How can the networks with various topologies change the occurrence of bifurcation points in a period-doubling route to chaos: a case study of neural networks in the presence and absence of disturbance
Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be s...
Saved in:
Published in | European physical journal plus Vol. 138; no. 4; p. 362 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
27.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-5444 2190-5444 |
DOI | 10.1140/epjp/s13360-023-03939-w |
Cover
Abstract | Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be studied in the networks, where there are interactions between the neurons. Hence, investigating neural models in the networks can be helpful. This study examines the attention-deficit disorder model's bifurcation points in both regular and irregular networks. The networks are analyzed in two cases. In the first case, networks are studied where perturbations enter one node. Calculating the recovery time of the disturbed neuron can investigate the bifurcation points. Results show that recovery time reveals the dynamical variation of the disturbed node. The second case examines networks with different coupling strengths and nodes' degrees. Results indicate that as coupling strengths and nodes' degree increase, bifurcations occur in the smaller parameters in the period-doubling route to chaos. A general trend cannot be seen in the inverse route of period doubling. |
---|---|
AbstractList | Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be studied in the networks, where there are interactions between the neurons. Hence, investigating neural models in the networks can be helpful. This study examines the attention-deficit disorder model's bifurcation points in both regular and irregular networks. The networks are analyzed in two cases. In the first case, networks are studied where perturbations enter one node. Calculating the recovery time of the disturbed neuron can investigate the bifurcation points. Results show that recovery time reveals the dynamical variation of the disturbed node. The second case examines networks with different coupling strengths and nodes' degrees. Results indicate that as coupling strengths and nodes' degree increase, bifurcations occur in the smaller parameters in the period-doubling route to chaos. A general trend cannot be seen in the inverse route of period doubling. |
ArticleNumber | 362 |
Author | Rajagopal, Karthikeyan Ramamoorthy, Ramesh Nazarimehr, Fahimeh Navid Moghadam, Nastaran Jafari, Sajad |
Author_xml | – sequence: 1 givenname: Nastaran surname: Navid Moghadam fullname: Navid Moghadam, Nastaran organization: Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic) – sequence: 2 givenname: Ramesh surname: Ramamoorthy fullname: Ramamoorthy, Ramesh organization: Centre for Artificial Intelligence, Chennai Institute of Technology – sequence: 3 givenname: Fahimeh surname: Nazarimehr fullname: Nazarimehr, Fahimeh email: fahimenazarimehr@yahoo.com organization: Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic) – sequence: 4 givenname: Karthikeyan surname: Rajagopal fullname: Rajagopal, Karthikeyan organization: Centre for Nonlinear Systems, Chennai Institute of Technology, Department of Electronics and Communications Engineering, University Centre for Research and Development, Chandigarh University – sequence: 5 givenname: Sajad surname: Jafari fullname: Jafari, Sajad organization: Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic) |
BookMark | eNqNkVFrHCEUhaWk0DTNb6jQ50l0dNy1kIcQ0iYQ6Ev7LI46u26nOrlqhvzD_qy6OykJfUl98QrnO-fieY-OQgwOoY-UnFHKybmbdtN5oowJ0pCWNYRJJpv5DTpuqSRNxzk_ejG_Q6cp7Ug9XFIu-TH6fRNnbHTAeetwcHmO8DPh2ectftDgY0k4xymOceNdwmarw8YdtNGYAuCCqeOAez8UMDr7GPAUfcgJ-4A1nlz1sI2NpR992GCIJVc-7p1i-lwVRieHUy72ce8TXAE9Pi_il8UmcOkQpYPFuk9_Y62vJPS6Pj-gt4Mekzt9uk_Qjy_X369umrtvX2-vLu8awxjPDXdraQfBZGu14CsjOiOs5MNaMCJ6woQVvCdC9NRp1lnKO-7ajjBmmSa65-wEfVp8J4j3xaWsdrFAqJGqlVRyuepYV1WrRWUgpgRuUBP4XxoeFSVq35zaN6eW5lRtTh2aU3MlL_4hjc-Hj82g_fgf_HrhU02sZcHzfq-hfwAwQbqh |
CitedBy_id | crossref_primary_10_1140_epjs_s11734_024_01168_5 |
Cites_doi | 10.1088/1402-4896/ab6e4d 10.1098/rsif.2022.0043 10.1201/9780429492563 10.1073/pnas.1904470116 10.1016/S0006-3495(81)84782-0 10.1016/j.cnsns.2014.05.015 10.1038/srep00342 10.1073/pnas.1312114110 10.1109/MCAS.2003.1228503 10.1113/jphysiol.1952.sp004719 10.1142/S0218127405014143 10.1109/TEVC.2019.2893447 10.1016/j.tree.2003.09.002 10.1016/j.chaos.2020.110522 10.1016/j.apm.2022.10.015 10.1007/s10021-017-0154-8 10.1016/j.plrev.2018.09.003 10.1126/science.1089167 10.1073/pnas.0509132102 10.1016/j.physrep.2020.08.003 10.1016/j.physrep.2005.10.009 10.1016/S0006-3495(61)86902-6 10.1126/science.286.5439.509 10.1016/j.physa.2021.126845 10.1140/epjb/e2020-10477-6 10.1126/science.aay4895 10.1073/pnas.2106140118 10.1063/5.0047221 10.1007/s11071-021-06427-x 10.1098/rsif.2019.0345 10.1016/j.neucom.2021.10.003 10.1140/epjs/s11734-021-00113-0 10.1016/j.physa.2019.123396 10.1371/journal.pcbi.1004097 10.1007/s10827-005-0354-7 10.1038/296162a0 10.1126/science.1210657 10.1093/bioinformatics/btu084 10.1007/978-3-319-75957-9 10.1016/B978-0-12-815838-8.00009-1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-023-03939-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_023_03939_w |
GrantInformation_xml | – fundername: Centre for Nonlinear Systems, Chennai Institute of Technology, India grantid: CIT/CNS/2022/RD/006 |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-4e89df6392da647c65c6d94f86306b036d64b066b1ea35d1454e25033d3a0ab43 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 23:27:43 EDT 2025 Tue Jul 01 02:42:32 EDT 2025 Thu Apr 24 22:51:48 EDT 2025 Fri Feb 21 02:43:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-4e89df6392da647c65c6d94f86306b036d64b066b1ea35d1454e25033d3a0ab43 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
PQID | 2919497535 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919497535 crossref_primary_10_1140_epjp_s13360_023_03939_w crossref_citationtrail_10_1140_epjp_s13360_023_03939_w springer_journals_10_1140_epjp_s13360_023_03939_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-27 |
PublicationDateYYYYMMDD | 2023-04-27 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Belykh, Hasler, Lauret, Nijmeijer (CR17) 2005; 15 Moghadam, Nazarimehr, Jafari, Sprott (CR32) 2020; 544 Majhi, Perc, Ghosh (CR18) 2022; 19 van de Leemput, Wichers, Cramer, Borsboom, Tuerlinckx, Kuppens (CR31) 2014; 111 Bury, Sujith, Pavithran, Scheffer, Lenton, Anand (CR28) 2021; 118 Kundu, Majhi, Ghosh (CR19) 2021; 31 Roy, Misra, Banerjee (CR15) 2020; 95 Hodgkin, Huxley (CR2) 1952; 116 Hussain, Jafari, Ghosh, Perc (CR4) 2021; 104 Arani, Carpenter, Lahti, van Nes, Scheffer (CR23) 2021; 372 Liu, Yu, Liu, Xu, Aihara, Chen (CR26) 2014; 30 Barabási, Albert (CR39) 1999; 286 FitzHugh (CR3) 1961; 1 Klemm, Bornholdt (CR12) 2005; 102 Mohanrasu, Udhayakumar, Priyanka, Gowrisankar, Banerjee, Rakkiyappan (CR13) 2023; 115 Chen, Liu, Liu, Li, Aihara (CR27) 2012; 2 Domínguez-García, Dakos, Kéfi (CR11) 2019; 116 Majhi, Bera, Ghosh, Perc (CR16) 2019; 28 Milo, Itzkovitz, Kashtan, Levitt, Shen-Orr, Ayzenshtat (CR21) 2004; 303 CR37 Hou, Ma, Zhan, Yang, Jia (CR1) 2021; 142 Faghani, Jafari, Chen, Nazarimehr (CR35) 2020; 93 Hindmarsh, Rose (CR6) 1982; 296 Meisel, Klaus, Kuehn, Plenz (CR30) 2015; 11 Moghadam, Ramamoorthy, Nazarimehr, Rajagopal, Jafari (CR22) 2022; 592 Mehrabbeik, Ramamoorthy, Rajagopal, Nazarimehr, Jafari, Hussain (CR33) 2021; 230 Cymbalyuk, Shilnikov (CR7) 2005; 18 Baghdadi, Jafari, Sprott, Towhidkhah, Golpayegani (CR36) 2015; 20 Morris, Lecar (CR5) 1981; 35 van de Leemput, Dakos, Scheffer, van Nes (CR34) 2018; 21 Udhayakumar, Rakkiyappan, Rihan, Banerjee (CR14) 2022; 467 Wang, Chen (CR38) 2003; 3 Hirota, Holmgren, Van Nes, Scheffer (CR24) 2011; 334 Strogatz (CR29) 2018 CR40 Boccaletti, Latora, Moreno, Chavez, Hwang (CR8) 2006; 424 Jiang, Hastings, Lai (CR9) 2019; 16 Scheffer, Carpenter (CR25) 2003; 18 Rabinovich, Zaks, Varona (CR20) 2020; 883 Chen, Jia, Zhao, Luo, Jia, Zhang (CR10) 2019; 23 NN Moghadam (3939_CR32) 2020; 544 S Majhi (3939_CR18) 2022; 19 C Morris (3939_CR5) 1981; 35 K Udhayakumar (3939_CR14) 2022; 467 I Belykh (3939_CR17) 2005; 15 J Jiang (3939_CR9) 2019; 16 R Liu (3939_CR26) 2014; 30 Z Faghani (3939_CR35) 2020; 93 L Chen (3939_CR27) 2012; 2 SH Strogatz (3939_CR29) 2018 R FitzHugh (3939_CR3) 1961; 1 A-L Barabási (3939_CR39) 1999; 286 NN Moghadam (3939_CR22) 2022; 592 G Cymbalyuk (3939_CR7) 2005; 18 Z Hou (3939_CR1) 2021; 142 S Kundu (3939_CR19) 2021; 31 TM Bury (3939_CR28) 2021; 118 IA van de Leemput (3939_CR31) 2014; 111 M Hirota (3939_CR24) 2011; 334 V Domínguez-García (3939_CR11) 2019; 116 IA van de Leemput (3939_CR34) 2018; 21 K Klemm (3939_CR12) 2005; 102 S Majhi (3939_CR16) 2019; 28 S Boccaletti (3939_CR8) 2006; 424 G Baghdadi (3939_CR36) 2015; 20 MI Rabinovich (3939_CR20) 2020; 883 3939_CR37 SS Mohanrasu (3939_CR13) 2023; 115 R Milo (3939_CR21) 2004; 303 XF Wang (3939_CR38) 2003; 3 C Meisel (3939_CR30) 2015; 11 A Roy (3939_CR15) 2020; 95 M Mehrabbeik (3939_CR33) 2021; 230 B Arani (3939_CR23) 2021; 372 J Hindmarsh (3939_CR6) 1982; 296 W-N Chen (3939_CR10) 2019; 23 I Hussain (3939_CR4) 2021; 104 AL Hodgkin (3939_CR2) 1952; 116 M Scheffer (3939_CR25) 2003; 18 3939_CR40 |
References_xml | – volume: 95 start-page: 045225 year: 2020 ident: CR15 article-title: Synchronization in networks of coupled hyperchaotic CO lasers publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab6e4d – volume: 19 start-page: 20220043 year: 2022 ident: CR18 article-title: Dynamics on higher-order networks: a review publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2022.0043 – year: 2018 ident: CR29 publication-title: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering doi: 10.1201/9780429492563 – volume: 116 start-page: 25714 year: 2019 end-page: 25720 ident: CR11 article-title: Unveiling dimensions of stability in complex ecological networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1904470116 – volume: 35 start-page: 193 year: 1981 end-page: 213 ident: CR5 article-title: Voltage oscillations in the barnacle giant muscle fiber publication-title: Biophys. J. doi: 10.1016/S0006-3495(81)84782-0 – volume: 20 start-page: 174 year: 2015 end-page: 185 ident: CR36 article-title: A chaotic model of sustaining attention problem in attention deficit disorder publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.05.015 – volume: 2 start-page: 1 year: 2012 end-page: 8 ident: CR27 article-title: Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers publication-title: Sci. Rep. doi: 10.1038/srep00342 – ident: CR37 – volume: 111 start-page: 87 year: 2014 end-page: 92 ident: CR31 article-title: Critical slowing down as early warning for the onset and termination of depression publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1312114110 – volume: 3 start-page: 6 year: 2003 end-page: 20 ident: CR38 article-title: Complex networks: small-world, scale-free and beyond publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2003.1228503 – volume: 116 start-page: 497 year: 1952 ident: CR2 article-title: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004719 – volume: 15 start-page: 3423 year: 2005 end-page: 3433 ident: CR17 article-title: Synchronization and graph topology publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127405014143 – volume: 23 start-page: 842 year: 2019 end-page: 857 ident: CR10 article-title: A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2893447 – volume: 18 start-page: 648 year: 2003 end-page: 656 ident: CR25 article-title: Catastrophic regime shifts in ecosystems: linking theory to observation publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2003.09.002 – volume: 142 year: 2021 ident: CR1 article-title: Estimate the electrical activity in a neuron under depolarization field publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110522 – volume: 115 start-page: 490 year: 2023 end-page: 512 ident: CR13 article-title: Event-triggered impulsive controller design for synchronization of delayed chaotic neural networks and its fractal reconstruction: an application to image encryption publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.10.015 – volume: 21 start-page: 141 year: 2018 end-page: 152 ident: CR34 article-title: Slow recovery from local disturbances as an indicator for loss of ecosystem resilience publication-title: Ecosystems doi: 10.1007/s10021-017-0154-8 – volume: 28 start-page: 100 year: 2019 end-page: 121 ident: CR16 article-title: Chimera states in neuronal networks: a review publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2018.09.003 – ident: CR40 – volume: 303 start-page: 1538 year: 2004 end-page: 1542 ident: CR21 article-title: Superfamilies of evolved and designed networks publication-title: Science doi: 10.1126/science.1089167 – volume: 102 start-page: 18414 year: 2005 end-page: 18419 ident: CR12 article-title: Topology of biological networks and reliability of information processing publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0509132102 – volume: 883 start-page: 1 year: 2020 end-page: 32 ident: CR20 article-title: Sequential dynamics of complex networks in mind: consciousness and creativity publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.08.003 – volume: 424 start-page: 175 year: 2006 end-page: 308 ident: CR8 article-title: Complex networks: structure and dynamics publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.10.009 – volume: 1 start-page: 445 year: 1961 end-page: 466 ident: CR3 article-title: Impulses and physiological states in theoretical models of nerve membrane publication-title: Biophys. J. doi: 10.1016/S0006-3495(61)86902-6 – volume: 286 start-page: 509 year: 1999 end-page: 512 ident: CR39 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 592 year: 2022 ident: CR22 article-title: Tipping points of a complex network biomass model: Local and global parameter variations publication-title: Physica A doi: 10.1016/j.physa.2021.126845 – volume: 93 start-page: 1 year: 2020 end-page: 18 ident: CR35 article-title: Investigating bifurcation points of neural networks: application to the epileptic seizure publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2020-10477-6 – volume: 372 start-page: eaay4895 year: 2021 ident: CR23 article-title: Exit time as a measure of ecological resilience publication-title: Science doi: 10.1126/science.aay4895 – volume: 118 start-page: 39 year: 2021 ident: CR28 article-title: Deep learning for early warning signals of tipping points publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2106140118 – volume: 31 start-page: 033154 year: 2021 ident: CR19 article-title: Persistence in multilayer ecological network consisting of harvested patches publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/5.0047221 – volume: 104 start-page: 2711 year: 2021 end-page: 2721 ident: CR4 article-title: Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06427-x – volume: 16 start-page: 20190345 year: 2019 ident: CR9 article-title: Harnessing tipping points in complex ecological networks publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0345 – volume: 467 start-page: 392 year: 2022 end-page: 405 ident: CR14 article-title: Projective multi-synchronization of fractional-order complex-valued coupled multi-stable neural networks with impulsive control publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.003 – volume: 230 start-page: 3291 year: 2021 end-page: 3298 ident: CR33 article-title: Critical slowing down indicators in synchronous period-doubling for salamander flicker vision publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00113-0 – volume: 544 year: 2020 ident: CR32 article-title: Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos publication-title: Physica A doi: 10.1016/j.physa.2019.123396 – volume: 11 year: 2015 ident: CR30 article-title: Critical slowing down governs the transition to neuron spiking publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004097 – volume: 18 start-page: 255 year: 2005 end-page: 263 ident: CR7 article-title: Coexistence of tonic spiking oscillations in a leech neuron model publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-005-0354-7 – volume: 296 start-page: 162 year: 1982 end-page: 164 ident: CR6 article-title: A model of the nerve impulse using two first-order differential equations publication-title: Nature doi: 10.1038/296162a0 – volume: 334 start-page: 232 year: 2011 end-page: 235 ident: CR24 article-title: Global resilience of tropical forest and savanna to critical transitions publication-title: Science doi: 10.1126/science.1210657 – volume: 30 start-page: 1579 year: 2014 end-page: 1586 ident: CR26 article-title: Identifying critical transitions of complex diseases based on a single sample publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu084 – volume: 3 start-page: 6 year: 2003 ident: 3939_CR38 publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2003.1228503 – volume: 18 start-page: 255 year: 2005 ident: 3939_CR7 publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-005-0354-7 – volume: 16 start-page: 20190345 year: 2019 ident: 3939_CR9 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0345 – volume: 230 start-page: 3291 year: 2021 ident: 3939_CR33 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00113-0 – volume: 467 start-page: 392 year: 2022 ident: 3939_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.003 – volume: 35 start-page: 193 year: 1981 ident: 3939_CR5 publication-title: Biophys. J. doi: 10.1016/S0006-3495(81)84782-0 – volume: 334 start-page: 232 year: 2011 ident: 3939_CR24 publication-title: Science doi: 10.1126/science.1210657 – volume: 296 start-page: 162 year: 1982 ident: 3939_CR6 publication-title: Nature doi: 10.1038/296162a0 – volume: 424 start-page: 175 year: 2006 ident: 3939_CR8 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.10.009 – volume: 372 start-page: eaay4895 year: 2021 ident: 3939_CR23 publication-title: Science doi: 10.1126/science.aay4895 – volume: 30 start-page: 1579 year: 2014 ident: 3939_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu084 – volume: 592 year: 2022 ident: 3939_CR22 publication-title: Physica A doi: 10.1016/j.physa.2021.126845 – volume: 544 year: 2020 ident: 3939_CR32 publication-title: Physica A doi: 10.1016/j.physa.2019.123396 – volume: 15 start-page: 3423 year: 2005 ident: 3939_CR17 publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127405014143 – volume: 21 start-page: 141 year: 2018 ident: 3939_CR34 publication-title: Ecosystems doi: 10.1007/s10021-017-0154-8 – volume: 28 start-page: 100 year: 2019 ident: 3939_CR16 publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2018.09.003 – volume: 19 start-page: 20220043 year: 2022 ident: 3939_CR18 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2022.0043 – volume: 11 year: 2015 ident: 3939_CR30 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004097 – ident: 3939_CR37 doi: 10.1007/978-3-319-75957-9 – volume: 31 start-page: 033154 year: 2021 ident: 3939_CR19 publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/5.0047221 – volume: 2 start-page: 1 year: 2012 ident: 3939_CR27 publication-title: Sci. Rep. doi: 10.1038/srep00342 – volume: 18 start-page: 648 year: 2003 ident: 3939_CR25 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2003.09.002 – volume: 116 start-page: 25714 year: 2019 ident: 3939_CR11 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1904470116 – volume: 118 start-page: 39 year: 2021 ident: 3939_CR28 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2106140118 – volume: 111 start-page: 87 year: 2014 ident: 3939_CR31 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1312114110 – ident: 3939_CR40 doi: 10.1016/B978-0-12-815838-8.00009-1 – volume: 115 start-page: 490 year: 2023 ident: 3939_CR13 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.10.015 – volume: 286 start-page: 509 year: 1999 ident: 3939_CR39 publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 116 start-page: 497 year: 1952 ident: 3939_CR2 publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004719 – volume: 23 start-page: 842 year: 2019 ident: 3939_CR10 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2893447 – volume: 93 start-page: 1 year: 2020 ident: 3939_CR35 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2020-10477-6 – volume: 142 year: 2021 ident: 3939_CR1 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110522 – volume: 95 start-page: 045225 year: 2020 ident: 3939_CR15 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab6e4d – volume: 20 start-page: 174 year: 2015 ident: 3939_CR36 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.05.015 – volume: 102 start-page: 18414 year: 2005 ident: 3939_CR12 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0509132102 – volume: 883 start-page: 1 year: 2020 ident: 3939_CR20 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.08.003 – volume: 303 start-page: 1538 year: 2004 ident: 3939_CR21 publication-title: Science doi: 10.1126/science.1089167 – volume: 1 start-page: 445 year: 1961 ident: 3939_CR3 publication-title: Biophys. J. doi: 10.1016/S0006-3495(61)86902-6 – volume: 104 start-page: 2711 year: 2021 ident: 3939_CR4 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06427-x – volume-title: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering year: 2018 ident: 3939_CR29 doi: 10.1201/9780429492563 |
SSID | ssj0000491494 |
Score | 2.2871459 |
Snippet | Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 362 |
SubjectTerms | Applied and Technical Physics Atomic Behavior Bifurcations Complex Systems Condensed Matter Physics Consciousness Coupling Mathematical and Computational Physics Mathematical models Molecular Neural networks Neurons Nodes Optical and Plasma Physics Oscillators Parameters Period doubling Physics Physics and Astronomy Recovery time Regular Article Theoretical Topology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELZgERIXxFMUFjQHrlabxHETLgghSoUEJ1bam-UnKkJxaFL6F_lZzNhJKziwt0iJH_JMPPPNk7HXtimqRrg117qsudBt4EaaknstTQjNWntNpoHPX-T2Sny6rq8ng9swhVXOd2K6qF20ZCNfli3CbcoCrd_2Pzl1jSLv6tRC4za7U5QoaylTfPPxZGNB7RcBgJjCuhBKLH3_vV8OiMvkiqO04pSZ2vLj30LprGn-4xxNMmfzgN2flEV4l6n7kN3y3SN2NwVt2uEx-72NR8CjAVTioMvx3AOQZRV-IQRGTA9j7oGAcBhyim_6NlqbyjJZfAxgduGwz5Y76OOuGwfYdaCBaiBHx10kS1X3DfbxMOL4SDPF4Q1-YVEEQipQS_NQaUzc7Wkju7yxPiU44VK6c6DNMC_rkMEOe0Nc94RdbT58fb_lU2cGbqtKjFz4pnUBD7x0Woq1lbWVrhWhkYhADApFJ4VBZcYUSOraFaIWviSHqav0ShtRPWUXXez8MwYGAZXxTfC-koLcnrJtQ4H3QhF0rX27YHImjbJT2XLqnvFD5ZTqlSKaqkxThTRViabquGCr08A-V-64ecjlTHs1_cqDOjPeghUzP5xf3zDl8_9P-YLdKxMfCl6uL9nFuD_4l6jljOZVYuU_8zL_pQ priority: 102 providerName: ProQuest |
Title | How can the networks with various topologies change the occurrence of bifurcation points in a period-doubling route to chaos: a case study of neural networks in the presence and absence of disturbance |
URI | https://link.springer.com/article/10.1140/epjp/s13360-023-03939-w https://www.proquest.com/docview/2919497535 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYJiReEOMiCqPyw16t5eK4MW8FtatAmxCi0niyfEVFKI6alP5FfhbHdtIBD5vEUyLFx7byneRcfC4Ines6L2tqZkTKoiJUckcUUwWxkinn6pm0MrgGrq7Zak0_3FQ3f7b6CtHu45Fk_FOnerbZhW2_txcdmFQsIyBoSEgq5WR_hE6qUFQKWHldzA_uFVB8QfenQ0TXHfR_y6NbJfOfc9EobpZP0ONBT8TzBOwpemCbp-hhjNfU3TP0a-X3GN4KBv0NNymUu8PBqYp_gvUL5jzuU_sDsIRxyu6NY73WsSKThluH1cbttslph1u_afoObxoscSh_7A0xPjipmm9463c90Pswk-_ewggN0g_H2rRhnlAVE3Z72MgmbayNuU2wlGwMlqoblzXAW7utCgz3HK2Xiy_vV2RoykB0WdKeUFtz40CvKYxkdKZZpZnh1NUMjA8F8tAwqkCPUTmgXJmcVtQW4azUlDKTipYv0HHjG_sSYQW2lLK1s7ZkNJx4Ms5dDmDmTlbS8gliIzRCDxXLQ-OMHyJlU2ciYCoSpgIwFRFTsZ-g7EDYpqId95OcjdiL4SvuRMFzTkPmcTVB-cgPt4_vmfLVf9C8Ro-KyJyUFLMzdNxvd_YNaD29mqKjenk5RSfzy68fF3B9t7j-9Hkauf432Z8FHw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLaGQQguiFUUBvABjlab2HETJIQQUDrMcpqR5ma8oiIUhyah4k_xO_hZPNtJKzgwp7lFSvxs6Xt5m9-C0AtdZrRkZk6kzAvCZOWI4ionVnLlXDmXVobQwMkpX56zTxfFxR76NdbChLTKUSZGQW28DjHyaV6Bux2qQIs3zXcSpkaF29VxhEZiiyP7cwMuW_v68D3g-zLPFx_O3i3JMFWAaEpZR5gtK-NAMedGcjbXvNDcVMyVHKxnBQLdcKZAEasMjlmYjBXM5uGyz1A5k4pRoHsNXWeU0pBCWC4-bmM6YG2Dw8GGNDJwXaa2-dpMW_AD-YyAdiShErYim7-V4M6y_ecyNuq4xR10ezBO8dvETXfRnq3voRsxSVS399Hvpd9ggAKD0YjrlD_e4hDJxT_A5fZ9i7s0cwHcb5xKiuO3XuvYBkrDo8Nq5fp1ihTixq_qrsWrGkscei57Q4wPkbH6C177voP1PlDy7Sv4QoPKxbEhbqATWnHCabcHWaWDNbGgCraStcFSteO2Bhi6X6vA5Q_Q-ZVg9hDt1762jxBW4MApWzprKWfhmpVXlctADmVOFtJWE8RHaIQe2qSHaR3fRCrhnomAqUiYCsBUREzFZoJm24VN6hRy-ZKDEXsxiI5W7Bh9grKRH3avLyH5-P8kn6Oby7OTY3F8eHr0BN3KI08yks8P0H637u1TsLA69SyyNUafr_o_-gPu-zso |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYgL4im2FPCBq7V5ON6YWwVdLa-KAyv1ZvmJtkJ2tMmyf7E_i7GdbAUHKnGLlIxt5ZtkHp75jNBb3ZZ1S82CSFk1hEruiGKqIlYy5Vy7kFbG1MDXC7Za00-XzeUROp96YVK1-7QlmXsaIkuTH-adcSO3bTG33VU37yG8YgUBo0Nigykn-zvoLgWDHSu71tXZIdUCTjDEAXSs7vqH_J-26cbh_GuPNJme5SP0cPQZ8VkG-TE6sv4JupdqN3X_FF2vwh7DG8Lgy2Gfy7p7HBOs-BdEwhDa4yEfhQBRMc6dvunZoHViZ9Jw6bDauN02J_BwFzZ-6PHGY4kjFXIwxISYsPI_8DbsBpAPcaTQv4MnNFhCnHhq4ziRIRNWe1jIJi-sS31OMJX0BkvVT9Ma0LPdVkXle4bWy_Pv71dkPKCB6LqmA6G25caBj1MZyehCs0Yzw6lrGQQiCmyjYVSBT6NKQLwxJW2oreK-qallIRWtn6NjH7x9gbCCuErZ1llbMxp3PxnnroTfQ-lkIy2fITZBI_TIXh4P0fgpcmd1ISKmImMqAFORMBX7GSoOgl0m8Lhd5HTCXoxfdC8qXnIau5CbGSonfbi5fcuQJ_8h8wbd__ZhKb58vPj8Ej2okp5SUi1O0fGw3dlX4AwN6nVS9d8vyQgz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+can+the+networks+with+various+topologies+change+the+occurrence+of+bifurcation+points+in+a+period-doubling+route+to+chaos%3A+a+case+study+of+neural+networks+in+the+presence+and+absence+of+disturbance&rft.jtitle=European+physical+journal+plus&rft.au=Navid+Moghadam%2C+Nastaran&rft.au=Ramamoorthy%2C+Ramesh&rft.au=Nazarimehr%2C+Fahimeh&rft.au=Rajagopal%2C+Karthikeyan&rft.date=2023-04-27&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=138&rft.issue=4&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-023-03939-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_s13360_023_03939_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |