Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity

This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in a bounded domain Ω⊂Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions und...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 51; p. 102968
Main Authors Di, Huafei, Shang, Yadong, Song, Zefang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN1468-1218
1878-5719
DOI10.1016/j.nonrwa.2019.102968

Cover

Abstract This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in a bounded domain Ω⊂Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique.
AbstractList This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt - Δu - Δut = φp (u)log|u| in a bounded domain Ω ⊂ Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique.
This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in a bounded domain Ω⊂Rn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique.
ArticleNumber 102968
Author Shang, Yadong
Di, Huafei
Song, Zefang
Author_xml – sequence: 1
  givenname: Huafei
  surname: Di
  fullname: Di, Huafei
  email: dihuafei@yeah.net
  organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, PR China
– sequence: 2
  givenname: Yadong
  surname: Shang
  fullname: Shang, Yadong
  email: gzydshang@126.com
  organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, PR China
– sequence: 3
  givenname: Zefang
  surname: Song
  fullname: Song, Zefang
  email: song_zefang@163.com
  organization: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, PR China
BookMark eNqFkEFv3CAQhVG1kZJN8g9yQOrZW8DYxj1UqlZNEylSL-0ZYTykrDDsAt7V_vuSuKcckrnMaPTewPvWaOWDB4TuKNlQQtsvu01ZxJPaMEL7smJ9Kz6hKyo6UTUd7Vdl5q2oKKPiEq1T2hFCO1rTKzQ_eputcngIsx9VPOOjcjPgfQyDgwmbELHC2qmUcDA45Rj8szvjUU17GHGCyTrrQUV8UkfAcJhVtsEnfLL5L3bhWcUyTFbj8sVFafP5Bl0Y5RLc_u_X6M_9j9_bh-rp18_H7fenStc1z1XD2lK804YR0_RibAgHACX0QEjHNTNC83aEUXBmWFvzoQgbYqDVujVsqK_R5-VuiXOYIWW5C3P05UnJatJ0ouesL6qvi0rHkFIEI7XNrzFyVNZJSuQLZrmTC2b5glkumIuZvzHvo50KyI9s3xYblPhHC1EmbcFrGG0EneUY7PsH_gHsYJ5d
CitedBy_id crossref_primary_10_1007_s00009_022_02221_0
crossref_primary_10_3934_cam_2024025
crossref_primary_10_1080_00036811_2021_1998463
crossref_primary_10_1007_s13370_024_01212_6
crossref_primary_10_1016_j_na_2020_111898
crossref_primary_10_1186_s13662_020_02694_x
crossref_primary_10_3934_eect_2021019
crossref_primary_10_1142_S0219891624500152
crossref_primary_10_3390_math10224194
crossref_primary_10_3934_eect_2020101
crossref_primary_10_1016_j_jmaa_2022_126023
crossref_primary_10_11650_tjm_230705
crossref_primary_10_2298_FIL2316485I
crossref_primary_10_33773_jum_956729
crossref_primary_10_1002_mma_9007
crossref_primary_10_1002_mma_7466
crossref_primary_10_1186_s13662_021_03469_8
crossref_primary_10_1002_mma_7964
crossref_primary_10_1016_j_jde_2021_10_036
crossref_primary_10_3934_math_2023572
crossref_primary_10_1515_anona_2022_0267
crossref_primary_10_1134_S0965542523060192
crossref_primary_10_1016_j_nonrwa_2022_103587
crossref_primary_10_1016_j_aml_2023_108954
crossref_primary_10_3934_eect_2021025
crossref_primary_10_1007_s13324_023_00782_1
crossref_primary_10_1016_j_chaos_2022_112553
crossref_primary_10_1111_sapm_12498
crossref_primary_10_1002_mma_10100
crossref_primary_10_1007_s00025_023_01893_8
crossref_primary_10_2989_16073606_2022_2046196
crossref_primary_10_1002_mma_7016
crossref_primary_10_1016_j_nonrwa_2024_104149
crossref_primary_10_1186_s13660_023_03072_3
crossref_primary_10_1515_anona_2022_0310
crossref_primary_10_1016_j_apnum_2022_12_017
Cites_doi 10.1016/j.na.2005.06.021
10.1007/s10440-017-0106-5
10.4153/CJM-1980-049-5
10.1016/j.anihpc.2005.02.007
10.1007/s00030-017-0491-5
10.1016/j.jmaa.2004.05.044
10.1007/BF00263041
10.1017/S0308210500023787
10.1016/j.na.2006.10.038
10.3934/dcds.2017244
10.1016/j.jfa.2018.01.005
10.1002/mma.4766
10.3934/dcdsb.2016.21.781
10.1007/s11868-017-0216-x
10.1016/j.jde.2015.01.038
10.1088/0951-7715/19/7/001
10.1006/jdeq.1998.3447
10.1016/j.camwa.2017.02.030
10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.nonrwa.2019.102968
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2019_102968
S1468121819302500
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-52666647cf20f598d504eeea8cb0074c2f8c46ded842f2634bf2050fe6cc6f2b3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Mon Jul 14 07:01:04 EDT 2025
Wed Oct 29 21:27:47 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wave equation
Logarithmic nonlinearity
Strong damping
Polynomial and exponential decay
Finite time blow-up
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-52666647cf20f598d504eeea8cb0074c2f8c46ded842f2634bf2050fe6cc6f2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2305789429
PQPubID 2045088
ParticipantIDs proquest_journals_2305789429
crossref_citationtrail_10_1016_j_nonrwa_2019_102968
crossref_primary_10_1016_j_nonrwa_2019_102968
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2019_102968
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Pata, Zelik (b2) 2006; 19
Levine (b29) 1973; 51
Gazzola, Squassina (b9) 2006; 23
Liu, Liu (b4) 1988; 16
Webb (b3) 1980; 32
Ohta (b6) 1998; 8
Ikehata, Inoue (b10) 2008; 68
Drábek, Pohozaev (b24) 1997; 127
Ma, Fang (b11) 2018; 41
Gazzola, Squassina (b28) 2006; 23
Cao, Liu (b17) 2018; 2018
Ono (b5) 1997; 20
Liu, Yu (b21) 2018; 274
Cholewa, Dlotko (b8) 2006; 64
Nhan, Truong (b16) 2017; 73
Liu, Zhuang (b12) 2017; 24
Liu, Zhu, Li (b14) 2019
Górka (b1) 2009; 40
Li, Yu, Liu (b20) 2017; 8
Lions (b26) 1969
Chen, Wang, Wang (b27) 2004; 299
Le, Le (b18) 2017; 151
Xu (b13) 2017; 37
Simon (b25) 1987; 146
Chen, Tian (b15) 2015; 258
Di, Shang, Zheng (b19) 2016; 21
Ladyzhenskaia, Solonnikov, Ural’tseva (b23) 1988
DiBenedetto (b22) 1993
Chen, Guo, Wang (b7) 1998; 147
Chen (10.1016/j.nonrwa.2019.102968_b27) 2004; 299
Ono (10.1016/j.nonrwa.2019.102968_b5) 1997; 20
Gazzola (10.1016/j.nonrwa.2019.102968_b9) 2006; 23
DiBenedetto (10.1016/j.nonrwa.2019.102968_b22) 1993
Ma (10.1016/j.nonrwa.2019.102968_b11) 2018; 41
Webb (10.1016/j.nonrwa.2019.102968_b3) 1980; 32
Li (10.1016/j.nonrwa.2019.102968_b20) 2017; 8
Nhan (10.1016/j.nonrwa.2019.102968_b16) 2017; 73
Chen (10.1016/j.nonrwa.2019.102968_b7) 1998; 147
Cao (10.1016/j.nonrwa.2019.102968_b17) 2018; 2018
Chen (10.1016/j.nonrwa.2019.102968_b15) 2015; 258
Liu (10.1016/j.nonrwa.2019.102968_b4) 1988; 16
Di (10.1016/j.nonrwa.2019.102968_b19) 2016; 21
Levine (10.1016/j.nonrwa.2019.102968_b29) 1973; 51
Gazzola (10.1016/j.nonrwa.2019.102968_b28) 2006; 23
Ikehata (10.1016/j.nonrwa.2019.102968_b10) 2008; 68
Ohta (10.1016/j.nonrwa.2019.102968_b6) 1998; 8
Cholewa (10.1016/j.nonrwa.2019.102968_b8) 2006; 64
Pata (10.1016/j.nonrwa.2019.102968_b2) 2006; 19
Liu (10.1016/j.nonrwa.2019.102968_b12) 2017; 24
Liu (10.1016/j.nonrwa.2019.102968_b14) 2019
Ladyzhenskaia (10.1016/j.nonrwa.2019.102968_b23) 1988
Liu (10.1016/j.nonrwa.2019.102968_b21) 2018; 274
Xu (10.1016/j.nonrwa.2019.102968_b13) 2017; 37
Drábek (10.1016/j.nonrwa.2019.102968_b24) 1997; 127
Le (10.1016/j.nonrwa.2019.102968_b18) 2017; 151
Górka (10.1016/j.nonrwa.2019.102968_b1) 2009; 40
Simon (10.1016/j.nonrwa.2019.102968_b25) 1987; 146
Lions (10.1016/j.nonrwa.2019.102968_b26) 1969
References_xml – volume: 32
  start-page: 631
  year: 1980
  end-page: 643
  ident: b3
  article-title: Existence and asymptotic behavior for a strongly damped nonlinear wave equation
  publication-title: Canad. J. Math.
– volume: 64
  start-page: 174
  year: 2006
  end-page: 187
  ident: b8
  article-title: Strongly damped wave equation in uniform spaces
  publication-title: Nonlinear Anal.
– volume: 146
  start-page: 65
  year: 1987
  end-page: 96
  ident: b25
  article-title: Compact sets in the space
  publication-title: Ann. Mat. Pura Appl.
– volume: 16
  start-page: 169
  year: 1988
  end-page: 173
  ident: b4
  article-title: The initial–boundary value problem for the equation
  publication-title: J. Huazhong Univ. Sci. Technol.
– volume: 19
  start-page: 1495
  year: 2006
  end-page: 1506
  ident: b2
  article-title: Smooth attractors for strongly damped wave equations
  publication-title: Nonlinearity
– volume: 274
  start-page: 1276
  year: 2018
  end-page: 1283
  ident: b21
  article-title: A note on blow-up of solution for a class of semilinear pseudo-parabolic equations
  publication-title: J. Funct. Anal.
– volume: 20
  start-page: 151
  year: 1997
  end-page: 177
  ident: b5
  article-title: On global existence asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation
  publication-title: Math. Methods Appl. Sci.
– volume: 258
  start-page: 4424
  year: 2015
  end-page: 4442
  ident: b15
  article-title: Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity
  publication-title: J. Differential Equations
– year: 1993
  ident: b22
  publication-title: Degenerate Parabolic Equations
– volume: 51
  start-page: 371
  year: 1973
  end-page: 386
  ident: b29
  article-title: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form
  publication-title: Arch. Ration. Mech. Anal.
– volume: 299
  start-page: 563
  year: 2004
  end-page: 577
  ident: b27
  article-title: Initial boundary value problem of the generalized cubic double dispersion equation
  publication-title: J. Math. Anal. Appl.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 19
  ident: b17
  article-title: Initial boundary value problem for a mixed pseudo-parabolic
  publication-title: Electron. J. Differential Equations
– volume: 8
  start-page: 901
  year: 1998
  end-page: 910
  ident: b6
  article-title: Remarks on blowup of solutions for nonlinear evolution equations of second order
  publication-title: Adv. Math. Sci. Appl.
– start-page: 1
  year: 2019
  end-page: 19
  ident: b14
  article-title: Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions
  publication-title: Quaest. Math.
– volume: 37
  start-page: 5631
  year: 2017
  end-page: 5649
  ident: b13
  article-title: The initial–boundary value problems for a class of sixth order nonlinear wave equation
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 23
  start-page: 185
  year: 2006
  end-page: 207
  ident: b28
  article-title: Global solutions and finite time blow up for damped semilinear wave equations
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 23
  start-page: 185
  year: 2006
  end-page: 207
  ident: b9
  article-title: Global solutions and finite time blow up for damped semilinear wave equations
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– year: 1988
  ident: b23
  article-title: Linear and Quasi-Linear Equations of Parabolic Type
– volume: 40
  start-page: 59
  year: 2009
  end-page: 66
  ident: b1
  article-title: Logarithmic Klein-Gordon equation
  publication-title: Acta Phys. Polon. B
– volume: 147
  start-page: 231
  year: 1998
  end-page: 241
  ident: b7
  article-title: Long time behavior of strongly damped nonlinear wave equations
  publication-title: J. Differential Equations
– volume: 24
  start-page: 35
  year: 2017
  ident: b12
  article-title: Global existence asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms
  publication-title: NoDEA Nonlinear Differential Equations Appl.
– volume: 41
  start-page: 2639
  year: 2018
  end-page: 2653
  ident: b11
  article-title: Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source
  publication-title: Math. Methods Appl. Sci.
– volume: 8
  start-page: 629
  year: 2017
  end-page: 660
  ident: b20
  article-title: Global existence exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration
  publication-title: J. Pseudo-Differ. Oper. Appl.
– volume: 68
  start-page: 154
  year: 2008
  end-page: 169
  ident: b10
  article-title: Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain
  publication-title: Nonlinear Anal.
– volume: 73
  start-page: 2076
  year: 2017
  end-page: 2091
  ident: b16
  article-title: Global solution and blow-up for a class of pseudo
  publication-title: Comput. Math. Appl.
– volume: 151
  start-page: 149
  year: 2017
  end-page: 169
  ident: b18
  article-title: Global solution and blow-up for a class of
  publication-title: Acta Appl. Math.
– volume: 21
  start-page: 781
  year: 2016
  end-page: 801
  ident: b19
  article-title: Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 127
  start-page: 703
  year: 1997
  end-page: 726
  ident: b24
  article-title: Positive solutions for the
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
– year: 1969
  ident: b26
  article-title: Quelques méthodes de résolution des problèmes aux limites non linéaires
– volume: 64
  start-page: 174
  issue: 1
  year: 2006
  ident: 10.1016/j.nonrwa.2019.102968_b8
  article-title: Strongly damped wave equation in uniform spaces
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.06.021
– volume: 151
  start-page: 149
  year: 2017
  ident: 10.1016/j.nonrwa.2019.102968_b18
  article-title: Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-017-0106-5
– volume: 32
  start-page: 631
  issue: 3
  year: 1980
  ident: 10.1016/j.nonrwa.2019.102968_b3
  article-title: Existence and asymptotic behavior for a strongly damped nonlinear wave equation
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1980-049-5
– volume: 16
  start-page: 169
  issue: 6
  year: 1988
  ident: 10.1016/j.nonrwa.2019.102968_b4
  article-title: The initial–boundary value problem for the equation utt−aΔut−Δu=f(u)
  publication-title: J. Huazhong Univ. Sci. Technol.
– volume: 23
  start-page: 185
  issue: 2
  year: 2006
  ident: 10.1016/j.nonrwa.2019.102968_b28
  article-title: Global solutions and finite time blow up for damped semilinear wave equations
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2005.02.007
– start-page: 1
  year: 2019
  ident: 10.1016/j.nonrwa.2019.102968_b14
  article-title: Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions
  publication-title: Quaest. Math.
– volume: 40
  start-page: 59
  issue: 1
  year: 2009
  ident: 10.1016/j.nonrwa.2019.102968_b1
  article-title: Logarithmic Klein-Gordon equation
  publication-title: Acta Phys. Polon. B
– year: 1988
  ident: 10.1016/j.nonrwa.2019.102968_b23
– year: 1993
  ident: 10.1016/j.nonrwa.2019.102968_b22
– volume: 24
  start-page: 35
  issue: 6
  year: 2017
  ident: 10.1016/j.nonrwa.2019.102968_b12
  article-title: Global existence asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms
  publication-title: NoDEA Nonlinear Differential Equations Appl.
  doi: 10.1007/s00030-017-0491-5
– volume: 299
  start-page: 563
  issue: 2
  year: 2004
  ident: 10.1016/j.nonrwa.2019.102968_b27
  article-title: Initial boundary value problem of the generalized cubic double dispersion equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.05.044
– volume: 51
  start-page: 371
  year: 1973
  ident: 10.1016/j.nonrwa.2019.102968_b29
  article-title: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+F(u)
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00263041
– volume: 127
  start-page: 703
  issue: 4
  year: 1997
  ident: 10.1016/j.nonrwa.2019.102968_b24
  article-title: Positive solutions for the p-Laplacian: application of the fibering method
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210500023787
– volume: 68
  start-page: 154
  issue: 1
  year: 2008
  ident: 10.1016/j.nonrwa.2019.102968_b10
  article-title: Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.10.038
– volume: 37
  start-page: 5631
  issue: 11
  year: 2017
  ident: 10.1016/j.nonrwa.2019.102968_b13
  article-title: The initial–boundary value problems for a class of sixth order nonlinear wave equation
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2017244
– volume: 274
  start-page: 1276
  issue: 5
  year: 2018
  ident: 10.1016/j.nonrwa.2019.102968_b21
  article-title: A note on blow-up of solution for a class of semilinear pseudo-parabolic equations
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2018.01.005
– volume: 8
  start-page: 901
  issue: 2
  year: 1998
  ident: 10.1016/j.nonrwa.2019.102968_b6
  article-title: Remarks on blowup of solutions for nonlinear evolution equations of second order
  publication-title: Adv. Math. Sci. Appl.
– year: 1969
  ident: 10.1016/j.nonrwa.2019.102968_b26
– volume: 41
  start-page: 2639
  issue: 7
  year: 2018
  ident: 10.1016/j.nonrwa.2019.102968_b11
  article-title: Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4766
– volume: 23
  start-page: 185
  issue: 2
  year: 2006
  ident: 10.1016/j.nonrwa.2019.102968_b9
  article-title: Global solutions and finite time blow up for damped semilinear wave equations
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2005.02.007
– volume: 146
  start-page: 65
  issue: 4
  year: 1987
  ident: 10.1016/j.nonrwa.2019.102968_b25
  article-title: Compact sets in the space Lp(0,T;B)
  publication-title: Ann. Mat. Pura Appl.
– volume: 21
  start-page: 781
  issue: 3
  year: 2016
  ident: 10.1016/j.nonrwa.2019.102968_b19
  article-title: Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2016.21.781
– volume: 8
  start-page: 629
  issue: 4
  year: 2017
  ident: 10.1016/j.nonrwa.2019.102968_b20
  article-title: Global existence exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration
  publication-title: J. Pseudo-Differ. Oper. Appl.
  doi: 10.1007/s11868-017-0216-x
– volume: 258
  start-page: 4424
  issue: 12
  year: 2015
  ident: 10.1016/j.nonrwa.2019.102968_b15
  article-title: Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.01.038
– volume: 19
  start-page: 1495
  issue: 7
  year: 2006
  ident: 10.1016/j.nonrwa.2019.102968_b2
  article-title: Smooth attractors for strongly damped wave equations
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/19/7/001
– volume: 147
  start-page: 231
  issue: 2
  year: 1998
  ident: 10.1016/j.nonrwa.2019.102968_b7
  article-title: Long time behavior of strongly damped nonlinear wave equations
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1998.3447
– volume: 73
  start-page: 2076
  issue: 9
  year: 2017
  ident: 10.1016/j.nonrwa.2019.102968_b16
  article-title: Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.02.030
– volume: 2018
  start-page: 1
  issue: 116
  year: 2018
  ident: 10.1016/j.nonrwa.2019.102968_b17
  article-title: Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity
  publication-title: Electron. J. Differential Equations
– volume: 20
  start-page: 151
  issue: 2
  year: 1997
  ident: 10.1016/j.nonrwa.2019.102968_b5
  article-title: On global existence asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
SSID ssj0017131
Score 2.4720378
Snippet This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt−Δu−Δut=φp(u)log|u| in...
This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity utt - Δu - Δut = φp...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102968
SubjectTerms Boundary value problems
Concavity
Finite time blow-up
Logarithmic nonlinearity
Mathematical analysis
Nonlinearity
Perturbation
Polynomial and exponential decay
Polynomials
Radon
Strong damping
Upper bounds
Wave equation
Wave equations
Title Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity
URI https://dx.doi.org/10.1016/j.nonrwa.2019.102968
https://www.proquest.com/docview/2305789429
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: .~1
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: ACRLP
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: AIKHN
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jW2SSZocpVhaH0XUQm_L7mZXK23VplV68bc7k0dBEQRPIWHyYGcz833L7DeMnaoQOVeoPEdKkA5YFThxkICDYN23oGMbZIs5N_2wO4DLYTCssHa5F4bKKovYn8f0LFoXVxrFaDZeR6PGPW0acilDxT4lcuLtAC3qYnD2uSrzcJGEueUOI7Iut89lNV7IsGcfpD7kxqRhEJPg6u_p6UegzrJPZ4ttFrCRn-dfts0qZrrDNm5WmqvpLlv0qA4IjVTWKWm25CTkbXjRMoYjOuWSa0LL_MXylNbAH8dLnkhEzglPzWREkFPO-Id8N9y85SLgKaelWo4hEln1_Gky0nyay2vQ-XKPDToXD-2uUzRVcLTvwxyJJxKWEFraek10RJQETTDGyEgrghPas5GGMDFJBJ71Qh8UGgZNa0KtQ-spf59V8TXmgPEYpBtIZSAJFEikbpG2ibLgGkA7P64xvxxLoQvFcWp8MRZladmzyD0gyAMi90CNOau7XnPFjT_sW6WbxLeZIzAp_HHncelVUfy5qUBKhkEsxjR9-O8HH7F1j2h5Vtx9zKrz2cKcIHaZq3o2Oets7bx9d31Lx95Vt_8FJsLy5w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wNraJOc02RECNQCZQEkNst2bCgqUJqWqgu_nbs8KoGQKjEmOieRz7n7PuvuM2MnOkLOFenAUwqUB04LLxEpeAjWQwcmcSLfzOndRp0HuHoUjzV2XvXCUFllGfuLmJ5H6_JOs5zN5rDfb95R05BPGSoJKZEjb18CEbSJgZ1-zes8fGRhftViROZV_1xe5IUUezQl-SE_IRGDhBRX_85PvyJ1nn4u19laiRv5WfFpG6xm3zbZam8uupptsUmXCoHQSOdHJY1mnJS8LS_PjOEIT7nihuAyf3c8o03wp8GMpwqhc8oz-9onzKlGfKo-LbcfhQp4xmmvlmOMRFo9fn7tG_5W6GvQ9WybPVxe3J93vPJUBc-EIYyReSJjiaBtXNBCT8SpaIG1VsVGE54wgYsNRKlNYwhcEIWg0VC0nI2MiVygwx1Wx9fYXcYTUL5Q2kIqNCjkbrFxqXbgW0C7MGmwsJpLaUrJcTr5YiCr2rIXWXhAkgdk4YEG8-ajhoXkxgL7duUm-WPpSMwKC0YeVF6V5a-bSeRkGMUSzNN7_37wMVvu3Pdu5E339nqfrQTE0fNK7wNWH48m9hCBzFgf5Qv1Gy6f8uc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+boundary+value+problem+for+a+class+of+strongly+damped+semilinear+wave+equations+with+logarithmic+nonlinearity&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Di%2C+Huafei&rft.au=Shang%2C+Yadong&rft.au=Song%2C+Zefang&rft.date=2020-02-01&rft.pub=Elsevier+BV&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=51&rft.spage=1&rft_id=info:doi/10.1016%2Fj.nonrwa.2019.102968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon