Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems
Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its draw...
        Saved in:
      
    
          | Published in | Knowledge-based systems Vol. 187; p. 104836 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.01.2020
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0950-7051 1872-7409  | 
| DOI | 10.1016/j.knosys.2019.07.007 | 
Cover
| Abstract | Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency.
•A novel hybrid algorithm called TLNNA is proposed based on TLBO and NNA, which is an algorithm without any effort for fine tuning initial parameters.•TLNNA has excellent global optimization ability of NNA and fast convergence rate of TLBO by the designed dynamic grouping mechanism.•TLNNA is examined using 30 well-known unconstrained benchmark test functions and 4 challenging constrained engineering design problems. | 
    
|---|---|
| AbstractList | Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency.
•A novel hybrid algorithm called TLNNA is proposed based on TLBO and NNA, which is an algorithm without any effort for fine tuning initial parameters.•TLNNA has excellent global optimization ability of NNA and fast convergence rate of TLBO by the designed dynamic grouping mechanism.•TLNNA is examined using 30 well-known unconstrained benchmark test functions and 4 challenging constrained engineering design problems. Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency.  | 
    
| ArticleNumber | 104836 | 
    
| Author | Jin, Zhigang Zhang, Yiying Chen, Ye  | 
    
| Author_xml | – sequence: 1 givenname: Yiying surname: Zhang fullname: Zhang, Yiying organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 2 givenname: Zhigang surname: Jin fullname: Jin, Zhigang email: zgjin@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 3 givenname: Ye surname: Chen fullname: Chen, Ye organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, PR China  | 
    
| BookMark | eNqFkD1OxDAQhS0EEsvCDSgiUSeM4ySOKZAQ4k9CooHa8jqTxUvWXmwvaKm4AzfkJBiWBgqoZor3vXnzdsimdRYJ2adQUKDN4ax4sC6sQlECFQXwAoBvkBFteZnzCsQmGYGoIedQ022yE8IMAMqStiPyfLmaeNNlEZW-N3b6_vo2oPI2rflEBewyt4hmbl5UNM5mynaZxaVXQxrx2fmHTA1T5028n2e98xnaqbGIPvFZh8FM7U-DhXeTAedhl2z1agi49z3H5O787Pb0Mr--ubg6PbnONWNVzJkSWndCcQHQqLque9ow3bKmLVNgToVgFPuetbqvuG6qpi4nguqGI5Sad4yNycHaNx1-XGKIcuaW3qaTsmQM6rYWLU-qo7VKexeCx15qE78CR6_MICnIz6LlTK6Llp9FS-AyFZ3g6he88Gau_Oo_7HiNYXr_yaCXQRu0GjvjUUfZOfO3wQeKJ6C4 | 
    
| CitedBy_id | crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1007_s12008_023_01530_2 crossref_primary_10_1007_s12065_021_00668_w crossref_primary_10_1109_ACCESS_2021_3075581 crossref_primary_10_1007_s00521_022_07565_y crossref_primary_10_1155_2022_1535957 crossref_primary_10_1115_1_4053816 crossref_primary_10_1155_2021_9497388 crossref_primary_10_1109_ACCESS_2021_3051807 crossref_primary_10_1007_s40747_023_01074_8 crossref_primary_10_1007_s00704_023_04685_w crossref_primary_10_1016_j_istruc_2022_02_035 crossref_primary_10_1155_2021_9651957 crossref_primary_10_3390_math10111827 crossref_primary_10_1002_ese3_1329 crossref_primary_10_1088_1757_899X_750_1_012040 crossref_primary_10_1007_s00521_024_09523_2 crossref_primary_10_1016_j_asoc_2022_109653 crossref_primary_10_1109_ACCESS_2021_3096726 crossref_primary_10_3390_en14175294 crossref_primary_10_1002_int_22707 crossref_primary_10_1007_s00521_021_06374_z crossref_primary_10_1007_s43538_024_00248_3 crossref_primary_10_1109_TCBB_2022_3215129 crossref_primary_10_3846_gac_2024_18555 crossref_primary_10_1016_j_engappai_2023_106778 crossref_primary_10_1016_j_jclepro_2024_142655 crossref_primary_10_1016_j_knosys_2020_106580 crossref_primary_10_1109_ACCESS_2020_2984272 crossref_primary_10_3390_app10207320 crossref_primary_10_1109_ACCESS_2020_2999927 crossref_primary_10_1109_TNNLS_2021_3109565 crossref_primary_10_1016_j_knosys_2022_109533 crossref_primary_10_1088_2631_8695_ad4ba9 crossref_primary_10_1007_s13748_024_00337_w crossref_primary_10_1016_j_eswa_2023_120759 crossref_primary_10_1016_j_eswa_2021_115690 crossref_primary_10_1080_0305215X_2020_1806256 crossref_primary_10_4018_IJeC_344456 crossref_primary_10_1007_s13369_021_05483_0 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1016_j_jhydrol_2021_126854 crossref_primary_10_1002_int_22519 crossref_primary_10_1007_s00500_023_09385_1 crossref_primary_10_1007_s00521_021_06747_4 crossref_primary_10_1007_s00366_020_01025_8 crossref_primary_10_1016_j_engappai_2022_105697 crossref_primary_10_1007_s12559_025_10415_3 crossref_primary_10_1016_j_robot_2023_104557 crossref_primary_10_1016_j_asoc_2020_106833 crossref_primary_10_3390_sym14020216 crossref_primary_10_1016_j_egyr_2021_06_097 crossref_primary_10_1016_j_engappai_2022_105410 crossref_primary_10_1142_S0218126622501389 crossref_primary_10_1080_10426914_2020_1762211 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1007_s00500_020_04918_4 crossref_primary_10_1016_j_asoc_2024_112285 crossref_primary_10_1007_s11227_022_04761_4 crossref_primary_10_1109_TCSII_2023_3255419 crossref_primary_10_1016_j_asoc_2025_112832 crossref_primary_10_1007_s11063_023_11195_3 crossref_primary_10_1007_s00366_021_01572_8 crossref_primary_10_1016_j_eswa_2021_116026 crossref_primary_10_3390_math8101749 crossref_primary_10_1007_s10845_020_01723_6 crossref_primary_10_3390_electronics10212689 crossref_primary_10_1007_s10489_022_04059_1 crossref_primary_10_1016_j_knosys_2022_108271 crossref_primary_10_1016_j_knosys_2022_108707 crossref_primary_10_1049_cim2_12118 crossref_primary_10_1002_cpe_6514 crossref_primary_10_1155_2022_6535308 crossref_primary_10_1016_j_eswa_2023_120120 crossref_primary_10_1088_1755_1315_867_1_012165 crossref_primary_10_3390_e25091255 crossref_primary_10_1080_19368623_2024_2337798 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_1016_j_asoc_2020_106903 crossref_primary_10_1080_15325008_2021_1971331 crossref_primary_10_1109_ACCESS_2023_3314735 crossref_primary_10_1007_s42107_025_01282_2 crossref_primary_10_1007_s11831_022_09766_z crossref_primary_10_1007_s00521_021_06596_1 crossref_primary_10_1080_15376494_2023_2286501 crossref_primary_10_1088_2631_8695_ad45b3 crossref_primary_10_1007_s10462_023_10481_9 crossref_primary_10_1016_j_neucom_2023_126898 crossref_primary_10_1557_adv_2019_364 crossref_primary_10_1016_j_eswa_2023_122315 crossref_primary_10_17352_tcsit_000026 crossref_primary_10_4018_IJGCMS_334121 crossref_primary_10_1017_S0890060423000203 crossref_primary_10_3233_JIFS_240215 crossref_primary_10_1177_09544070231169117  | 
    
| Cites_doi | 10.1016/j.knosys.2019.03.001 10.1016/j.ins.2019.02.048 10.1016/j.ins.2014.11.001 10.1016/j.asoc.2016.09.048 10.1016/j.asoc.2012.11.026 10.1016/S0166-3615(99)00046-9 10.1016/j.eswa.2018.04.012 10.1016/j.advengsoft.2016.01.008 10.1016/j.swevo.2011.02.002 10.1016/j.eswa.2018.04.028 10.1016/j.knosys.2018.01.021 10.1007/s00158-008-0238-3 10.1016/j.knosys.2017.11.032 10.1016/j.cad.2010.12.015 10.1016/j.knosys.2018.10.025 10.1016/j.ins.2011.03.016 10.1016/S1474-0346(02)00011-3 10.1016/j.asoc.2015.06.056 10.1016/j.asoc.2014.03.015 10.1016/j.ins.2019.02.065 10.1016/j.knosys.2017.11.016 10.1016/j.eswa.2018.08.027 10.1016/j.cma.2005.05.014 10.1016/j.compstruc.2016.01.008 10.1016/j.jmgm.2014.10.002 10.1109/TNN.2009.2034742 10.1109/TSMCB.2006.873185 10.1016/j.knosys.2017.11.037 10.1016/j.apm.2018.06.036 10.1016/j.asoc.2015.07.031 10.1016/j.knosys.2017.10.018 10.1016/j.knosys.2017.07.003 10.1007/s00158-009-0454-5 10.1109/TNN.2007.910738 10.1016/j.compstruc.2012.07.010 10.1016/j.asoc.2018.02.049 10.1109/TSMCB.2009.2030506 10.1016/j.neucom.2017.09.092 10.1016/j.ins.2018.04.083 10.1016/j.asoc.2009.08.031 10.1016/j.apm.2015.10.040 10.1016/j.knosys.2019.01.004 10.1016/j.eswa.2008.02.039 10.1080/02630250008970288 10.1016/j.advengsoft.2013.12.007 10.1016/j.knosys.2018.06.004 10.1016/j.ins.2018.08.049 10.1016/j.knosys.2018.08.003 10.1109/TEVC.2003.814902 10.1016/j.ins.2011.08.006 10.1023/A:1008202821328 10.1016/j.advengsoft.2017.07.002 10.1016/j.neucom.2018.10.022 10.1016/j.asoc.2018.07.039 10.1109/4235.585893 10.1109/TEVC.2008.919004 10.1016/j.knosys.2015.12.022 10.1109/TASE.2016.2517155 10.1007/s00500-010-0642-7 10.1080/03052150410001647966 10.1007/s00521-012-1028-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 2020  | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 2020  | 
    
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.knosys.2019.07.007 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7409 | 
    
| ExternalDocumentID | 10_1016_j_knosys_2019_07_007 S0950705119303119  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV E3H F2A JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c334t-3a9ccd9a79006a555f163c83682eac719931eff38cf47c64652b91c67e02c7d33 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0950-7051 | 
    
| IngestDate | Fri Jul 25 08:27:56 EDT 2025 Sat Oct 25 05:18:46 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Fri Feb 23 02:18:39 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Neural network algorithm Teaching–learning-based optimization Artificial neural networks Engineering optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c334t-3a9ccd9a79006a555f163c83682eac719931eff38cf47c64652b91c67e02c7d33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2330585987 | 
    
| PQPubID | 2035257 | 
    
| ParticipantIDs | proquest_journals_2330585987 crossref_citationtrail_10_1016_j_knosys_2019_07_007 crossref_primary_10_1016_j_knosys_2019_07_007 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_07_007  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2020 2020-01-00 20200101  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Knowledge-based systems | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd  | 
    
| References | Cheung, Shen (b38) 2014; 54 Martínez-Peñaloza, Mezura-Montes (b49) 2018; 142 Madsen, Jensen, Salmerón, Langseth, Nielsen (b19) 2017; 117 Lu, Gao, Yi (b40) 2018; 107 Coello Coello, Mezura Montes (b54) 2002; 16 Zhang, Xiao, Gao, Pan (b3) 2018; 63 Wang, Li, Feng (b33) 2018; 456 Ouyang, Gao, Kong, Zou, Li (b35) 2015; 265 Wang, Wu, Rahnamayan, Liu, Ventresca (b44) 2011; 181 Yao, Wang, Zhang (b15) 2019; 325 Savsani, Savsani (b12) 2016; 40 Abolbashari, Chang, Hussain, Saberi (b21) 2018; 142 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b47) 2018; 161 Baykasoğlu, Ozsoydan (b66) 2015; 36 Sun, Wang, Chen, Liu (b39) 2018; 114 Zhang, Luo, Wang (b64) 2008; 178 Sadollah, Bahreininejad, Eskandar, Hamdi (b67) 2013; 13 Sun, Ma, Ren, Zhang, Jia (b48) 2018; 139 Eskandar, Sadollah, Bahreininejad, Hamdi (b13) 2012; 110–111 Yang, Deb (b6) 2009 Zhang, Wang (b20) 2008; 19 Coello Coello (b53) 2000; 41 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b9) 2017; 114 Fujita, Cimr (b23) 2019; 486 Zahara, Kao (b59) 2009; 36 Ray, Liew (b61) 2003; 7 Wang, Li (b63) 2010; 41 Storn, Price (b4) 1997; 11 Wang, Cai, Zhou, Fan (b65) 2009; 37 Zhang, Ma, Huang, Wang (b22) 2010; 40 Yang, Li, Guo, Ma, Zheng (b34) 2018; 159 Zhang, Bi, Xu, Ramentol, Fan, Qiao, Fujita (b24) 2019 Kennedy, Eberhart (b10) 1995 Wang, Wu, Rahnamayan (b51) 2011; 15 Wolpert, Macready (b52) 1997; 1 Varshney, Kumar, Gupta (b17) 2017; 133 Simon (b5) 2008; 12 Kaveh, Bakhshpoori (b14) 2016; 167 Krohling, dos S. Coelho (b56) 2006; 36 Rakhshani, Rahati (b37) 2017; 52 Chen, Zou, Li, Wang, Li (b36) 2015; 297 Mirjalili, Lewis (b8) 2016; 95 Abirami, Ganesan, Subramanian, Anandhakumar (b32) 2014; 21 Derrac, García, Molina, Herrera (b46) 2011; 1 Coello (b60) 2000; 17 Gandomi, Yang, Alavi, Talatahari (b68) 2013; 22 Liu, Cai, Wang (b58) 2010; 10 Mirjalili, Mirjalili, Lewis (b7) 2014; 69 Huang, Gao, Li (b30) 2015; 36 Yang, Li, Liu, Fujita (b25) 2019; 486 Zhang, Liu, Huang, Wang (b18) 2010; 21 Zhao, Zhou, Lu, Fujita (b27) 2019; 163 Zhang, Huang, Zhang (b45) 2019; 471 J. Liang, B. Qu, P. Suganthan, Q. Chen, Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization, Tech. Report201411A Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Tech. Rep. Nanyang Technol. Univ. Singap. (2014). Chen, Mei, Xu, Yu, Huang (b29) 2018; 145 Amirjanov (b57) 2006; 195 Sadollah, Sayyaadi, Yadav (b28) 2018; 71 Zhang, Kang, Cheng, Wang (b43) 2018; 67 Coello, Becerra (b55) 2004; 36 Birashk, Kazemi Kordestani, Meybodi (b31) 2018; 141 Mirjalili (b11) 2016; 96 Rao, Savsani, Vakharia (b2) 2012; 183 Rao, Savsani, Vakharia (b1) 2011; 43 Yao, Wang, Zhang (b26) 2018; 275 Yi, Gao, Li, Shoemaker, Lu (b50) 2019; 170 Ibrahim, Elaziz, Lu (b42) 2018; 108 Lampinen (b62) 2002 Liu, Wang, Zhang (b16) 2017; 14 Mirjalili (10.1016/j.knosys.2019.07.007_b8) 2016; 95 Kennedy (10.1016/j.knosys.2019.07.007_b10) 1995 Lampinen (10.1016/j.knosys.2019.07.007_b62) 2002 Rao (10.1016/j.knosys.2019.07.007_b2) 2012; 183 Zhang (10.1016/j.knosys.2019.07.007_b3) 2018; 63 Zhang (10.1016/j.knosys.2019.07.007_b64) 2008; 178 Zhang (10.1016/j.knosys.2019.07.007_b20) 2008; 19 Savsani (10.1016/j.knosys.2019.07.007_b12) 2016; 40 Zhang (10.1016/j.knosys.2019.07.007_b24) 2019 Wang (10.1016/j.knosys.2019.07.007_b33) 2018; 456 Wolpert (10.1016/j.knosys.2019.07.007_b52) 1997; 1 Varshney (10.1016/j.knosys.2019.07.007_b17) 2017; 133 Lu (10.1016/j.knosys.2019.07.007_b40) 2018; 107 Amirjanov (10.1016/j.knosys.2019.07.007_b57) 2006; 195 Mirjalili (10.1016/j.knosys.2019.07.007_b7) 2014; 69 Chen (10.1016/j.knosys.2019.07.007_b29) 2018; 145 Gandomi (10.1016/j.knosys.2019.07.007_b68) 2013; 22 Mirjalili (10.1016/j.knosys.2019.07.007_b11) 2016; 96 Wang (10.1016/j.knosys.2019.07.007_b44) 2011; 181 Kaveh (10.1016/j.knosys.2019.07.007_b14) 2016; 167 Ouyang (10.1016/j.knosys.2019.07.007_b35) 2015; 265 Wang (10.1016/j.knosys.2019.07.007_b63) 2010; 41 Huang (10.1016/j.knosys.2019.07.007_b30) 2015; 36 Yang (10.1016/j.knosys.2019.07.007_b34) 2018; 159 Zhao (10.1016/j.knosys.2019.07.007_b27) 2019; 163 Mafarja (10.1016/j.knosys.2019.07.007_b47) 2018; 161 Yang (10.1016/j.knosys.2019.07.007_b25) 2019; 486 Eskandar (10.1016/j.knosys.2019.07.007_b13) 2012; 110–111 Ibrahim (10.1016/j.knosys.2019.07.007_b42) 2018; 108 Wang (10.1016/j.knosys.2019.07.007_b51) 2011; 15 Martínez-Peñaloza (10.1016/j.knosys.2019.07.007_b49) 2018; 142 Madsen (10.1016/j.knosys.2019.07.007_b19) 2017; 117 Zahara (10.1016/j.knosys.2019.07.007_b59) 2009; 36 Yao (10.1016/j.knosys.2019.07.007_b26) 2018; 275 Wang (10.1016/j.knosys.2019.07.007_b65) 2009; 37 Zhang (10.1016/j.knosys.2019.07.007_b45) 2019; 471 Storn (10.1016/j.knosys.2019.07.007_b4) 1997; 11 10.1016/j.knosys.2019.07.007_b41 Sun (10.1016/j.knosys.2019.07.007_b48) 2018; 139 Chen (10.1016/j.knosys.2019.07.007_b36) 2015; 297 Coello Coello (10.1016/j.knosys.2019.07.007_b54) 2002; 16 Ray (10.1016/j.knosys.2019.07.007_b61) 2003; 7 Krohling (10.1016/j.knosys.2019.07.007_b56) 2006; 36 Simon (10.1016/j.knosys.2019.07.007_b5) 2008; 12 Sadollah (10.1016/j.knosys.2019.07.007_b28) 2018; 71 Sun (10.1016/j.knosys.2019.07.007_b39) 2018; 114 Rao (10.1016/j.knosys.2019.07.007_b1) 2011; 43 Coello (10.1016/j.knosys.2019.07.007_b55) 2004; 36 Liu (10.1016/j.knosys.2019.07.007_b16) 2017; 14 Zhang (10.1016/j.knosys.2019.07.007_b22) 2010; 40 Abolbashari (10.1016/j.knosys.2019.07.007_b21) 2018; 142 Zhang (10.1016/j.knosys.2019.07.007_b43) 2018; 67 Derrac (10.1016/j.knosys.2019.07.007_b46) 2011; 1 Cheung (10.1016/j.knosys.2019.07.007_b38) 2014; 54 Rakhshani (10.1016/j.knosys.2019.07.007_b37) 2017; 52 Coello Coello (10.1016/j.knosys.2019.07.007_b53) 2000; 41 Birashk (10.1016/j.knosys.2019.07.007_b31) 2018; 141 Yang (10.1016/j.knosys.2019.07.007_b6) 2009 Yi (10.1016/j.knosys.2019.07.007_b50) 2019; 170 Coello (10.1016/j.knosys.2019.07.007_b60) 2000; 17 Zhang (10.1016/j.knosys.2019.07.007_b18) 2010; 21 Yao (10.1016/j.knosys.2019.07.007_b15) 2019; 325 Fujita (10.1016/j.knosys.2019.07.007_b23) 2019; 486 Baykasoğlu (10.1016/j.knosys.2019.07.007_b66) 2015; 36 Sadollah (10.1016/j.knosys.2019.07.007_b67) 2013; 13 Mirjalili (10.1016/j.knosys.2019.07.007_b9) 2017; 114 Liu (10.1016/j.knosys.2019.07.007_b58) 2010; 10 Abirami (10.1016/j.knosys.2019.07.007_b32) 2014; 21  | 
    
| References_xml | – volume: 36 start-page: 1407 year: 2006 end-page: 1416 ident: b56 article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 37 start-page: 395 year: 2009 end-page: 413 ident: b65 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Struct. Multidiscip. Optim. – volume: 486 start-page: 231 year: 2019 end-page: 239 ident: b23 article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network publication-title: Inform. Sci. – volume: 108 start-page: 1 year: 2018 end-page: 27 ident: b42 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. – start-page: 1942 year: 1995 end-page: 1948 ident: b10 article-title: Particle swarm optimization publication-title: Proc. ICNN95 - Int. Conf. Neural Netw., Vol. 4 – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: b58 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. – volume: 142 start-page: 192 year: 2018 end-page: 219 ident: b49 article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study publication-title: Knowl.-Based Syst. – volume: 133 start-page: 66 year: 2017 end-page: 76 ident: b17 article-title: Predicting information diffusion probabilities in social networks: A Bayesian networks based approach publication-title: Knowl.-Based Syst. – volume: 159 start-page: 51 year: 2018 end-page: 62 ident: b34 article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training publication-title: Knowl.-Based Syst. – volume: 19 start-page: 366 year: 2008 end-page: 370 ident: b20 article-title: Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays publication-title: IEEE Trans. Neural Netw. – volume: 114 start-page: 563 year: 2018 end-page: 577 ident: b39 article-title: A modified whale optimization algorithm for large-scale global optimization problems publication-title: Expert Syst. Appl. – volume: 17 start-page: 319 year: 2000 end-page: 346 ident: b60 article-title: Constraint-handling USing an evolutionary multiobjective optimization technique publication-title: Civ. Eng. Syst. – reference: J. Liang, B. Qu, P. Suganthan, Q. Chen, Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization, Tech. Report201411A Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Tech. Rep. Nanyang Technol. Univ. Singap. (2014). – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: b2 article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b67 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b7 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 181 start-page: 4699 year: 2011 end-page: 4714 ident: b44 article-title: Enhancing particle swarm optimization using generalized opposition-based learning publication-title: Inform. Sci. – year: 2019 ident: b24 article-title: Multi-imbalance: An open-source software for multi-class imbalance learning publication-title: Knowl.-Based Syst. – volume: 15 start-page: 2127 year: 2011 end-page: 2140 ident: b51 article-title: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems publication-title: Soft Comput. – volume: 142 start-page: 127 year: 2018 end-page: 148 ident: b21 article-title: Smart buyer: A Bayesian network modelling approach for measuring and improving procurement performance in organisations publication-title: Knowl.-Based Syst. – volume: 170 start-page: 1 year: 2019 end-page: 19 ident: b50 article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization publication-title: Knowl.-Based Syst. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b11 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 54 start-page: 114 year: 2014 end-page: 122 ident: b38 article-title: Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure publication-title: J. Mol. Graph. Model. – volume: 195 start-page: 2495 year: 2006 end-page: 2508 ident: b57 article-title: The development of a changing range genetic algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: b54 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inf. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b1 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput.-Aided Des. – volume: 471 start-page: 1 year: 2019 end-page: 18 ident: b45 article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology publication-title: Inform. Sci. – volume: 36 start-page: 152 year: 2015 end-page: 164 ident: b66 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl. Soft Comput. – volume: 297 start-page: 171 year: 2015 end-page: 190 ident: b36 article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem publication-title: Inform. Sci. – volume: 139 start-page: 200 year: 2018 end-page: 213 ident: b48 article-title: A stability constrained adaptive alpha for gravitational search algorithm publication-title: Knowl.-Based Syst. – volume: 40 start-page: 831 year: 2010 end-page: 844 ident: b22 article-title: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b47 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b52 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 36 start-page: 349 year: 2015 end-page: 356 ident: b30 article-title: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes publication-title: Appl. Soft Comput. – volume: 265 start-page: 533 year: 2015 end-page: 556 ident: b35 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Appl. Math. Comput. – volume: 41 start-page: 947 year: 2010 end-page: 963 ident: b63 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Struct. Multidiscip. Optim. – volume: 21 start-page: 91 year: 2010 end-page: 106 ident: b18 article-title: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay publication-title: IEEE Trans. Neural Netw. – start-page: 210 year: 2009 end-page: 214 ident: b6 article-title: Cuckoo search via Lévy flights publication-title: 2009 World Congr. Nat. Biol. Inspired Comput. NaBIC – volume: 145 start-page: 250 year: 2018 end-page: 263 ident: b29 article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization publication-title: Knowl.-Based Syst. – volume: 486 start-page: 171 year: 2019 end-page: 189 ident: b25 article-title: A temporal-spatial composite sequential approach of three-way granular computing publication-title: Inform. Sci. – volume: 167 start-page: 69 year: 2016 end-page: 85 ident: b14 article-title: Water evaporation optimization: A novel physically inspired optimization algorithm publication-title: Comput. Struct. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b46 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 40 start-page: 3951 year: 2016 end-page: 3978 ident: b12 article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm publication-title: Appl. Math. Model. – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b13 article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: b61 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. – volume: 36 start-page: 219 year: 2004 end-page: 236 ident: b55 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optim. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b8 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 275 start-page: 1511 year: 2018 end-page: 1521 ident: b26 article-title: Identification method for a class of periodic discrete-time dynamic nonlinear systems based on Sinusoidal ESN publication-title: Neurocomputing. – volume: 325 start-page: 182 year: 2019 end-page: 189 ident: b15 article-title: A novel photovoltaic power forecasting model based on echo state network publication-title: Neurocomputing. – volume: 107 start-page: 89 year: 2018 end-page: 114 ident: b40 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Syst. Appl. – volume: 14 start-page: 299 year: 2017 end-page: 313 ident: b16 article-title: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 63 start-page: 464 year: 2018 end-page: 490 ident: b3 article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems publication-title: Appl. Math. Model. – volume: 141 start-page: 148 year: 2018 end-page: 177 ident: b31 article-title: Cellular teaching-learning-based optimization approach for dynamic multi-objective problems publication-title: Knowl.-Based Syst. – volume: 117 start-page: 46 year: 2017 end-page: 55 ident: b19 article-title: A parallel algorithm for Bayesian network structure learning from large data sets publication-title: Var. Veloc. Data Sci. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b4 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – start-page: 1468 year: 2002 end-page: 1473 ident: b62 article-title: A constraint handling approach for the differential evolution algorithm publication-title: Proc. 2002 Congr. Evol. Comput. CEC02 Cat No02TH8600, Vol. 2 – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b9 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 52 start-page: 771 year: 2017 end-page: 794 ident: b37 article-title: Snap-drift cuckoo search: A novel cuckoo search optimization algorithm publication-title: Appl. Soft Comput. – volume: 178 start-page: 3043 year: 2008 end-page: 3074 ident: b64 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Nat. Inspired Probl.-Solv. – volume: 22 start-page: 1239 year: 2013 end-page: 1255 ident: b68 article-title: Bat algorithm for constrained optimization tasks publication-title: Neural Comput. Appl. – volume: 71 start-page: 747 year: 2018 end-page: 782 ident: b28 article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm publication-title: Appl. Soft Comput. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b5 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – volume: 163 start-page: 972 year: 2019 end-page: 987 ident: b27 article-title: Parallel computing method of deep belief networks and its application to traffic flow prediction publication-title: Knowl.-Based Syst. – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: b43 article-title: A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer publication-title: Appl. Soft Comput. – volume: 36 start-page: 3880 year: 2009 end-page: 3886 ident: b59 article-title: Hybrid nelder–mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Syst. Appl. – volume: 456 start-page: 131 year: 2018 end-page: 144 ident: b33 article-title: An improved teaching-learning-based optimization for constrained evolutionary optimization publication-title: Inform. Sci. – volume: 21 start-page: 72 year: 2014 end-page: 83 ident: b32 article-title: Source and transmission line maintenance outage scheduling in a power system using teaching learning based optimization algorithm publication-title: Appl. Soft Comput. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b53 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – year: 2019 ident: 10.1016/j.knosys.2019.07.007_b24 article-title: Multi-imbalance: An open-source software for multi-class imbalance learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.03.001 – volume: 486 start-page: 171 year: 2019 ident: 10.1016/j.knosys.2019.07.007_b25 article-title: A temporal-spatial composite sequential approach of three-way granular computing publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.048 – volume: 297 start-page: 171 year: 2015 ident: 10.1016/j.knosys.2019.07.007_b36 article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.11.001 – volume: 52 start-page: 771 year: 2017 ident: 10.1016/j.knosys.2019.07.007_b37 article-title: Snap-drift cuckoo search: A novel cuckoo search optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.09.048 – volume: 13 start-page: 2592 year: 2013 ident: 10.1016/j.knosys.2019.07.007_b67 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 41 start-page: 113 year: 2000 ident: 10.1016/j.knosys.2019.07.007_b53 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 107 start-page: 89 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b40 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.012 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.knosys.2019.07.007_b8 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 178 start-page: 3043 year: 2008 ident: 10.1016/j.knosys.2019.07.007_b64 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Nat. Inspired Probl.-Solv. – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.knosys.2019.07.007_b46 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 265 start-page: 533 year: 2015 ident: 10.1016/j.knosys.2019.07.007_b35 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Appl. Math. Comput. – volume: 108 start-page: 1 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b42 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.028 – volume: 145 start-page: 250 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b29 article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.021 – volume: 37 start-page: 395 year: 2009 ident: 10.1016/j.knosys.2019.07.007_b65 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0238-3 – volume: 142 start-page: 127 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b21 article-title: Smart buyer: A Bayesian network modelling approach for measuring and improving procurement performance in organisations publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.11.032 – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.knosys.2019.07.007_b1 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 163 start-page: 972 year: 2019 ident: 10.1016/j.knosys.2019.07.007_b27 article-title: Parallel computing method of deep belief networks and its application to traffic flow prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.025 – volume: 181 start-page: 4699 year: 2011 ident: 10.1016/j.knosys.2019.07.007_b44 article-title: Enhancing particle swarm optimization using generalized opposition-based learning publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.03.016 – volume: 16 start-page: 193 year: 2002 ident: 10.1016/j.knosys.2019.07.007_b54 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inf. doi: 10.1016/S1474-0346(02)00011-3 – volume: 117 start-page: 46 year: 2017 ident: 10.1016/j.knosys.2019.07.007_b19 article-title: A parallel algorithm for Bayesian network structure learning from large data sets publication-title: Var. Veloc. Data Sci. – volume: 36 start-page: 152 year: 2015 ident: 10.1016/j.knosys.2019.07.007_b66 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.056 – volume: 21 start-page: 72 year: 2014 ident: 10.1016/j.knosys.2019.07.007_b32 article-title: Source and transmission line maintenance outage scheduling in a power system using teaching learning based optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.015 – ident: 10.1016/j.knosys.2019.07.007_b41 – volume: 486 start-page: 231 year: 2019 ident: 10.1016/j.knosys.2019.07.007_b23 article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.065 – volume: 141 start-page: 148 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b31 article-title: Cellular teaching-learning-based optimization approach for dynamic multi-objective problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.11.016 – volume: 114 start-page: 563 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b39 article-title: A modified whale optimization algorithm for large-scale global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.027 – volume: 195 start-page: 2495 year: 2006 ident: 10.1016/j.knosys.2019.07.007_b57 article-title: The development of a changing range genetic algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2005.05.014 – volume: 167 start-page: 69 year: 2016 ident: 10.1016/j.knosys.2019.07.007_b14 article-title: Water evaporation optimization: A novel physically inspired optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.01.008 – volume: 54 start-page: 114 year: 2014 ident: 10.1016/j.knosys.2019.07.007_b38 article-title: Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2014.10.002 – volume: 21 start-page: 91 year: 2010 ident: 10.1016/j.knosys.2019.07.007_b18 article-title: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2034742 – volume: 36 start-page: 1407 year: 2006 ident: 10.1016/j.knosys.2019.07.007_b56 article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2006.873185 – volume: 142 start-page: 192 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b49 article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.11.037 – volume: 63 start-page: 464 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b3 article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.06.036 – volume: 36 start-page: 349 year: 2015 ident: 10.1016/j.knosys.2019.07.007_b30 article-title: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.031 – volume: 139 start-page: 200 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b48 article-title: A stability constrained adaptive alpha for gravitational search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.018 – volume: 133 start-page: 66 year: 2017 ident: 10.1016/j.knosys.2019.07.007_b17 article-title: Predicting information diffusion probabilities in social networks: A Bayesian networks based approach publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.07.003 – start-page: 1468 year: 2002 ident: 10.1016/j.knosys.2019.07.007_b62 article-title: A constraint handling approach for the differential evolution algorithm – volume: 41 start-page: 947 year: 2010 ident: 10.1016/j.knosys.2019.07.007_b63 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0454-5 – volume: 19 start-page: 366 year: 2008 ident: 10.1016/j.knosys.2019.07.007_b20 article-title: Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.910738 – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.knosys.2019.07.007_b13 article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b43 article-title: A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.049 – volume: 40 start-page: 831 year: 2010 ident: 10.1016/j.knosys.2019.07.007_b22 article-title: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2009.2030506 – start-page: 210 year: 2009 ident: 10.1016/j.knosys.2019.07.007_b6 article-title: Cuckoo search via Lévy flights – volume: 275 start-page: 1511 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b26 article-title: Identification method for a class of periodic discrete-time dynamic nonlinear systems based on Sinusoidal ESN publication-title: Neurocomputing. doi: 10.1016/j.neucom.2017.09.092 – volume: 456 start-page: 131 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b33 article-title: An improved teaching-learning-based optimization for constrained evolutionary optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.04.083 – volume: 10 start-page: 629 year: 2010 ident: 10.1016/j.knosys.2019.07.007_b58 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.031 – volume: 40 start-page: 3951 year: 2016 ident: 10.1016/j.knosys.2019.07.007_b12 article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.10.040 – volume: 170 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2019.07.007_b50 article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.01.004 – volume: 36 start-page: 3880 year: 2009 ident: 10.1016/j.knosys.2019.07.007_b59 article-title: Hybrid nelder–mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.02.039 – volume: 17 start-page: 319 year: 2000 ident: 10.1016/j.knosys.2019.07.007_b60 article-title: Constraint-handling USing an evolutionary multiobjective optimization technique publication-title: Civ. Eng. Syst. doi: 10.1080/02630250008970288 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.knosys.2019.07.007_b7 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 159 start-page: 51 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b34 article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.06.004 – volume: 471 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2019.07.007_b45 article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.08.049 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b47 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.003 – volume: 7 start-page: 386 year: 2003 ident: 10.1016/j.knosys.2019.07.007_b61 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – start-page: 1942 year: 1995 ident: 10.1016/j.knosys.2019.07.007_b10 article-title: Particle swarm optimization – volume: 183 start-page: 1 year: 2012 ident: 10.1016/j.knosys.2019.07.007_b2 article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.006 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.knosys.2019.07.007_b4 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.knosys.2019.07.007_b9 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 325 start-page: 182 year: 2019 ident: 10.1016/j.knosys.2019.07.007_b15 article-title: A novel photovoltaic power forecasting model based on echo state network publication-title: Neurocomputing. doi: 10.1016/j.neucom.2018.10.022 – volume: 71 start-page: 747 year: 2018 ident: 10.1016/j.knosys.2019.07.007_b28 article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.039 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.knosys.2019.07.007_b52 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 12 start-page: 702 year: 2008 ident: 10.1016/j.knosys.2019.07.007_b5 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.knosys.2019.07.007_b11 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 14 start-page: 299 year: 2017 ident: 10.1016/j.knosys.2019.07.007_b16 article-title: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2517155 – volume: 15 start-page: 2127 year: 2011 ident: 10.1016/j.knosys.2019.07.007_b51 article-title: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems publication-title: Soft Comput. doi: 10.1007/s00500-010-0642-7 – volume: 36 start-page: 219 year: 2004 ident: 10.1016/j.knosys.2019.07.007_b55 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optim. doi: 10.1080/03052150410001647966 – volume: 22 start-page: 1239 year: 2013 ident: 10.1016/j.knosys.2019.07.007_b68 article-title: Bat algorithm for constrained optimization tasks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1028-9  | 
    
| SSID | ssj0002218 | 
    
| Score | 2.554342 | 
    
| Snippet | Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks.... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 104836 | 
    
| SubjectTerms | Algorithms Artificial neural networks Convergence Design engineering Design optimization Engineering optimization Global optimization Heuristic methods Machine learning Neural network algorithm Neural networks Teaching–learning-based optimization  | 
    
| Title | Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems | 
    
| URI | https://dx.doi.org/10.1016/j.knosys.2019.07.007 https://www.proquest.com/docview/2330585987  | 
    
| Volume | 187 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsUwEA2iGze-xTdZuI33NknzWIooV0U3Krgradrq9dErWhE34j_4h36JM2mqKILgtnkQMpMz0-TMDCGbOZgF03eWea08kybXLE-VYMLmmjvHS-EwwPnoWA3O5MF5ej5GdrpYGKRVRuxvMT2gdfzSi7vZuxsOeyfgHIC-4jsYwHASUn9KqbGKwdbLF82D83DHh50Z9u7C5wLH67oePTxj0u7EhhSeWFT2d_P0A6iD9dmbIVPRbaTb7cpmyVhZz5HpriQDjSd0njwNnjEEizaRJPn--hbrQlwwNFgFHQFG3MbgS-rqgmJGS5i6bvng1N1cjO6HzeUtBXeWll_pCmkRyB7fJ4j1aB4WyNne7unOgMXaCswLIRsmnPW-sE5bOHYuTdMKHDNvhDIcFqiR1peUVSWMr6T2SqqU5zbxSpd97nUhxCIZr0d1uURolfvcJRbHKmkkaAWghirBt_O8L0yxTES3pZmPicex_sVN1jHMrrJWEBkKIuvji7heJuxz1F2beOOP_rqTVvZNgTKwDX-MXOuEm8UDDO0CgNCk1uiVf0-8SiY5_p2HC5s1Mt7cP5br4MI0-UbQ0Q0ysb1_ODj-AIjj9UM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734Ft_m4DXuNmnzOIoo6_OigreQpq2url3RingR_4P_0F_iTJsqiiB4bZMQMpNvJsk3M4RspmAWdNcZ5pX0LNapYmkiBRMmVdw5nguHAc7HJ7J3Hh9cJBcjZKeNhUFaZcD-BtNrtA5fOmE1O3f9fucUnAPQV3wHAxiOMPXnWJxwhSewrZcvngfn9SUftmbYvI2fq0leN-Xw4RmzdkemzuGJVWV_t08_kLo2P3vTZDL4jXS7mdoMGcnLWTLV1mSgYYvOkafeM8Zg0SqwJN9f30JhiEuGFiujQwCJ2xB9SV2ZUUxpCUOXDSGcusHl8L5fXd1S8Gdp_pWvkGY12-P7AKEgzcM8Od_bPdvpsVBcgXkh4ooJZ7zPjFMG9p1LkqQAz8xrITWHCSrk9UV5UQjti1h5GcuEpybyUuVd7lUmxAIZLYdlvkhokfrURQb7yljHoBYAGzIH587zrtDZEhHtklofMo9jAYyBbSlm17YRhEVB2C4-iaslwj573TWZN_5or1pp2W8aZME4_NFztRWuDTsY_gtAQp0YrZb_PfAGGe-dHR_Zo_2TwxUywfGoXt_erJLR6v4xXwN_pkrXa339ADLB9tg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+teaching%E2%80%93learning-based+optimization+and+neural+network+algorithm+for+engineering+design+optimization+problems&rft.jtitle=Knowledge-based+systems&rft.au=Zhang%2C+Yiying&rft.au=Jin%2C+Zhigang&rft.au=Chen%2C+Ye&rft.date=2020-01-01&rft.issn=0950-7051&rft.volume=187&rft.spage=104836&rft_id=info:doi/10.1016%2Fj.knosys.2019.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2019_07_007 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |