title: Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity publication-title: J. Differential Equations – year: 1993 ident: b22 publication-title: Degenerate Parabolic Equations – volume: 51 start-page: 371 year: 1973 end-page: 386 ident: b29 article-title: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form publication-title: Arch. Ration. Mech. Anal. – volume: 299 start-page: 563 year: 2004 end-page: 577 ident: b27 article-title: Initial boundary value problem of the generalized cubic double dispersion equation publication-title: J. Math. Anal. Appl. – volume: 2018 start-page: 1 year: 2018 end-page: 19 ident: b17 article-title: Initial boundary value problem for a mixed pseudo-parabolic publication-title: Electron. J. Differential Equations – volume: 8 start-page: 901 year: 1998 end-page: 910 ident: b6 article-title: Remarks on blowup of solutions for nonlinear evolution equations of second order publication-title: Adv. Math. Sci. Appl. – start-page: 1 year: 2019 end-page: 19 ident: b14 article-title: Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions publication-title: Quaest. Math. – volume: 37 start-page: 5631 year: 2017 end-page: 5649 ident: b13 article-title: The initial–boundary value problems for a class of sixth order nonlinear wave equation publication-title: Discrete Contin. Dyn. Syst. – volume: 23 start-page: 185 year: 2006 end-page: 207 ident: b28 article-title: Global solutions and finite time blow up for damped semilinear wave equations publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 23 start-page: 185 year: 2006 end-page: 207 ident: b9 article-title: Global solutions and finite time blow up for damped semilinear wave equations publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – year: 1988 ident: b23 article-title: Linear and Quasi-Linear Equations of Parabolic Type – volume: 40 start-page: 59 year: 2009 end-page: 66 ident: b1 article-title: Logarithmic Klein-Gordon equation publication-title: Acta Phys. Polon. B – volume: 147 start-page: 231 year: 1998 end-page: 241 ident: b7 article-title: Long time behavior of strongly damped nonlinear wave equations publication-title: J. Differential Equations – volume: 24 start-page: 35 year: 2017 ident: b12 article-title: Global existence asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms publication-title: NoDEA Nonlinear Differential Equations Appl. – volume: 41 start-page: 2639 year: 2018 end-page: 2653 ident: b11 article-title: Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source publication-title: Math. Methods Appl. Sci. – volume: 8 start-page: 629 year: 2017 end-page: 660 ident: b20 article-title: Global existence exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration publication-title: J. Pseudo-Differ. Oper. Appl. – volume: 68 start-page: 154 year: 2008 end-page: 169 ident: b10 article-title: Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain publication-title: Nonlinear Anal. – volume: 73 start-page: 2076 year: 2017 end-page: 2091 ident: b16 article-title: Global solution and blow-up for a class of pseudo publication-title: Comput. Math. Appl. – volume: 151 start-page: 149 year: 2017 end-page: 169 ident: b18 article-title: Global solution and blow-up for a class of publication-title: Acta Appl. Math. – volume: 21 start-page: 781 year: 2016 end-page: 801 ident: b19 article-title: Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 127 start-page: 703 year: 1997 end-page: 726 ident: b24 article-title: Positive solutions for the publication-title: Proc. Roy. Soc. Edinburgh Sect. A – year: 1969 ident: b26 article-title: Quelques méthodes de résolution des problèmes aux limites non linéaires – volume: 64 start-page: 174 issue: 1 year: 2006 ident: 10.1016/j.nonrwa.2019.102968_b8 article-title: Strongly damped wave equation in uniform spaces publication-title: Nonlinear Anal. doi: 10.1016/j.na.2005.06.021 – volume: 151 start-page: 149 year: 2017 ident: 10.1016/j.nonrwa.2019.102968_b18 article-title: Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity publication-title: Acta Appl. Math. doi: 10.1007/s10440-017-0106-5 – volume: 32 start-page: 631 issue: 3 year: 1980 ident: 10.1016/j.nonrwa.2019.102968_b3 article-title: Existence and asymptotic behavior for a strongly damped nonlinear wave equation publication-title: Canad. J. Math. doi: 10.4153/CJM-1980-049-5 – volume: 16 start-page: 169 issue: 6 year: 1988 ident: 10.1016/j.nonrwa.2019.102968_b4 article-title: The initial–boundary value problem for the equation utt−aΔut−Δu=f(u) publication-title: J. Huazhong Univ. Sci. Technol. – volume: 23 start-page: 185 issue: 2 year: 2006 ident: 10.1016/j.nonrwa.2019.102968_b28 article-title: Global solutions and finite time blow up for damped semilinear wave equations publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2005.02.007 – start-page: 1 year: 2019 ident: 10.1016/j.nonrwa.2019.102968_b14 article-title: Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions publication-title: Quaest. Math. – volume: 40 start-page: 59 issue: 1 year: 2009 ident: 10.1016/j.nonrwa.2019.102968_b1 article-title: Logarithmic Klein-Gordon equation publication-title: Acta Phys. Polon. B – year: 1988 ident: 10.1016/j.nonrwa.2019.102968_b23 – year: 1993 ident: 10.1016/j.nonrwa.2019.102968_b22 – volume: 24 start-page: 35 issue: 6 year: 2017 ident: 10.1016/j.nonrwa.2019.102968_b12 article-title: Global existence asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms publication-title: NoDEA Nonlinear Differential Equations Appl. doi: 10.1007/s00030-017-0491-5 – volume: 299 start-page: 563 issue: 2 year: 2004 ident: 10.1016/j.nonrwa.2019.102968_b27 article-title: Initial boundary value problem of the generalized cubic double dispersion equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.05.044 – volume: 51 start-page: 371 year: 1973 ident: 10.1016/j.nonrwa.2019.102968_b29 article-title: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+F(u) publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00263041 – volume: 127 start-page: 703 issue: 4 year: 1997 ident: 10.1016/j.nonrwa.2019.102968_b24 article-title: Positive solutions for the p-Laplacian: application of the fibering method publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500023787 – volume: 68 start-page: 154 issue: 1 year: 2008 ident: 10.1016/j.nonrwa.2019.102968_b10 article-title: Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain publication-title: Nonlinear Anal. doi: 10.1016/j.na.2006.10.038 – volume: 37 start-page: 5631 issue: 11 year: 2017 ident: 10.1016/j.nonrwa.2019.102968_b13 article-title: The initial–boundary value problems for a class of sixth order nonlinear wave equation publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2017244 – volume: 274 start-page: 1276 issue: 5 year: 2018 ident: 10.1016/j.nonrwa.2019.102968_b21 article-title: A note on blow-up of solution for a class of semilinear pseudo-parabolic equations publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2018.01.005 – volume: 8 start-page: 901 issue: 2 year: 1998 ident: 10.1016/j.nonrwa.2019.102968_b6 article-title: Remarks on blowup of solutions for nonlinear evolution equations of second order publication-title: Adv. Math. Sci. Appl. – year: 1969 ident: 10.1016/j.nonrwa.2019.102968_b26 – volume: 41 start-page: 2639 issue: 7 year: 2018 ident: 10.1016/j.nonrwa.2019.102968_b11 article-title: Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4766 – volume: 23 start-page: 185 issue: 2 year: 2006 ident: 10.1016/j.nonrwa.2019.102968_b9 article-title: Global solutions and finite time blow up for damped semilinear wave equations publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2005.02.007 – volume: 146 start-page: 65 issue: 4 year: 1987 ident: 10.1016/j.nonrwa.2019.102968_b25 article-title: Compact sets in the space Lp(0,T;B) publication-title: Ann. Mat. Pura Appl. – volume: 21 start-page: 781 issue: 3 year: 2016 ident: 10.1016/j.nonrwa.2019.102968_b19 article-title: Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2016.21.781 – volume: 8 start-page: 629 issue: 4 year: 2017 ident: 10.1016/j.nonrwa.2019.102968_b20 article-title: Global existence exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration publication-title: J. Pseudo-Differ. Oper. Appl. doi: 10.1007/s11868-017-0216-x – volume: 258 start-page: 4424 issue: 12 year: 2015 ident: 10.1016/j.nonrwa.2019.102968_b15 article-title: Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity publication-title: J. Differential Equations doi: 10.1016/j.jde.2015.01.038 – volume: 19 start-page: 1495 issue: 7 year: 2006 ident: 10.1016/j.nonrwa.2019.102968_b2 article-title: Smooth attractors for strongly damped wave equations publication-title: Nonlinearity doi: 10.1088/0951-7715/19/7/001 – volume: 147 start-page: 231 issue: 2 year: 1998 ident: 10.1016/j.nonrwa.2019.102968_b7 article-title: Long time behavior of strongly damped nonlinear wave equations publication-title: J. Differential Equations doi: 10.1006/jdeq.1998.3447 – volume: 73 start-page: 2076 issue: 9 year: 2017 ident: 10.1016/j.nonrwa.2019.102968_b16 article-title: Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.02.030 – volume: 2018 start-page: 1 issue: 116 year: 2018 ident: 10.1016/j.nonrwa.2019.102968_b17 article-title: Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity publication-title: Electron. J. Differential Equations – volume: 20 start-page: 151 issue: 2 year: 1997 ident: 10.1016/j.nonrwa.2019.102968_b5 article-title: On global existence asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation publication-title: Math. Methods Appl. Sci. doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0  | 
    
| SSID | ssj0017131 | 
    
| Score | 2.4720378 | 
    
| Snippet | This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in... This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt - Δu - Δut = φp...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 102968 | 
    
| SubjectTerms | Boundary value problems Concavity Finite time blow-up Logarithmic nonlinearity Mathematical analysis Nonlinearity Perturbation Polynomial and exponential decay Polynomials Radon Strong damping Upper bounds Wave equation Wave equations  | 
    
| Title | Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity | 
    
| URI | https://dx.doi.org/10.1016/j.nonrwa.2019.102968 https://www.proquest.com/docview/2305789429  | 
    
| Volume | 51 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-5719 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017131 issn: 1468-1218 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-5719 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017131 issn: 1468-1218 databaseCode: .~1 dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-5719 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017131 issn: 1468-1218 databaseCode: ACRLP dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-5719 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017131 issn: 1468-1218 databaseCode: AIKHN dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jW2SSZocpVhaH0XUQm_L7mZXK23VplV68bc7k0dBEQRPIWHyYGcz833L7DeMnaoQOVeoPEdKkA5YFThxkICDYN23oGMbZIs5N_2wO4DLYTCssHa5F4bKKovYn8f0LFoXVxrFaDZeR6PGPW0acilDxT4lcuLtAC3qYnD2uSrzcJGEueUOI7Iut89lNV7IsGcfpD7kxqRhEJPg6u_p6UegzrJPZ4ttFrCRn-dfts0qZrrDNm5WmqvpLlv0qA4IjVTWKWm25CTkbXjRMoYjOuWSa0LL_MXylNbAH8dLnkhEzglPzWREkFPO-Id8N9y85SLgKaelWo4hEln1_Gky0nyay2vQ-XKPDToXD-2uUzRVcLTvwxyJJxKWEFraek10RJQETTDGyEgrghPas5GGMDFJBJ71Qh8UGgZNa0KtQ-spf59V8TXmgPEYpBtIZSAJFEikbpG2ibLgGkA7P64xvxxLoQvFcWp8MRZladmzyD0gyAMi90CNOau7XnPFjT_sW6WbxLeZIzAp_HHncelVUfy5qUBKhkEsxjR9-O8HH7F1j2h5Vtx9zKrz2cKcIHaZq3o2Oets7bx9d31Lx95Vt_8FJsLy5w | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wNraJOc02RECNQCZQEkNst2bCgqUJqWqgu_nbs8KoGQKjEmOieRz7n7PuvuM2MnOkLOFenAUwqUB04LLxEpeAjWQwcmcSLfzOndRp0HuHoUjzV2XvXCUFllGfuLmJ5H6_JOs5zN5rDfb95R05BPGSoJKZEjb18CEbSJgZ1-zes8fGRhftViROZV_1xe5IUUezQl-SE_IRGDhBRX_85PvyJ1nn4u19laiRv5WfFpG6xm3zbZam8uupptsUmXCoHQSOdHJY1mnJS8LS_PjOEIT7nihuAyf3c8o03wp8GMpwqhc8oz-9onzKlGfKo-LbcfhQp4xmmvlmOMRFo9fn7tG_5W6GvQ9WybPVxe3J93vPJUBc-EIYyReSJjiaBtXNBCT8SpaIG1VsVGE54wgYsNRKlNYwhcEIWg0VC0nI2MiVygwx1Wx9fYXcYTUL5Q2kIqNCjkbrFxqXbgW0C7MGmwsJpLaUrJcTr5YiCr2rIXWXhAkgdk4YEG8-ajhoXkxgL7duUm-WPpSMwKC0YeVF6V5a-bSeRkGMUSzNN7_37wMVvu3Pdu5E339nqfrQTE0fNK7wNWH48m9hCBzFgf5Qv1Gy6f8uc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+boundary+value+problem+for+a+class+of+strongly+damped+semilinear+wave+equations+with+logarithmic+nonlinearity&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Di%2C+Huafei&rft.au=Shang%2C+Yadong&rft.au=Song%2C+Zefang&rft.date=2020-02-01&rft.pub=Elsevier+BV&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=51&rft.spage=1&rft_id=info:doi/10.1016%2Fj.nonrwa.2019.102968&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |