How can the networks with various topologies change the occurrence of bifurcation points in a period-doubling route to chaos: a case study of neural networks in the presence and absence of disturbance

Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be s...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 138; no. 4; p. 362
Main Authors Navid Moghadam, Nastaran, Ramamoorthy, Ramesh, Nazarimehr, Fahimeh, Rajagopal, Karthikeyan, Jafari, Sajad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 27.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-5444
2190-5444
DOI10.1140/epjp/s13360-023-03939-w

Cover

Abstract Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be studied in the networks, where there are interactions between the neurons. Hence, investigating neural models in the networks can be helpful. This study examines the attention-deficit disorder model's bifurcation points in both regular and irregular networks. The networks are analyzed in two cases. In the first case, networks are studied where perturbations enter one node. Calculating the recovery time of the disturbed neuron can investigate the bifurcation points. Results show that recovery time reveals the dynamical variation of the disturbed node. The second case examines networks with different coupling strengths and nodes' degrees. Results indicate that as coupling strengths and nodes' degree increase, bifurcations occur in the smaller parameters in the period-doubling route to chaos. A general trend cannot be seen in the inverse route of period doubling.
AbstractList Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be studied in the networks, where there are interactions between the neurons. Hence, investigating neural models in the networks can be helpful. This study examines the attention-deficit disorder model's bifurcation points in both regular and irregular networks. The networks are analyzed in two cases. In the first case, networks are studied where perturbations enter one node. Calculating the recovery time of the disturbed neuron can investigate the bifurcation points. Results show that recovery time reveals the dynamical variation of the disturbed node. The second case examines networks with different coupling strengths and nodes' degrees. Results indicate that as coupling strengths and nodes' degree increase, bifurcations occur in the smaller parameters in the period-doubling route to chaos. A general trend cannot be seen in the inverse route of period doubling.
ArticleNumber 362
Author Rajagopal, Karthikeyan
Ramamoorthy, Ramesh
Nazarimehr, Fahimeh
Navid Moghadam, Nastaran
Jafari, Sajad
Author_xml – sequence: 1
  givenname: Nastaran
  surname: Navid Moghadam
  fullname: Navid Moghadam, Nastaran
  organization: Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
– sequence: 2
  givenname: Ramesh
  surname: Ramamoorthy
  fullname: Ramamoorthy, Ramesh
  organization: Centre for Artificial Intelligence, Chennai Institute of Technology
– sequence: 3
  givenname: Fahimeh
  surname: Nazarimehr
  fullname: Nazarimehr, Fahimeh
  email: fahimenazarimehr@yahoo.com
  organization: Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
– sequence: 4
  givenname: Karthikeyan
  surname: Rajagopal
  fullname: Rajagopal, Karthikeyan
  organization: Centre for Nonlinear Systems, Chennai Institute of Technology, Department of Electronics and Communications Engineering, University Centre for Research and Development, Chandigarh University
– sequence: 5
  givenname: Sajad
  surname: Jafari
  fullname: Jafari, Sajad
  organization: Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic)
BookMark eNqNkVFrHCEUhaWk0DTNb6jQ50l0dNy1kIcQ0iYQ6Ev7LI46u26nOrlqhvzD_qy6OykJfUl98QrnO-fieY-OQgwOoY-UnFHKybmbdtN5oowJ0pCWNYRJJpv5DTpuqSRNxzk_ejG_Q6cp7Ug9XFIu-TH6fRNnbHTAeetwcHmO8DPh2ectftDgY0k4xymOceNdwmarw8YdtNGYAuCCqeOAez8UMDr7GPAUfcgJ-4A1nlz1sI2NpR992GCIJVc-7p1i-lwVRieHUy72ce8TXAE9Pi_il8UmcOkQpYPFuk9_Y62vJPS6Pj-gt4Mekzt9uk_Qjy_X369umrtvX2-vLu8awxjPDXdraQfBZGu14CsjOiOs5MNaMCJ6woQVvCdC9NRp1lnKO-7ajjBmmSa65-wEfVp8J4j3xaWsdrFAqJGqlVRyuepYV1WrRWUgpgRuUBP4XxoeFSVq35zaN6eW5lRtTh2aU3MlL_4hjc-Hj82g_fgf_HrhU02sZcHzfq-hfwAwQbqh
CitedBy_id crossref_primary_10_1140_epjs_s11734_024_01168_5
Cites_doi 10.1088/1402-4896/ab6e4d
10.1098/rsif.2022.0043
10.1201/9780429492563
10.1073/pnas.1904470116
10.1016/S0006-3495(81)84782-0
10.1016/j.cnsns.2014.05.015
10.1038/srep00342
10.1073/pnas.1312114110
10.1109/MCAS.2003.1228503
10.1113/jphysiol.1952.sp004719
10.1142/S0218127405014143
10.1109/TEVC.2019.2893447
10.1016/j.tree.2003.09.002
10.1016/j.chaos.2020.110522
10.1016/j.apm.2022.10.015
10.1007/s10021-017-0154-8
10.1016/j.plrev.2018.09.003
10.1126/science.1089167
10.1073/pnas.0509132102
10.1016/j.physrep.2020.08.003
10.1016/j.physrep.2005.10.009
10.1016/S0006-3495(61)86902-6
10.1126/science.286.5439.509
10.1016/j.physa.2021.126845
10.1140/epjb/e2020-10477-6
10.1126/science.aay4895
10.1073/pnas.2106140118
10.1063/5.0047221
10.1007/s11071-021-06427-x
10.1098/rsif.2019.0345
10.1016/j.neucom.2021.10.003
10.1140/epjs/s11734-021-00113-0
10.1016/j.physa.2019.123396
10.1371/journal.pcbi.1004097
10.1007/s10827-005-0354-7
10.1038/296162a0
10.1126/science.1210657
10.1093/bioinformatics/btu084
10.1007/978-3-319-75957-9
10.1016/B978-0-12-815838-8.00009-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-023-03939-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_023_03939_w
GrantInformation_xml – fundername: Centre for Nonlinear Systems, Chennai Institute of Technology, India
  grantid: CIT/CNS/2022/RD/006
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-4e89df6392da647c65c6d94f86306b036d64b066b1ea35d1454e25033d3a0ab43
IEDL.DBID U2A
ISSN 2190-5444
IngestDate Fri Jul 25 23:27:43 EDT 2025
Tue Jul 01 02:42:32 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
Fri Feb 21 02:43:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-4e89df6392da647c65c6d94f86306b036d64b066b1ea35d1454e25033d3a0ab43
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
PQID 2919497535
PQPubID 2044220
ParticipantIDs proquest_journals_2919497535
crossref_primary_10_1140_epjp_s13360_023_03939_w
crossref_citationtrail_10_1140_epjp_s13360_023_03939_w
springer_journals_10_1140_epjp_s13360_023_03939_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-27
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-27
  day: 27
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Belykh, Hasler, Lauret, Nijmeijer (CR17) 2005; 15
Moghadam, Nazarimehr, Jafari, Sprott (CR32) 2020; 544
Majhi, Perc, Ghosh (CR18) 2022; 19
van de Leemput, Wichers, Cramer, Borsboom, Tuerlinckx, Kuppens (CR31) 2014; 111
Bury, Sujith, Pavithran, Scheffer, Lenton, Anand (CR28) 2021; 118
Kundu, Majhi, Ghosh (CR19) 2021; 31
Roy, Misra, Banerjee (CR15) 2020; 95
Hodgkin, Huxley (CR2) 1952; 116
Hussain, Jafari, Ghosh, Perc (CR4) 2021; 104
Arani, Carpenter, Lahti, van Nes, Scheffer (CR23) 2021; 372
Liu, Yu, Liu, Xu, Aihara, Chen (CR26) 2014; 30
Barabási, Albert (CR39) 1999; 286
FitzHugh (CR3) 1961; 1
Klemm, Bornholdt (CR12) 2005; 102
Mohanrasu, Udhayakumar, Priyanka, Gowrisankar, Banerjee, Rakkiyappan (CR13) 2023; 115
Chen, Liu, Liu, Li, Aihara (CR27) 2012; 2
Domínguez-García, Dakos, Kéfi (CR11) 2019; 116
Majhi, Bera, Ghosh, Perc (CR16) 2019; 28
Milo, Itzkovitz, Kashtan, Levitt, Shen-Orr, Ayzenshtat (CR21) 2004; 303
CR37
Hou, Ma, Zhan, Yang, Jia (CR1) 2021; 142
Faghani, Jafari, Chen, Nazarimehr (CR35) 2020; 93
Hindmarsh, Rose (CR6) 1982; 296
Meisel, Klaus, Kuehn, Plenz (CR30) 2015; 11
Moghadam, Ramamoorthy, Nazarimehr, Rajagopal, Jafari (CR22) 2022; 592
Mehrabbeik, Ramamoorthy, Rajagopal, Nazarimehr, Jafari, Hussain (CR33) 2021; 230
Cymbalyuk, Shilnikov (CR7) 2005; 18
Baghdadi, Jafari, Sprott, Towhidkhah, Golpayegani (CR36) 2015; 20
Morris, Lecar (CR5) 1981; 35
van de Leemput, Dakos, Scheffer, van Nes (CR34) 2018; 21
Udhayakumar, Rakkiyappan, Rihan, Banerjee (CR14) 2022; 467
Wang, Chen (CR38) 2003; 3
Hirota, Holmgren, Van Nes, Scheffer (CR24) 2011; 334
Strogatz (CR29) 2018
CR40
Boccaletti, Latora, Moreno, Chavez, Hwang (CR8) 2006; 424
Jiang, Hastings, Lai (CR9) 2019; 16
Scheffer, Carpenter (CR25) 2003; 18
Rabinovich, Zaks, Varona (CR20) 2020; 883
Chen, Jia, Zhao, Luo, Jia, Zhang (CR10) 2019; 23
NN Moghadam (3939_CR32) 2020; 544
S Majhi (3939_CR18) 2022; 19
C Morris (3939_CR5) 1981; 35
K Udhayakumar (3939_CR14) 2022; 467
I Belykh (3939_CR17) 2005; 15
J Jiang (3939_CR9) 2019; 16
R Liu (3939_CR26) 2014; 30
Z Faghani (3939_CR35) 2020; 93
L Chen (3939_CR27) 2012; 2
SH Strogatz (3939_CR29) 2018
R FitzHugh (3939_CR3) 1961; 1
A-L Barabási (3939_CR39) 1999; 286
NN Moghadam (3939_CR22) 2022; 592
G Cymbalyuk (3939_CR7) 2005; 18
Z Hou (3939_CR1) 2021; 142
S Kundu (3939_CR19) 2021; 31
TM Bury (3939_CR28) 2021; 118
IA van de Leemput (3939_CR31) 2014; 111
M Hirota (3939_CR24) 2011; 334
V Domínguez-García (3939_CR11) 2019; 116
IA van de Leemput (3939_CR34) 2018; 21
K Klemm (3939_CR12) 2005; 102
S Majhi (3939_CR16) 2019; 28
S Boccaletti (3939_CR8) 2006; 424
G Baghdadi (3939_CR36) 2015; 20
MI Rabinovich (3939_CR20) 2020; 883
3939_CR37
SS Mohanrasu (3939_CR13) 2023; 115
R Milo (3939_CR21) 2004; 303
XF Wang (3939_CR38) 2003; 3
C Meisel (3939_CR30) 2015; 11
A Roy (3939_CR15) 2020; 95
M Mehrabbeik (3939_CR33) 2021; 230
B Arani (3939_CR23) 2021; 372
J Hindmarsh (3939_CR6) 1982; 296
W-N Chen (3939_CR10) 2019; 23
I Hussain (3939_CR4) 2021; 104
AL Hodgkin (3939_CR2) 1952; 116
M Scheffer (3939_CR25) 2003; 18
3939_CR40
References_xml – volume: 95
  start-page: 045225
  year: 2020
  ident: CR15
  article-title: Synchronization in networks of coupled hyperchaotic CO lasers
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab6e4d
– volume: 19
  start-page: 20220043
  year: 2022
  ident: CR18
  article-title: Dynamics on higher-order networks: a review
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2022.0043
– year: 2018
  ident: CR29
  publication-title: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering
  doi: 10.1201/9780429492563
– volume: 116
  start-page: 25714
  year: 2019
  end-page: 25720
  ident: CR11
  article-title: Unveiling dimensions of stability in complex ecological networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1904470116
– volume: 35
  start-page: 193
  year: 1981
  end-page: 213
  ident: CR5
  article-title: Voltage oscillations in the barnacle giant muscle fiber
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(81)84782-0
– volume: 20
  start-page: 174
  year: 2015
  end-page: 185
  ident: CR36
  article-title: A chaotic model of sustaining attention problem in attention deficit disorder
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.05.015
– volume: 2
  start-page: 1
  year: 2012
  end-page: 8
  ident: CR27
  article-title: Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
  publication-title: Sci. Rep.
  doi: 10.1038/srep00342
– ident: CR37
– volume: 111
  start-page: 87
  year: 2014
  end-page: 92
  ident: CR31
  article-title: Critical slowing down as early warning for the onset and termination of depression
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1312114110
– volume: 3
  start-page: 6
  year: 2003
  end-page: 20
  ident: CR38
  article-title: Complex networks: small-world, scale-free and beyond
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2003.1228503
– volume: 116
  start-page: 497
  year: 1952
  ident: CR2
  article-title: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004719
– volume: 15
  start-page: 3423
  year: 2005
  end-page: 3433
  ident: CR17
  article-title: Synchronization and graph topology
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127405014143
– volume: 23
  start-page: 842
  year: 2019
  end-page: 857
  ident: CR10
  article-title: A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2893447
– volume: 18
  start-page: 648
  year: 2003
  end-page: 656
  ident: CR25
  article-title: Catastrophic regime shifts in ecosystems: linking theory to observation
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2003.09.002
– volume: 142
  year: 2021
  ident: CR1
  article-title: Estimate the electrical activity in a neuron under depolarization field
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110522
– volume: 115
  start-page: 490
  year: 2023
  end-page: 512
  ident: CR13
  article-title: Event-triggered impulsive controller design for synchronization of delayed chaotic neural networks and its fractal reconstruction: an application to image encryption
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.10.015
– volume: 21
  start-page: 141
  year: 2018
  end-page: 152
  ident: CR34
  article-title: Slow recovery from local disturbances as an indicator for loss of ecosystem resilience
  publication-title: Ecosystems
  doi: 10.1007/s10021-017-0154-8
– volume: 28
  start-page: 100
  year: 2019
  end-page: 121
  ident: CR16
  article-title: Chimera states in neuronal networks: a review
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2018.09.003
– ident: CR40
– volume: 303
  start-page: 1538
  year: 2004
  end-page: 1542
  ident: CR21
  article-title: Superfamilies of evolved and designed networks
  publication-title: Science
  doi: 10.1126/science.1089167
– volume: 102
  start-page: 18414
  year: 2005
  end-page: 18419
  ident: CR12
  article-title: Topology of biological networks and reliability of information processing
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0509132102
– volume: 883
  start-page: 1
  year: 2020
  end-page: 32
  ident: CR20
  article-title: Sequential dynamics of complex networks in mind: consciousness and creativity
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.08.003
– volume: 424
  start-page: 175
  year: 2006
  end-page: 308
  ident: CR8
  article-title: Complex networks: structure and dynamics
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.10.009
– volume: 1
  start-page: 445
  year: 1961
  end-page: 466
  ident: CR3
  article-title: Impulses and physiological states in theoretical models of nerve membrane
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(61)86902-6
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: CR39
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 592
  year: 2022
  ident: CR22
  article-title: Tipping points of a complex network biomass model: Local and global parameter variations
  publication-title: Physica A
  doi: 10.1016/j.physa.2021.126845
– volume: 93
  start-page: 1
  year: 2020
  end-page: 18
  ident: CR35
  article-title: Investigating bifurcation points of neural networks: application to the epileptic seizure
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2020-10477-6
– volume: 372
  start-page: eaay4895
  year: 2021
  ident: CR23
  article-title: Exit time as a measure of ecological resilience
  publication-title: Science
  doi: 10.1126/science.aay4895
– volume: 118
  start-page: 39
  year: 2021
  ident: CR28
  article-title: Deep learning for early warning signals of tipping points
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2106140118
– volume: 31
  start-page: 033154
  year: 2021
  ident: CR19
  article-title: Persistence in multilayer ecological network consisting of harvested patches
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/5.0047221
– volume: 104
  start-page: 2711
  year: 2021
  end-page: 2721
  ident: CR4
  article-title: Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06427-x
– volume: 16
  start-page: 20190345
  year: 2019
  ident: CR9
  article-title: Harnessing tipping points in complex ecological networks
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0345
– volume: 467
  start-page: 392
  year: 2022
  end-page: 405
  ident: CR14
  article-title: Projective multi-synchronization of fractional-order complex-valued coupled multi-stable neural networks with impulsive control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.003
– volume: 230
  start-page: 3291
  year: 2021
  end-page: 3298
  ident: CR33
  article-title: Critical slowing down indicators in synchronous period-doubling for salamander flicker vision
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00113-0
– volume: 544
  year: 2020
  ident: CR32
  article-title: Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123396
– volume: 11
  year: 2015
  ident: CR30
  article-title: Critical slowing down governs the transition to neuron spiking
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004097
– volume: 18
  start-page: 255
  year: 2005
  end-page: 263
  ident: CR7
  article-title: Coexistence of tonic spiking oscillations in a leech neuron model
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-005-0354-7
– volume: 296
  start-page: 162
  year: 1982
  end-page: 164
  ident: CR6
  article-title: A model of the nerve impulse using two first-order differential equations
  publication-title: Nature
  doi: 10.1038/296162a0
– volume: 334
  start-page: 232
  year: 2011
  end-page: 235
  ident: CR24
  article-title: Global resilience of tropical forest and savanna to critical transitions
  publication-title: Science
  doi: 10.1126/science.1210657
– volume: 30
  start-page: 1579
  year: 2014
  end-page: 1586
  ident: CR26
  article-title: Identifying critical transitions of complex diseases based on a single sample
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu084
– volume: 3
  start-page: 6
  year: 2003
  ident: 3939_CR38
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2003.1228503
– volume: 18
  start-page: 255
  year: 2005
  ident: 3939_CR7
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-005-0354-7
– volume: 16
  start-page: 20190345
  year: 2019
  ident: 3939_CR9
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0345
– volume: 230
  start-page: 3291
  year: 2021
  ident: 3939_CR33
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00113-0
– volume: 467
  start-page: 392
  year: 2022
  ident: 3939_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.003
– volume: 35
  start-page: 193
  year: 1981
  ident: 3939_CR5
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(81)84782-0
– volume: 334
  start-page: 232
  year: 2011
  ident: 3939_CR24
  publication-title: Science
  doi: 10.1126/science.1210657
– volume: 296
  start-page: 162
  year: 1982
  ident: 3939_CR6
  publication-title: Nature
  doi: 10.1038/296162a0
– volume: 424
  start-page: 175
  year: 2006
  ident: 3939_CR8
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.10.009
– volume: 372
  start-page: eaay4895
  year: 2021
  ident: 3939_CR23
  publication-title: Science
  doi: 10.1126/science.aay4895
– volume: 30
  start-page: 1579
  year: 2014
  ident: 3939_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu084
– volume: 592
  year: 2022
  ident: 3939_CR22
  publication-title: Physica A
  doi: 10.1016/j.physa.2021.126845
– volume: 544
  year: 2020
  ident: 3939_CR32
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123396
– volume: 15
  start-page: 3423
  year: 2005
  ident: 3939_CR17
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127405014143
– volume: 21
  start-page: 141
  year: 2018
  ident: 3939_CR34
  publication-title: Ecosystems
  doi: 10.1007/s10021-017-0154-8
– volume: 28
  start-page: 100
  year: 2019
  ident: 3939_CR16
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2018.09.003
– volume: 19
  start-page: 20220043
  year: 2022
  ident: 3939_CR18
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2022.0043
– volume: 11
  year: 2015
  ident: 3939_CR30
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004097
– ident: 3939_CR37
  doi: 10.1007/978-3-319-75957-9
– volume: 31
  start-page: 033154
  year: 2021
  ident: 3939_CR19
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/5.0047221
– volume: 2
  start-page: 1
  year: 2012
  ident: 3939_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/srep00342
– volume: 18
  start-page: 648
  year: 2003
  ident: 3939_CR25
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2003.09.002
– volume: 116
  start-page: 25714
  year: 2019
  ident: 3939_CR11
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1904470116
– volume: 118
  start-page: 39
  year: 2021
  ident: 3939_CR28
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2106140118
– volume: 111
  start-page: 87
  year: 2014
  ident: 3939_CR31
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1312114110
– ident: 3939_CR40
  doi: 10.1016/B978-0-12-815838-8.00009-1
– volume: 115
  start-page: 490
  year: 2023
  ident: 3939_CR13
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.10.015
– volume: 286
  start-page: 509
  year: 1999
  ident: 3939_CR39
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 116
  start-page: 497
  year: 1952
  ident: 3939_CR2
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004719
– volume: 23
  start-page: 842
  year: 2019
  ident: 3939_CR10
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2893447
– volume: 93
  start-page: 1
  year: 2020
  ident: 3939_CR35
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2020-10477-6
– volume: 142
  year: 2021
  ident: 3939_CR1
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110522
– volume: 95
  start-page: 045225
  year: 2020
  ident: 3939_CR15
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab6e4d
– volume: 20
  start-page: 174
  year: 2015
  ident: 3939_CR36
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.05.015
– volume: 102
  start-page: 18414
  year: 2005
  ident: 3939_CR12
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0509132102
– volume: 883
  start-page: 1
  year: 2020
  ident: 3939_CR20
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.08.003
– volume: 303
  start-page: 1538
  year: 2004
  ident: 3939_CR21
  publication-title: Science
  doi: 10.1126/science.1089167
– volume: 1
  start-page: 445
  year: 1961
  ident: 3939_CR3
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(61)86902-6
– volume: 104
  start-page: 2711
  year: 2021
  ident: 3939_CR4
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06427-x
– volume-title: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering
  year: 2018
  ident: 3939_CR29
  doi: 10.1201/9780429492563
SSID ssj0000491494
Score 2.2871459
Snippet Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 362
SubjectTerms Applied and Technical Physics
Atomic
Behavior
Bifurcations
Complex Systems
Condensed Matter Physics
Consciousness
Coupling
Mathematical and Computational Physics
Mathematical models
Molecular
Neural networks
Neurons
Nodes
Optical and Plasma Physics
Oscillators
Parameters
Period doubling
Physics
Physics and Astronomy
Recovery time
Regular Article
Theoretical
Topology
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELZgERIXxFMUFjQHrlabxHETLgghSoUEJ1bam-UnKkJxaFL6F_lZzNhJKziwt0iJH_JMPPPNk7HXtimqRrg117qsudBt4EaaknstTQjNWntNpoHPX-T2Sny6rq8ng9swhVXOd2K6qF20ZCNfli3CbcoCrd_2Pzl1jSLv6tRC4za7U5QoaylTfPPxZGNB7RcBgJjCuhBKLH3_vV8OiMvkiqO04pSZ2vLj30LprGn-4xxNMmfzgN2flEV4l6n7kN3y3SN2NwVt2uEx-72NR8CjAVTioMvx3AOQZRV-IQRGTA9j7oGAcBhyim_6NlqbyjJZfAxgduGwz5Y76OOuGwfYdaCBaiBHx10kS1X3DfbxMOL4SDPF4Q1-YVEEQipQS_NQaUzc7Wkju7yxPiU44VK6c6DNMC_rkMEOe0Nc94RdbT58fb_lU2cGbqtKjFz4pnUBD7x0Woq1lbWVrhWhkYhADApFJ4VBZcYUSOraFaIWviSHqav0ShtRPWUXXez8MwYGAZXxTfC-koLcnrJtQ4H3QhF0rX27YHImjbJT2XLqnvFD5ZTqlSKaqkxThTRViabquGCr08A-V-64ecjlTHs1_cqDOjPeghUzP5xf3zDl8_9P-YLdKxMfCl6uL9nFuD_4l6jljOZVYuU_8zL_pQ
  priority: 102
  providerName: ProQuest
Title How can the networks with various topologies change the occurrence of bifurcation points in a period-doubling route to chaos: a case study of neural networks in the presence and absence of disturbance
URI https://link.springer.com/article/10.1140/epjp/s13360-023-03939-w
https://www.proquest.com/docview/2919497535
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYJiReEOMiCqPyw16t5eK4MW8FtatAmxCi0niyfEVFKI6alP5FfhbHdtIBD5vEUyLFx7byneRcfC4Ines6L2tqZkTKoiJUckcUUwWxkinn6pm0MrgGrq7Zak0_3FQ3f7b6CtHu45Fk_FOnerbZhW2_txcdmFQsIyBoSEgq5WR_hE6qUFQKWHldzA_uFVB8QfenQ0TXHfR_y6NbJfOfc9EobpZP0ONBT8TzBOwpemCbp-hhjNfU3TP0a-X3GN4KBv0NNymUu8PBqYp_gvUL5jzuU_sDsIRxyu6NY73WsSKThluH1cbttslph1u_afoObxoscSh_7A0xPjipmm9463c90Pswk-_ewggN0g_H2rRhnlAVE3Z72MgmbayNuU2wlGwMlqoblzXAW7utCgz3HK2Xiy_vV2RoykB0WdKeUFtz40CvKYxkdKZZpZnh1NUMjA8F8tAwqkCPUTmgXJmcVtQW4azUlDKTipYv0HHjG_sSYQW2lLK1s7ZkNJx4Ms5dDmDmTlbS8gliIzRCDxXLQ-OMHyJlU2ciYCoSpgIwFRFTsZ-g7EDYpqId95OcjdiL4SvuRMFzTkPmcTVB-cgPt4_vmfLVf9C8Ro-KyJyUFLMzdNxvd_YNaD29mqKjenk5RSfzy68fF3B9t7j-9Hkauf432Z8FHw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLaGQQguiFUUBvABjlab2HETJIQQUDrMcpqR5ma8oiIUhyah4k_xO_hZPNtJKzgwp7lFSvxs6Xt5m9-C0AtdZrRkZk6kzAvCZOWI4ionVnLlXDmXVobQwMkpX56zTxfFxR76NdbChLTKUSZGQW28DjHyaV6Bux2qQIs3zXcSpkaF29VxhEZiiyP7cwMuW_v68D3g-zLPFx_O3i3JMFWAaEpZR5gtK-NAMedGcjbXvNDcVMyVHKxnBQLdcKZAEasMjlmYjBXM5uGyz1A5k4pRoHsNXWeU0pBCWC4-bmM6YG2Dw8GGNDJwXaa2-dpMW_AD-YyAdiShErYim7-V4M6y_ecyNuq4xR10ezBO8dvETXfRnq3voRsxSVS399Hvpd9ggAKD0YjrlD_e4hDJxT_A5fZ9i7s0cwHcb5xKiuO3XuvYBkrDo8Nq5fp1ihTixq_qrsWrGkscei57Q4wPkbH6C177voP1PlDy7Sv4QoPKxbEhbqATWnHCabcHWaWDNbGgCraStcFSteO2Bhi6X6vA5Q_Q-ZVg9hDt1762jxBW4MApWzprKWfhmpVXlctADmVOFtJWE8RHaIQe2qSHaR3fRCrhnomAqUiYCsBUREzFZoJm24VN6hRy-ZKDEXsxiI5W7Bh9grKRH3avLyH5-P8kn6Oby7OTY3F8eHr0BN3KI08yks8P0H637u1TsLA69SyyNUafr_o_-gPu-zso
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYgL4im2FPCBq7V5ON6YWwVdLa-KAyv1ZvmJtkJ2tMmyf7E_i7GdbAUHKnGLlIxt5ZtkHp75jNBb3ZZ1S82CSFk1hEruiGKqIlYy5Vy7kFbG1MDXC7Za00-XzeUROp96YVK1-7QlmXsaIkuTH-adcSO3bTG33VU37yG8YgUBo0Nigykn-zvoLgWDHSu71tXZIdUCTjDEAXSs7vqH_J-26cbh_GuPNJme5SP0cPQZ8VkG-TE6sv4JupdqN3X_FF2vwh7DG8Lgy2Gfy7p7HBOs-BdEwhDa4yEfhQBRMc6dvunZoHViZ9Jw6bDauN02J_BwFzZ-6PHGY4kjFXIwxISYsPI_8DbsBpAPcaTQv4MnNFhCnHhq4ziRIRNWe1jIJi-sS31OMJX0BkvVT9Ma0LPdVkXle4bWy_Pv71dkPKCB6LqmA6G25caBj1MZyehCs0Yzw6lrGQQiCmyjYVSBT6NKQLwxJW2oreK-qallIRWtn6NjH7x9gbCCuErZ1llbMxp3PxnnroTfQ-lkIy2fITZBI_TIXh4P0fgpcmd1ISKmImMqAFORMBX7GSoOgl0m8Lhd5HTCXoxfdC8qXnIau5CbGSonfbi5fcuQJ_8h8wbd__ZhKb58vPj8Ej2okp5SUi1O0fGw3dlX4AwN6nVS9d8vyQgz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+can+the+networks+with+various+topologies+change+the+occurrence+of+bifurcation+points+in+a+period-doubling+route+to+chaos%3A+a+case+study+of+neural+networks+in+the+presence+and+absence+of+disturbance&rft.jtitle=European+physical+journal+plus&rft.au=Navid+Moghadam%2C+Nastaran&rft.au=Ramamoorthy%2C+Ramesh&rft.au=Nazarimehr%2C+Fahimeh&rft.au=Rajagopal%2C+Karthikeyan&rft.date=2023-04-27&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=138&rft.issue=4&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-023-03939-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_s13360_023_03939_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon