Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems

Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its draw...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 187; p. 104836
Main Authors Zhang, Yiying, Jin, Zhigang, Chen, Ye
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2019.07.007

Cover

Abstract Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency. •A novel hybrid algorithm called TLNNA is proposed based on TLBO and NNA, which is an algorithm without any effort for fine tuning initial parameters.•TLNNA has excellent global optimization ability of NNA and fast convergence rate of TLBO by the designed dynamic grouping mechanism.•TLNNA is examined using 30 well-known unconstrained benchmark test functions and 4 challenging constrained engineering design problems.
AbstractList Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency. •A novel hybrid algorithm called TLNNA is proposed based on TLBO and NNA, which is an algorithm without any effort for fine tuning initial parameters.•TLNNA has excellent global optimization ability of NNA and fast convergence rate of TLBO by the designed dynamic grouping mechanism.•TLNNA is examined using 30 well-known unconstrained benchmark test functions and 4 challenging constrained engineering design problems.
Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency.
ArticleNumber 104836
Author Jin, Zhigang
Zhang, Yiying
Chen, Ye
Author_xml – sequence: 1
  givenname: Yiying
  surname: Zhang
  fullname: Zhang, Yiying
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 2
  givenname: Zhigang
  surname: Jin
  fullname: Jin, Zhigang
  email: zgjin@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 3
  givenname: Ye
  surname: Chen
  fullname: Chen, Ye
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, PR China
BookMark eNqFkD1OxDAQhS0EEsvCDSgiUSeM4ySOKZAQ4k9CooHa8jqTxUvWXmwvaKm4AzfkJBiWBgqoZor3vXnzdsimdRYJ2adQUKDN4ax4sC6sQlECFQXwAoBvkBFteZnzCsQmGYGoIedQ022yE8IMAMqStiPyfLmaeNNlEZW-N3b6_vo2oPI2rflEBewyt4hmbl5UNM5mynaZxaVXQxrx2fmHTA1T5028n2e98xnaqbGIPvFZh8FM7U-DhXeTAedhl2z1agi49z3H5O787Pb0Mr--ubg6PbnONWNVzJkSWndCcQHQqLque9ow3bKmLVNgToVgFPuetbqvuG6qpi4nguqGI5Sad4yNycHaNx1-XGKIcuaW3qaTsmQM6rYWLU-qo7VKexeCx15qE78CR6_MICnIz6LlTK6Llp9FS-AyFZ3g6he88Gau_Oo_7HiNYXr_yaCXQRu0GjvjUUfZOfO3wQeKJ6C4
CitedBy_id crossref_primary_10_1007_s11227_022_04883_9
crossref_primary_10_1007_s12008_023_01530_2
crossref_primary_10_1007_s12065_021_00668_w
crossref_primary_10_1109_ACCESS_2021_3075581
crossref_primary_10_1007_s00521_022_07565_y
crossref_primary_10_1155_2022_1535957
crossref_primary_10_1115_1_4053816
crossref_primary_10_1155_2021_9497388
crossref_primary_10_1109_ACCESS_2021_3051807
crossref_primary_10_1007_s40747_023_01074_8
crossref_primary_10_1007_s00704_023_04685_w
crossref_primary_10_1016_j_istruc_2022_02_035
crossref_primary_10_1155_2021_9651957
crossref_primary_10_3390_math10111827
crossref_primary_10_1002_ese3_1329
crossref_primary_10_1088_1757_899X_750_1_012040
crossref_primary_10_1007_s00521_024_09523_2
crossref_primary_10_1016_j_asoc_2022_109653
crossref_primary_10_1109_ACCESS_2021_3096726
crossref_primary_10_3390_en14175294
crossref_primary_10_1002_int_22707
crossref_primary_10_1007_s00521_021_06374_z
crossref_primary_10_1007_s43538_024_00248_3
crossref_primary_10_1109_TCBB_2022_3215129
crossref_primary_10_3846_gac_2024_18555
crossref_primary_10_1016_j_engappai_2023_106778
crossref_primary_10_1016_j_jclepro_2024_142655
crossref_primary_10_1016_j_knosys_2020_106580
crossref_primary_10_1109_ACCESS_2020_2984272
crossref_primary_10_3390_app10207320
crossref_primary_10_1109_ACCESS_2020_2999927
crossref_primary_10_1109_TNNLS_2021_3109565
crossref_primary_10_1016_j_knosys_2022_109533
crossref_primary_10_1088_2631_8695_ad4ba9
crossref_primary_10_1007_s13748_024_00337_w
crossref_primary_10_1016_j_eswa_2023_120759
crossref_primary_10_1016_j_eswa_2021_115690
crossref_primary_10_1080_0305215X_2020_1806256
crossref_primary_10_4018_IJeC_344456
crossref_primary_10_1007_s13369_021_05483_0
crossref_primary_10_1016_j_eswa_2023_121202
crossref_primary_10_1016_j_jhydrol_2021_126854
crossref_primary_10_1002_int_22519
crossref_primary_10_1007_s00500_023_09385_1
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1007_s00366_020_01025_8
crossref_primary_10_1016_j_engappai_2022_105697
crossref_primary_10_1007_s12559_025_10415_3
crossref_primary_10_1016_j_robot_2023_104557
crossref_primary_10_1016_j_asoc_2020_106833
crossref_primary_10_3390_sym14020216
crossref_primary_10_1016_j_egyr_2021_06_097
crossref_primary_10_1016_j_engappai_2022_105410
crossref_primary_10_1142_S0218126622501389
crossref_primary_10_1080_10426914_2020_1762211
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1007_s00500_020_04918_4
crossref_primary_10_1016_j_asoc_2024_112285
crossref_primary_10_1007_s11227_022_04761_4
crossref_primary_10_1109_TCSII_2023_3255419
crossref_primary_10_1016_j_asoc_2025_112832
crossref_primary_10_1007_s11063_023_11195_3
crossref_primary_10_1007_s00366_021_01572_8
crossref_primary_10_1016_j_eswa_2021_116026
crossref_primary_10_3390_math8101749
crossref_primary_10_1007_s10845_020_01723_6
crossref_primary_10_3390_electronics10212689
crossref_primary_10_1007_s10489_022_04059_1
crossref_primary_10_1016_j_knosys_2022_108271
crossref_primary_10_1016_j_knosys_2022_108707
crossref_primary_10_1049_cim2_12118
crossref_primary_10_1002_cpe_6514
crossref_primary_10_1155_2022_6535308
crossref_primary_10_1016_j_eswa_2023_120120
crossref_primary_10_1088_1755_1315_867_1_012165
crossref_primary_10_3390_e25091255
crossref_primary_10_1080_19368623_2024_2337798
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_1016_j_asoc_2020_106903
crossref_primary_10_1080_15325008_2021_1971331
crossref_primary_10_1109_ACCESS_2023_3314735
crossref_primary_10_1007_s42107_025_01282_2
crossref_primary_10_1007_s11831_022_09766_z
crossref_primary_10_1007_s00521_021_06596_1
crossref_primary_10_1080_15376494_2023_2286501
crossref_primary_10_1088_2631_8695_ad45b3
crossref_primary_10_1007_s10462_023_10481_9
crossref_primary_10_1016_j_neucom_2023_126898
crossref_primary_10_1557_adv_2019_364
crossref_primary_10_1016_j_eswa_2023_122315
crossref_primary_10_17352_tcsit_000026
crossref_primary_10_4018_IJGCMS_334121
crossref_primary_10_1017_S0890060423000203
crossref_primary_10_3233_JIFS_240215
crossref_primary_10_1177_09544070231169117
Cites_doi 10.1016/j.knosys.2019.03.001
10.1016/j.ins.2019.02.048
10.1016/j.ins.2014.11.001
10.1016/j.asoc.2016.09.048
10.1016/j.asoc.2012.11.026
10.1016/S0166-3615(99)00046-9
10.1016/j.eswa.2018.04.012
10.1016/j.advengsoft.2016.01.008
10.1016/j.swevo.2011.02.002
10.1016/j.eswa.2018.04.028
10.1016/j.knosys.2018.01.021
10.1007/s00158-008-0238-3
10.1016/j.knosys.2017.11.032
10.1016/j.cad.2010.12.015
10.1016/j.knosys.2018.10.025
10.1016/j.ins.2011.03.016
10.1016/S1474-0346(02)00011-3
10.1016/j.asoc.2015.06.056
10.1016/j.asoc.2014.03.015
10.1016/j.ins.2019.02.065
10.1016/j.knosys.2017.11.016
10.1016/j.eswa.2018.08.027
10.1016/j.cma.2005.05.014
10.1016/j.compstruc.2016.01.008
10.1016/j.jmgm.2014.10.002
10.1109/TNN.2009.2034742
10.1109/TSMCB.2006.873185
10.1016/j.knosys.2017.11.037
10.1016/j.apm.2018.06.036
10.1016/j.asoc.2015.07.031
10.1016/j.knosys.2017.10.018
10.1016/j.knosys.2017.07.003
10.1007/s00158-009-0454-5
10.1109/TNN.2007.910738
10.1016/j.compstruc.2012.07.010
10.1016/j.asoc.2018.02.049
10.1109/TSMCB.2009.2030506
10.1016/j.neucom.2017.09.092
10.1016/j.ins.2018.04.083
10.1016/j.asoc.2009.08.031
10.1016/j.apm.2015.10.040
10.1016/j.knosys.2019.01.004
10.1016/j.eswa.2008.02.039
10.1080/02630250008970288
10.1016/j.advengsoft.2013.12.007
10.1016/j.knosys.2018.06.004
10.1016/j.ins.2018.08.049
10.1016/j.knosys.2018.08.003
10.1109/TEVC.2003.814902
10.1016/j.ins.2011.08.006
10.1023/A:1008202821328
10.1016/j.advengsoft.2017.07.002
10.1016/j.neucom.2018.10.022
10.1016/j.asoc.2018.07.039
10.1109/4235.585893
10.1109/TEVC.2008.919004
10.1016/j.knosys.2015.12.022
10.1109/TASE.2016.2517155
10.1007/s00500-010-0642-7
10.1080/03052150410001647966
10.1007/s00521-012-1028-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.07.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_07_007
S0950705119303119
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-3a9ccd9a79006a555f163c83682eac719931eff38cf47c64652b91c67e02c7d33
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 08:27:56 EDT 2025
Sat Oct 25 05:18:46 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural network algorithm
Teaching–learning-based optimization
Artificial neural networks
Engineering optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-3a9ccd9a79006a555f163c83682eac719931eff38cf47c64652b91c67e02c7d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2330585987
PQPubID 2035257
ParticipantIDs proquest_journals_2330585987
crossref_citationtrail_10_1016_j_knosys_2019_07_007
crossref_primary_10_1016_j_knosys_2019_07_007
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_07_007
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Cheung, Shen (b38) 2014; 54
Martínez-Peñaloza, Mezura-Montes (b49) 2018; 142
Madsen, Jensen, Salmerón, Langseth, Nielsen (b19) 2017; 117
Lu, Gao, Yi (b40) 2018; 107
Coello Coello, Mezura Montes (b54) 2002; 16
Zhang, Xiao, Gao, Pan (b3) 2018; 63
Wang, Li, Feng (b33) 2018; 456
Ouyang, Gao, Kong, Zou, Li (b35) 2015; 265
Wang, Wu, Rahnamayan, Liu, Ventresca (b44) 2011; 181
Yao, Wang, Zhang (b15) 2019; 325
Savsani, Savsani (b12) 2016; 40
Abolbashari, Chang, Hussain, Saberi (b21) 2018; 142
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b47) 2018; 161
Baykasoğlu, Ozsoydan (b66) 2015; 36
Sun, Wang, Chen, Liu (b39) 2018; 114
Zhang, Luo, Wang (b64) 2008; 178
Sadollah, Bahreininejad, Eskandar, Hamdi (b67) 2013; 13
Sun, Ma, Ren, Zhang, Jia (b48) 2018; 139
Eskandar, Sadollah, Bahreininejad, Hamdi (b13) 2012; 110–111
Yang, Deb (b6) 2009
Zhang, Wang (b20) 2008; 19
Coello Coello (b53) 2000; 41
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b9) 2017; 114
Fujita, Cimr (b23) 2019; 486
Zahara, Kao (b59) 2009; 36
Ray, Liew (b61) 2003; 7
Wang, Li (b63) 2010; 41
Storn, Price (b4) 1997; 11
Wang, Cai, Zhou, Fan (b65) 2009; 37
Zhang, Ma, Huang, Wang (b22) 2010; 40
Yang, Li, Guo, Ma, Zheng (b34) 2018; 159
Zhang, Bi, Xu, Ramentol, Fan, Qiao, Fujita (b24) 2019
Kennedy, Eberhart (b10) 1995
Wang, Wu, Rahnamayan (b51) 2011; 15
Wolpert, Macready (b52) 1997; 1
Varshney, Kumar, Gupta (b17) 2017; 133
Simon (b5) 2008; 12
Kaveh, Bakhshpoori (b14) 2016; 167
Krohling, dos S. Coelho (b56) 2006; 36
Rakhshani, Rahati (b37) 2017; 52
Chen, Zou, Li, Wang, Li (b36) 2015; 297
Mirjalili, Lewis (b8) 2016; 95
Abirami, Ganesan, Subramanian, Anandhakumar (b32) 2014; 21
Derrac, García, Molina, Herrera (b46) 2011; 1
Coello (b60) 2000; 17
Gandomi, Yang, Alavi, Talatahari (b68) 2013; 22
Liu, Cai, Wang (b58) 2010; 10
Mirjalili, Mirjalili, Lewis (b7) 2014; 69
Huang, Gao, Li (b30) 2015; 36
Yang, Li, Liu, Fujita (b25) 2019; 486
Zhang, Liu, Huang, Wang (b18) 2010; 21
Zhao, Zhou, Lu, Fujita (b27) 2019; 163
Zhang, Huang, Zhang (b45) 2019; 471
J. Liang, B. Qu, P. Suganthan, Q. Chen, Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization, Tech. Report201411A Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Tech. Rep. Nanyang Technol. Univ. Singap. (2014).
Chen, Mei, Xu, Yu, Huang (b29) 2018; 145
Amirjanov (b57) 2006; 195
Sadollah, Sayyaadi, Yadav (b28) 2018; 71
Zhang, Kang, Cheng, Wang (b43) 2018; 67
Coello, Becerra (b55) 2004; 36
Birashk, Kazemi Kordestani, Meybodi (b31) 2018; 141
Mirjalili (b11) 2016; 96
Rao, Savsani, Vakharia (b2) 2012; 183
Rao, Savsani, Vakharia (b1) 2011; 43
Yao, Wang, Zhang (b26) 2018; 275
Yi, Gao, Li, Shoemaker, Lu (b50) 2019; 170
Ibrahim, Elaziz, Lu (b42) 2018; 108
Lampinen (b62) 2002
Liu, Wang, Zhang (b16) 2017; 14
Mirjalili (10.1016/j.knosys.2019.07.007_b8) 2016; 95
Kennedy (10.1016/j.knosys.2019.07.007_b10) 1995
Lampinen (10.1016/j.knosys.2019.07.007_b62) 2002
Rao (10.1016/j.knosys.2019.07.007_b2) 2012; 183
Zhang (10.1016/j.knosys.2019.07.007_b3) 2018; 63
Zhang (10.1016/j.knosys.2019.07.007_b64) 2008; 178
Zhang (10.1016/j.knosys.2019.07.007_b20) 2008; 19
Savsani (10.1016/j.knosys.2019.07.007_b12) 2016; 40
Zhang (10.1016/j.knosys.2019.07.007_b24) 2019
Wang (10.1016/j.knosys.2019.07.007_b33) 2018; 456
Wolpert (10.1016/j.knosys.2019.07.007_b52) 1997; 1
Varshney (10.1016/j.knosys.2019.07.007_b17) 2017; 133
Lu (10.1016/j.knosys.2019.07.007_b40) 2018; 107
Amirjanov (10.1016/j.knosys.2019.07.007_b57) 2006; 195
Mirjalili (10.1016/j.knosys.2019.07.007_b7) 2014; 69
Chen (10.1016/j.knosys.2019.07.007_b29) 2018; 145
Gandomi (10.1016/j.knosys.2019.07.007_b68) 2013; 22
Mirjalili (10.1016/j.knosys.2019.07.007_b11) 2016; 96
Wang (10.1016/j.knosys.2019.07.007_b44) 2011; 181
Kaveh (10.1016/j.knosys.2019.07.007_b14) 2016; 167
Ouyang (10.1016/j.knosys.2019.07.007_b35) 2015; 265
Wang (10.1016/j.knosys.2019.07.007_b63) 2010; 41
Huang (10.1016/j.knosys.2019.07.007_b30) 2015; 36
Yang (10.1016/j.knosys.2019.07.007_b34) 2018; 159
Zhao (10.1016/j.knosys.2019.07.007_b27) 2019; 163
Mafarja (10.1016/j.knosys.2019.07.007_b47) 2018; 161
Yang (10.1016/j.knosys.2019.07.007_b25) 2019; 486
Eskandar (10.1016/j.knosys.2019.07.007_b13) 2012; 110–111
Ibrahim (10.1016/j.knosys.2019.07.007_b42) 2018; 108
Wang (10.1016/j.knosys.2019.07.007_b51) 2011; 15
Martínez-Peñaloza (10.1016/j.knosys.2019.07.007_b49) 2018; 142
Madsen (10.1016/j.knosys.2019.07.007_b19) 2017; 117
Zahara (10.1016/j.knosys.2019.07.007_b59) 2009; 36
Yao (10.1016/j.knosys.2019.07.007_b26) 2018; 275
Wang (10.1016/j.knosys.2019.07.007_b65) 2009; 37
Zhang (10.1016/j.knosys.2019.07.007_b45) 2019; 471
Storn (10.1016/j.knosys.2019.07.007_b4) 1997; 11
10.1016/j.knosys.2019.07.007_b41
Sun (10.1016/j.knosys.2019.07.007_b48) 2018; 139
Chen (10.1016/j.knosys.2019.07.007_b36) 2015; 297
Coello Coello (10.1016/j.knosys.2019.07.007_b54) 2002; 16
Ray (10.1016/j.knosys.2019.07.007_b61) 2003; 7
Krohling (10.1016/j.knosys.2019.07.007_b56) 2006; 36
Simon (10.1016/j.knosys.2019.07.007_b5) 2008; 12
Sadollah (10.1016/j.knosys.2019.07.007_b28) 2018; 71
Sun (10.1016/j.knosys.2019.07.007_b39) 2018; 114
Rao (10.1016/j.knosys.2019.07.007_b1) 2011; 43
Coello (10.1016/j.knosys.2019.07.007_b55) 2004; 36
Liu (10.1016/j.knosys.2019.07.007_b16) 2017; 14
Zhang (10.1016/j.knosys.2019.07.007_b22) 2010; 40
Abolbashari (10.1016/j.knosys.2019.07.007_b21) 2018; 142
Zhang (10.1016/j.knosys.2019.07.007_b43) 2018; 67
Derrac (10.1016/j.knosys.2019.07.007_b46) 2011; 1
Cheung (10.1016/j.knosys.2019.07.007_b38) 2014; 54
Rakhshani (10.1016/j.knosys.2019.07.007_b37) 2017; 52
Coello Coello (10.1016/j.knosys.2019.07.007_b53) 2000; 41
Birashk (10.1016/j.knosys.2019.07.007_b31) 2018; 141
Yang (10.1016/j.knosys.2019.07.007_b6) 2009
Yi (10.1016/j.knosys.2019.07.007_b50) 2019; 170
Coello (10.1016/j.knosys.2019.07.007_b60) 2000; 17
Zhang (10.1016/j.knosys.2019.07.007_b18) 2010; 21
Yao (10.1016/j.knosys.2019.07.007_b15) 2019; 325
Fujita (10.1016/j.knosys.2019.07.007_b23) 2019; 486
Baykasoğlu (10.1016/j.knosys.2019.07.007_b66) 2015; 36
Sadollah (10.1016/j.knosys.2019.07.007_b67) 2013; 13
Mirjalili (10.1016/j.knosys.2019.07.007_b9) 2017; 114
Liu (10.1016/j.knosys.2019.07.007_b58) 2010; 10
Abirami (10.1016/j.knosys.2019.07.007_b32) 2014; 21
References_xml – volume: 36
  start-page: 1407
  year: 2006
  end-page: 1416
  ident: b56
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: b65
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
– volume: 486
  start-page: 231
  year: 2019
  end-page: 239
  ident: b23
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
– volume: 108
  start-page: 1
  year: 2018
  end-page: 27
  ident: b42
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b10
  article-title: Particle swarm optimization
  publication-title: Proc. ICNN95 - Int. Conf. Neural Netw., Vol. 4
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: b58
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
– volume: 142
  start-page: 192
  year: 2018
  end-page: 219
  ident: b49
  article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study
  publication-title: Knowl.-Based Syst.
– volume: 133
  start-page: 66
  year: 2017
  end-page: 76
  ident: b17
  article-title: Predicting information diffusion probabilities in social networks: A Bayesian networks based approach
  publication-title: Knowl.-Based Syst.
– volume: 159
  start-page: 51
  year: 2018
  end-page: 62
  ident: b34
  article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training
  publication-title: Knowl.-Based Syst.
– volume: 19
  start-page: 366
  year: 2008
  end-page: 370
  ident: b20
  article-title: Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays
  publication-title: IEEE Trans. Neural Netw.
– volume: 114
  start-page: 563
  year: 2018
  end-page: 577
  ident: b39
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 319
  year: 2000
  end-page: 346
  ident: b60
  article-title: Constraint-handling USing an evolutionary multiobjective optimization technique
  publication-title: Civ. Eng. Syst.
– reference: J. Liang, B. Qu, P. Suganthan, Q. Chen, Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization, Tech. Report201411A Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Tech. Rep. Nanyang Technol. Univ. Singap. (2014).
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b2
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b67
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b7
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 181
  start-page: 4699
  year: 2011
  end-page: 4714
  ident: b44
  article-title: Enhancing particle swarm optimization using generalized opposition-based learning
  publication-title: Inform. Sci.
– year: 2019
  ident: b24
  article-title: Multi-imbalance: An open-source software for multi-class imbalance learning
  publication-title: Knowl.-Based Syst.
– volume: 15
  start-page: 2127
  year: 2011
  end-page: 2140
  ident: b51
  article-title: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
  publication-title: Soft Comput.
– volume: 142
  start-page: 127
  year: 2018
  end-page: 148
  ident: b21
  article-title: Smart buyer: A Bayesian network modelling approach for measuring and improving procurement performance in organisations
  publication-title: Knowl.-Based Syst.
– volume: 170
  start-page: 1
  year: 2019
  end-page: 19
  ident: b50
  article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization
  publication-title: Knowl.-Based Syst.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b11
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 54
  start-page: 114
  year: 2014
  end-page: 122
  ident: b38
  article-title: Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure
  publication-title: J. Mol. Graph. Model.
– volume: 195
  start-page: 2495
  year: 2006
  end-page: 2508
  ident: b57
  article-title: The development of a changing range genetic algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: b54
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inf.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b1
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
– volume: 471
  start-page: 1
  year: 2019
  end-page: 18
  ident: b45
  article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology
  publication-title: Inform. Sci.
– volume: 36
  start-page: 152
  year: 2015
  end-page: 164
  ident: b66
  article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems
  publication-title: Appl. Soft Comput.
– volume: 297
  start-page: 171
  year: 2015
  end-page: 190
  ident: b36
  article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem
  publication-title: Inform. Sci.
– volume: 139
  start-page: 200
  year: 2018
  end-page: 213
  ident: b48
  article-title: A stability constrained adaptive alpha for gravitational search algorithm
  publication-title: Knowl.-Based Syst.
– volume: 40
  start-page: 831
  year: 2010
  end-page: 844
  ident: b22
  article-title: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b47
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl.-Based Syst.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b52
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 36
  start-page: 349
  year: 2015
  end-page: 356
  ident: b30
  article-title: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes
  publication-title: Appl. Soft Comput.
– volume: 265
  start-page: 533
  year: 2015
  end-page: 556
  ident: b35
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Appl. Math. Comput.
– volume: 41
  start-page: 947
  year: 2010
  end-page: 963
  ident: b63
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct. Multidiscip. Optim.
– volume: 21
  start-page: 91
  year: 2010
  end-page: 106
  ident: b18
  article-title: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay
  publication-title: IEEE Trans. Neural Netw.
– start-page: 210
  year: 2009
  end-page: 214
  ident: b6
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World Congr. Nat. Biol. Inspired Comput. NaBIC
– volume: 145
  start-page: 250
  year: 2018
  end-page: 263
  ident: b29
  article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
  publication-title: Knowl.-Based Syst.
– volume: 486
  start-page: 171
  year: 2019
  end-page: 189
  ident: b25
  article-title: A temporal-spatial composite sequential approach of three-way granular computing
  publication-title: Inform. Sci.
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: b14
  article-title: Water evaporation optimization: A novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b46
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 40
  start-page: 3951
  year: 2016
  end-page: 3978
  ident: b12
  article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm
  publication-title: Appl. Math. Model.
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b13
  article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: b61
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
– volume: 36
  start-page: 219
  year: 2004
  end-page: 236
  ident: b55
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optim.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b8
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 275
  start-page: 1511
  year: 2018
  end-page: 1521
  ident: b26
  article-title: Identification method for a class of periodic discrete-time dynamic nonlinear systems based on Sinusoidal ESN
  publication-title: Neurocomputing.
– volume: 325
  start-page: 182
  year: 2019
  end-page: 189
  ident: b15
  article-title: A novel photovoltaic power forecasting model based on echo state network
  publication-title: Neurocomputing.
– volume: 107
  start-page: 89
  year: 2018
  end-page: 114
  ident: b40
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 299
  year: 2017
  end-page: 313
  ident: b16
  article-title: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 63
  start-page: 464
  year: 2018
  end-page: 490
  ident: b3
  article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Appl. Math. Model.
– volume: 141
  start-page: 148
  year: 2018
  end-page: 177
  ident: b31
  article-title: Cellular teaching-learning-based optimization approach for dynamic multi-objective problems
  publication-title: Knowl.-Based Syst.
– volume: 117
  start-page: 46
  year: 2017
  end-page: 55
  ident: b19
  article-title: A parallel algorithm for Bayesian network structure learning from large data sets
  publication-title: Var. Veloc. Data Sci.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b4
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– start-page: 1468
  year: 2002
  end-page: 1473
  ident: b62
  article-title: A constraint handling approach for the differential evolution algorithm
  publication-title: Proc. 2002 Congr. Evol. Comput. CEC02 Cat No02TH8600, Vol. 2
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b9
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 52
  start-page: 771
  year: 2017
  end-page: 794
  ident: b37
  article-title: Snap-drift cuckoo search: A novel cuckoo search optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 178
  start-page: 3043
  year: 2008
  end-page: 3074
  ident: b64
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Nat. Inspired Probl.-Solv.
– volume: 22
  start-page: 1239
  year: 2013
  end-page: 1255
  ident: b68
  article-title: Bat algorithm for constrained optimization tasks
  publication-title: Neural Comput. Appl.
– volume: 71
  start-page: 747
  year: 2018
  end-page: 782
  ident: b28
  article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b5
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 163
  start-page: 972
  year: 2019
  end-page: 987
  ident: b27
  article-title: Parallel computing method of deep belief networks and its application to traffic flow prediction
  publication-title: Knowl.-Based Syst.
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: b43
  article-title: A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer
  publication-title: Appl. Soft Comput.
– volume: 36
  start-page: 3880
  year: 2009
  end-page: 3886
  ident: b59
  article-title: Hybrid nelder–mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Syst. Appl.
– volume: 456
  start-page: 131
  year: 2018
  end-page: 144
  ident: b33
  article-title: An improved teaching-learning-based optimization for constrained evolutionary optimization
  publication-title: Inform. Sci.
– volume: 21
  start-page: 72
  year: 2014
  end-page: 83
  ident: b32
  article-title: Source and transmission line maintenance outage scheduling in a power system using teaching learning based optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b53
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b24
  article-title: Multi-imbalance: An open-source software for multi-class imbalance learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.03.001
– volume: 486
  start-page: 171
  year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b25
  article-title: A temporal-spatial composite sequential approach of three-way granular computing
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.048
– volume: 297
  start-page: 171
  year: 2015
  ident: 10.1016/j.knosys.2019.07.007_b36
  article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.11.001
– volume: 52
  start-page: 771
  year: 2017
  ident: 10.1016/j.knosys.2019.07.007_b37
  article-title: Snap-drift cuckoo search: A novel cuckoo search optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.09.048
– volume: 13
  start-page: 2592
  year: 2013
  ident: 10.1016/j.knosys.2019.07.007_b67
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 41
  start-page: 113
  year: 2000
  ident: 10.1016/j.knosys.2019.07.007_b53
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 107
  start-page: 89
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b40
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.012
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2019.07.007_b8
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 178
  start-page: 3043
  year: 2008
  ident: 10.1016/j.knosys.2019.07.007_b64
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Nat. Inspired Probl.-Solv.
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.knosys.2019.07.007_b46
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 265
  start-page: 533
  year: 2015
  ident: 10.1016/j.knosys.2019.07.007_b35
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Appl. Math. Comput.
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b42
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.028
– volume: 145
  start-page: 250
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b29
  article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.021
– volume: 37
  start-page: 395
  year: 2009
  ident: 10.1016/j.knosys.2019.07.007_b65
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0238-3
– volume: 142
  start-page: 127
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b21
  article-title: Smart buyer: A Bayesian network modelling approach for measuring and improving procurement performance in organisations
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.11.032
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.knosys.2019.07.007_b1
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 163
  start-page: 972
  year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b27
  article-title: Parallel computing method of deep belief networks and its application to traffic flow prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.025
– volume: 181
  start-page: 4699
  year: 2011
  ident: 10.1016/j.knosys.2019.07.007_b44
  article-title: Enhancing particle swarm optimization using generalized opposition-based learning
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.03.016
– volume: 16
  start-page: 193
  year: 2002
  ident: 10.1016/j.knosys.2019.07.007_b54
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 117
  start-page: 46
  year: 2017
  ident: 10.1016/j.knosys.2019.07.007_b19
  article-title: A parallel algorithm for Bayesian network structure learning from large data sets
  publication-title: Var. Veloc. Data Sci.
– volume: 36
  start-page: 152
  year: 2015
  ident: 10.1016/j.knosys.2019.07.007_b66
  article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.056
– volume: 21
  start-page: 72
  year: 2014
  ident: 10.1016/j.knosys.2019.07.007_b32
  article-title: Source and transmission line maintenance outage scheduling in a power system using teaching learning based optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.015
– ident: 10.1016/j.knosys.2019.07.007_b41
– volume: 486
  start-page: 231
  year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b23
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.065
– volume: 141
  start-page: 148
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b31
  article-title: Cellular teaching-learning-based optimization approach for dynamic multi-objective problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.11.016
– volume: 114
  start-page: 563
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b39
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.027
– volume: 195
  start-page: 2495
  year: 2006
  ident: 10.1016/j.knosys.2019.07.007_b57
  article-title: The development of a changing range genetic algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.05.014
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.knosys.2019.07.007_b14
  article-title: Water evaporation optimization: A novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.008
– volume: 54
  start-page: 114
  year: 2014
  ident: 10.1016/j.knosys.2019.07.007_b38
  article-title: Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2014.10.002
– volume: 21
  start-page: 91
  year: 2010
  ident: 10.1016/j.knosys.2019.07.007_b18
  article-title: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2034742
– volume: 36
  start-page: 1407
  year: 2006
  ident: 10.1016/j.knosys.2019.07.007_b56
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2006.873185
– volume: 142
  start-page: 192
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b49
  article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.11.037
– volume: 63
  start-page: 464
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b3
  article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.06.036
– volume: 36
  start-page: 349
  year: 2015
  ident: 10.1016/j.knosys.2019.07.007_b30
  article-title: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.031
– volume: 139
  start-page: 200
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b48
  article-title: A stability constrained adaptive alpha for gravitational search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.018
– volume: 133
  start-page: 66
  year: 2017
  ident: 10.1016/j.knosys.2019.07.007_b17
  article-title: Predicting information diffusion probabilities in social networks: A Bayesian networks based approach
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.003
– start-page: 1468
  year: 2002
  ident: 10.1016/j.knosys.2019.07.007_b62
  article-title: A constraint handling approach for the differential evolution algorithm
– volume: 41
  start-page: 947
  year: 2010
  ident: 10.1016/j.knosys.2019.07.007_b63
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0454-5
– volume: 19
  start-page: 366
  year: 2008
  ident: 10.1016/j.knosys.2019.07.007_b20
  article-title: Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.910738
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.knosys.2019.07.007_b13
  article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b43
  article-title: A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.049
– volume: 40
  start-page: 831
  year: 2010
  ident: 10.1016/j.knosys.2019.07.007_b22
  article-title: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2009.2030506
– start-page: 210
  year: 2009
  ident: 10.1016/j.knosys.2019.07.007_b6
  article-title: Cuckoo search via Lévy flights
– volume: 275
  start-page: 1511
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b26
  article-title: Identification method for a class of periodic discrete-time dynamic nonlinear systems based on Sinusoidal ESN
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.09.092
– volume: 456
  start-page: 131
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b33
  article-title: An improved teaching-learning-based optimization for constrained evolutionary optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.04.083
– volume: 10
  start-page: 629
  year: 2010
  ident: 10.1016/j.knosys.2019.07.007_b58
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.031
– volume: 40
  start-page: 3951
  year: 2016
  ident: 10.1016/j.knosys.2019.07.007_b12
  article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.10.040
– volume: 170
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b50
  article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.01.004
– volume: 36
  start-page: 3880
  year: 2009
  ident: 10.1016/j.knosys.2019.07.007_b59
  article-title: Hybrid nelder–mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.039
– volume: 17
  start-page: 319
  year: 2000
  ident: 10.1016/j.knosys.2019.07.007_b60
  article-title: Constraint-handling USing an evolutionary multiobjective optimization technique
  publication-title: Civ. Eng. Syst.
  doi: 10.1080/02630250008970288
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2019.07.007_b7
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 159
  start-page: 51
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b34
  article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.004
– volume: 471
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b45
  article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.08.049
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b47
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.003
– volume: 7
  start-page: 386
  year: 2003
  ident: 10.1016/j.knosys.2019.07.007_b61
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– start-page: 1942
  year: 1995
  ident: 10.1016/j.knosys.2019.07.007_b10
  article-title: Particle swarm optimization
– volume: 183
  start-page: 1
  year: 2012
  ident: 10.1016/j.knosys.2019.07.007_b2
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.006
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.knosys.2019.07.007_b4
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2019.07.007_b9
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 325
  start-page: 182
  year: 2019
  ident: 10.1016/j.knosys.2019.07.007_b15
  article-title: A novel photovoltaic power forecasting model based on echo state network
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2018.10.022
– volume: 71
  start-page: 747
  year: 2018
  ident: 10.1016/j.knosys.2019.07.007_b28
  article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.039
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.knosys.2019.07.007_b52
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 12
  start-page: 702
  year: 2008
  ident: 10.1016/j.knosys.2019.07.007_b5
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.knosys.2019.07.007_b11
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 14
  start-page: 299
  year: 2017
  ident: 10.1016/j.knosys.2019.07.007_b16
  article-title: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2517155
– volume: 15
  start-page: 2127
  year: 2011
  ident: 10.1016/j.knosys.2019.07.007_b51
  article-title: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0642-7
– volume: 36
  start-page: 219
  year: 2004
  ident: 10.1016/j.knosys.2019.07.007_b55
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/03052150410001647966
– volume: 22
  start-page: 1239
  year: 2013
  ident: 10.1016/j.knosys.2019.07.007_b68
  article-title: Bat algorithm for constrained optimization tasks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1028-9
SSID ssj0002218
Score 2.554342
Snippet Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104836
SubjectTerms Algorithms
Artificial neural networks
Convergence
Design engineering
Design optimization
Engineering optimization
Global optimization
Heuristic methods
Machine learning
Neural network algorithm
Neural networks
Teaching–learning-based optimization
Title Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems
URI https://dx.doi.org/10.1016/j.knosys.2019.07.007
https://www.proquest.com/docview/2330585987
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsUwEA2iGze-xTdZuI33NknzWIooV0U3Krgradrq9dErWhE34j_4h36JM2mqKILgtnkQMpMz0-TMDCGbOZgF03eWea08kybXLE-VYMLmmjvHS-EwwPnoWA3O5MF5ej5GdrpYGKRVRuxvMT2gdfzSi7vZuxsOeyfgHIC-4jsYwHASUn9KqbGKwdbLF82D83DHh50Z9u7C5wLH67oePTxj0u7EhhSeWFT2d_P0A6iD9dmbIVPRbaTb7cpmyVhZz5HpriQDjSd0njwNnjEEizaRJPn--hbrQlwwNFgFHQFG3MbgS-rqgmJGS5i6bvng1N1cjO6HzeUtBXeWll_pCmkRyB7fJ4j1aB4WyNne7unOgMXaCswLIRsmnPW-sE5bOHYuTdMKHDNvhDIcFqiR1peUVSWMr6T2SqqU5zbxSpd97nUhxCIZr0d1uURolfvcJRbHKmkkaAWghirBt_O8L0yxTES3pZmPicex_sVN1jHMrrJWEBkKIuvji7heJuxz1F2beOOP_rqTVvZNgTKwDX-MXOuEm8UDDO0CgNCk1uiVf0-8SiY5_p2HC5s1Mt7cP5br4MI0-UbQ0Q0ysb1_ODj-AIjj9UM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734Ft_m4DXuNmnzOIoo6_OigreQpq2url3RingR_4P_0F_iTJsqiiB4bZMQMpNvJsk3M4RspmAWdNcZ5pX0LNapYmkiBRMmVdw5nguHAc7HJ7J3Hh9cJBcjZKeNhUFaZcD-BtNrtA5fOmE1O3f9fucUnAPQV3wHAxiOMPXnWJxwhSewrZcvngfn9SUftmbYvI2fq0leN-Xw4RmzdkemzuGJVWV_t08_kLo2P3vTZDL4jXS7mdoMGcnLWTLV1mSgYYvOkafeM8Zg0SqwJN9f30JhiEuGFiujQwCJ2xB9SV2ZUUxpCUOXDSGcusHl8L5fXd1S8Gdp_pWvkGY12-P7AKEgzcM8Od_bPdvpsVBcgXkh4ooJZ7zPjFMG9p1LkqQAz8xrITWHCSrk9UV5UQjti1h5GcuEpybyUuVd7lUmxAIZLYdlvkhokfrURQb7yljHoBYAGzIH587zrtDZEhHtklofMo9jAYyBbSlm17YRhEVB2C4-iaslwj573TWZN_5or1pp2W8aZME4_NFztRWuDTsY_gtAQp0YrZb_PfAGGe-dHR_Zo_2TwxUywfGoXt_erJLR6v4xXwN_pkrXa339ADLB9tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+teaching%E2%80%93learning-based+optimization+and+neural+network+algorithm+for+engineering+design+optimization+problems&rft.jtitle=Knowledge-based+systems&rft.au=Zhang%2C+Yiying&rft.au=Jin%2C+Zhigang&rft.au=Chen%2C+Ye&rft.date=2020-01-01&rft.issn=0950-7051&rft.volume=187&rft.spage=104836&rft_id=info:doi/10.1016%2Fj.knosys.2019.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2019_07_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon