Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (DAC) in wireless sensor networks

Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast – process of routing data from many sources to a sink – is commonly performed operation in WSNs. Data aggregation is a frequently used...

Full description

Saved in:
Bibliographic Details
Published inAd hoc networks Vol. 5; no. 5; pp. 626 - 648
Main Authors Upadhyayula, S., Gupta, S.K.S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2007
Subjects
Online AccessGet full text
ISSN1570-8705
1570-8713
DOI10.1016/j.adhoc.2006.04.004

Cover

Abstract Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast – process of routing data from many sources to a sink – is commonly performed operation in WSNs. Data aggregation is a frequently used energy-conversing technique in WSNs. The rationale is to reduce volume of communicated data by using in-network processing capability at sensor nodes. In this paper, we address the problem of performing the operation of data aggregation enhanced convergecast (DAC) in an energy and latency efficient manner. We assume that all the nodes in the network have a data item and there is an a priori known application dependent data compression factor (or compression factor), γ, that approximates the useful fraction of the total data collected. The paper first presents two DAC tree construction algorithms. One is a variant of the Minimum Spanning Tree (MST) algorithm and the other is a variant of the Single Source Shortest Path Spanning Tree (SPT) algorithm. These two algorithms serve as a motivation for our Combined algorithm (COM) which generalized the SPT and MST based algorithm. The COM algorithm tries to construct an energy optimal DAC tree for any fixed value of α (= 1 − γ), the data growth factor. The nodes of these trees are scheduled for collision-free communication using a channel allocation algorithm. To achieve low latency, these algorithms use the β-constraint, which puts a soft limit on the maximum number of children a node can have in a DAC tree. The DAC tree obtained from energy minimizing phase of tree construction algorithms is re-structured using the β-constraint (in the latency minimizing phase) to reduce latency (at the expense of increasing energy cost). The effectiveness of these algorithms is evaluated by using energy efficiency, latency and network lifetime as metrics. With these metrics, the algorithms’ performance is compared with an existing data aggregation technique. From the experimental results, for a given network density and data compression factor γ at intermediate nodes, one can choose an appropriate algorithm depending upon whether the primary goal is to minimize the latency or the energy consumption.
AbstractList Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast – process of routing data from many sources to a sink – is commonly performed operation in WSNs. Data aggregation is a frequently used energy-conversing technique in WSNs. The rationale is to reduce volume of communicated data by using in-network processing capability at sensor nodes. In this paper, we address the problem of performing the operation of data aggregation enhanced convergecast (DAC) in an energy and latency efficient manner. We assume that all the nodes in the network have a data item and there is an a priori known application dependent data compression factor (or compression factor), γ, that approximates the useful fraction of the total data collected. The paper first presents two DAC tree construction algorithms. One is a variant of the Minimum Spanning Tree (MST) algorithm and the other is a variant of the Single Source Shortest Path Spanning Tree (SPT) algorithm. These two algorithms serve as a motivation for our Combined algorithm (COM) which generalized the SPT and MST based algorithm. The COM algorithm tries to construct an energy optimal DAC tree for any fixed value of α (= 1 − γ), the data growth factor. The nodes of these trees are scheduled for collision-free communication using a channel allocation algorithm. To achieve low latency, these algorithms use the β-constraint, which puts a soft limit on the maximum number of children a node can have in a DAC tree. The DAC tree obtained from energy minimizing phase of tree construction algorithms is re-structured using the β-constraint (in the latency minimizing phase) to reduce latency (at the expense of increasing energy cost). The effectiveness of these algorithms is evaluated by using energy efficiency, latency and network lifetime as metrics. With these metrics, the algorithms’ performance is compared with an existing data aggregation technique. From the experimental results, for a given network density and data compression factor γ at intermediate nodes, one can choose an appropriate algorithm depending upon whether the primary goal is to minimize the latency or the energy consumption.
Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast - process of routing data from many sources to a sink - is commonly performed operation in WSNs. Data aggregation is a frequently used energy-conversing technique in WSNs. The rationale is to reduce volume of communicated data by using in-network processing capability at sensor nodes. In this paper, we address the problem of performing the operation of data aggregation enhanced convergecast (DAC) in an energy and latency efficient manner. We assume that all the nodes in the network have a data item and there is an a priori known application dependent data compression factor (or compression factor), gamma, that approximates the useful fraction of the total data collected. The paper first presents two DAC tree construction algorithms. One is a variant of the Minimum Spanning Tree (MST) algorithm and the other is a variant of the Single Source Shortest Path Spanning Tree (SPT) algorithm. These two algorithms serve as a motivation for our Combined algorithm (COM) which generalized the SPT and MST based algorithm. The COM algorithm tries to construct an energy optimal DAC tree for any fixed value of alpha (=1-gamma), the data growth factor. The nodes of these trees are scheduled for collision-free communication using a channel allocation algorithm. To achieve low latency, these algorithms use the beta-constraint, which puts a soft limit on the maximum number of children a node can have in a DAC tree. The DAC tree obtained from energy minimizing phase of tree construction algorithms is re-structured using the beta-constraint (in the latency minimizing phase) to reduce latency (at the expense of increasing energy cost). The effectiveness of these algorithms is evaluated by using energy efficiency, latency and network lifetime as metrics. With these metrics, the algorithms' performance is compared with an existing data aggregation technique. From the experimental results, for a given network density and data compression factor gamma at intermediate nodes, one can choose an appropriate algorithm depending upon whether the primary goal is to minimize the latency or the energy consumption.
Author Upadhyayula, S.
Gupta, S.K.S.
Author_xml – sequence: 1
  givenname: S.
  surname: Upadhyayula
  fullname: Upadhyayula, S.
  email: sarma@asu.edu
– sequence: 2
  givenname: S.K.S.
  surname: Gupta
  fullname: Gupta, S.K.S.
  email: sandeep.gupta@asu.edu
BookMark eNqFkD1vFDEQhi0UJJLAL6BxhaC4Zbz2fhUU0fEpRaJIqK05e3bPx5592E5O9x_yo_HlEAVFqGaK93lH81ywMx88MfZaQCVAtO83Fdp1MFUN0FagKgD1jJ2LpoNF3wl59neH5gW7SGkDUA81iHP2cLND752feI5EfIWJLMd5CtHl9TbxMUQ-hz2fMZM3B47ecvIUpwOncXTGkc_cYkaO0xRpwuyCL4k1elOaTPD3JUwGU-ZvP14t33Hn-d5FmiklnsincsBT3of4M71kz0ecE736My_Zj8-fbpdfF9ffv3xbXl0vjJQqL6QYLVq7Gns1WBBI2Bmwq2Yle6xBdZ0SQ9-LxoKCzrYD1iN2g5JC2to0fS0v2ZtT7y6GX3eUst66ZGie0VO4S1rWbQdtcwwOp6CJIaVIozYuP76YI7pZC9BH_3qjH_3ro38NShf_hZX_sLvothgP_6E-nCgq_987ijodHReXxZnJ2gb3JP8bqsGk1A
CitedBy_id crossref_primary_10_1016_j_procs_2014_08_086
crossref_primary_10_1109_ACCESS_2019_2927627
crossref_primary_10_1109_TMC_2011_22
crossref_primary_10_1016_j_comnet_2016_12_011
crossref_primary_10_4028_www_scientific_net_KEM_392_394_985
crossref_primary_10_1109_ACCESS_2019_2891944
crossref_primary_10_1145_3014430
crossref_primary_10_1093_comjnl_bxaa135
crossref_primary_10_1007_s40747_020_00258_w
crossref_primary_10_1016_j_adhoc_2020_102083
crossref_primary_10_1016_j_adhoc_2020_102182
crossref_primary_10_7840_KICS_2011_36B_4_346
crossref_primary_10_3390_s16060923
crossref_primary_10_1002_wcm_901
crossref_primary_10_1016_j_adhoc_2019_101928
crossref_primary_10_1016_j_jnca_2012_10_003
crossref_primary_10_1142_S012905412050015X
crossref_primary_10_1109_ACCESS_2018_2882639
crossref_primary_10_3390_s140916972
crossref_primary_10_1109_TPDS_2010_68
crossref_primary_10_1145_1777406_1777410
crossref_primary_10_3745_KTCCS_2013_2_5_191
crossref_primary_10_3745_KIPSTC_2009_16_C_1_83
crossref_primary_10_1007_s11277_012_0561_2
crossref_primary_10_1109_SURV_2014_031914_00029
crossref_primary_10_1109_TGCN_2018_2864582
crossref_primary_10_1007_s11277_010_0202_6
crossref_primary_10_29121_granthaalayah_v1_i1_2014_3084
crossref_primary_10_1016_j_jnca_2017_08_006
crossref_primary_10_1007_s11276_015_0971_7
crossref_primary_10_1007_s11277_018_5747_9
crossref_primary_10_1007_s00542_017_3339_3
crossref_primary_10_1142_S0129054113400030
crossref_primary_10_1016_j_compeleceng_2016_07_009
crossref_primary_10_1155_2018_1539642
crossref_primary_10_1016_j_jksuci_2019_05_009
crossref_primary_10_1109_JCN_2011_6157247
crossref_primary_10_1155_2014_713427
crossref_primary_10_1016_j_comcom_2010_04_022
crossref_primary_10_1080_1206212X_2020_1724679
Cites_doi 10.1109/WCNC.2003.1200684
10.1109/ACSSC.2001.986894
10.1007/BFb0023489
10.1016/S1389-1286(01)00302-4
10.1109/TPDS.2002.1036066
10.1007/BF01187035
10.1109/GLOCOM.2003.1258890
10.1109/TC.1987.1676861
10.1109/26.79285
10.1023/A:1009758919736
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright_xml – notice: 2006 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.adhoc.2006.04.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1570-8713
EndPage 648
ExternalDocumentID 10_1016_j_adhoc_2006_04_004
S1570870506000242
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-31fdaddbf849d01aea7c0db5b38a204774198815d0407d69a2fa794313d2c5823
IEDL.DBID AIKHN
ISSN 1570-8705
IngestDate Thu Oct 02 08:59:19 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Wed Oct 29 21:11:25 EDT 2025
Fri Feb 23 02:27:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Data aggregation
Convergecast
Wireless sensor networks
Spanning trees
Energy-efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-31fdaddbf849d01aea7c0db5b38a204774198815d0407d69a2fa794313d2c5823
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 32670652
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_32670652
crossref_citationtrail_10_1016_j_adhoc_2006_04_004
crossref_primary_10_1016_j_adhoc_2006_04_004
elsevier_sciencedirect_doi_10_1016_j_adhoc_2006_04_004
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Ad hoc networks
PublicationYear 2007
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Takahashi, Matsuyama (bib10) 1980; 6
Akyildiz, Su, Sankarasubramaniam, Cayirci (bib19) 2002; 3
Chlamtac, Kutten (bib1) 1987; C-36
Lindsey, Raghavendra, Sivalingam (bib14) 2002; 13
J.L. Gao, Analysis of energy consumption for ad hoc wireless networks using bit-meter-per-joule metric, IPN Progress Report 42-150, August, 2002.
Cormen, Leiserson, Rivest, Stein (bib18) 2001
Hans J. Promel, Angelika Steger, RNC-approximation algorithms for the Steiner tree problems, in: Proceedings of 14th Annual Symposium on Theoretical Aspects of Computer Science, 1997, pp. 559–570.
Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker, Impact of data aggregation in wireless sensor networks, in: International Workshop on Distributed Event-Based Systems (DEBS’02) Vienna, Austria, July 2002.
.
Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari Balakrishnan, Energy-efficient communication protocol for wireless micro sensor networks, in: Proceedings of the Hawaii International Conference on System Science, January 2000.
Rex Min, Anantha Chandrakasan, Energy-efficient communication for ad-hoc wireless sensor networks, in: Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001, vol. 1, 4–7 November 2001.
Karpinski, Zelikovsky (bib9) 1997; 1
Zelikovsky (bib12) 1993; 9
Jie Chen, David Seah, Wen Xu, Channel allocation for cellular networks using heuristic methods. Available from
Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, John Heidemann, Impact of network density on data aggregation in wireless sensor networks, in: Proceedings of International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002.
Skeina (bib8) 1997
Alexander Zelikovsky, Better approximation bounds for the network and Euclidean Steiner tree problems, Technical Report CS-96-06, University of Virginia.
Sarma Upadhyayula, Valliappan Annamalai, Sandeep Gupta, A low-latency and energy-efficient algorithm for convergecast in wireless sensor networks, in: IEEE Global Communications Conference, 2003.
Chlamtac, Weinstein (bib2) 1991; 39
Valliappan Annamalai, Sandeep K.S. Gupta, On tree-base convergecasting for wireless sensor networks, in: Proceedings of IEEE Wireless Communications and Networking Conference, 2003, Louisiana, USA.
Akyildiz (10.1016/j.adhoc.2006.04.004_bib19) 2002; 3
Karpinski (10.1016/j.adhoc.2006.04.004_bib9) 1997; 1
Takahashi (10.1016/j.adhoc.2006.04.004_bib10) 1980; 6
10.1016/j.adhoc.2006.04.004_bib16
10.1016/j.adhoc.2006.04.004_bib17
Chlamtac (10.1016/j.adhoc.2006.04.004_bib1) 1987; C-36
Lindsey (10.1016/j.adhoc.2006.04.004_bib14) 2002; 13
Chlamtac (10.1016/j.adhoc.2006.04.004_bib2) 1991; 39
10.1016/j.adhoc.2006.04.004_bib7
Skeina (10.1016/j.adhoc.2006.04.004_bib8) 1997
10.1016/j.adhoc.2006.04.004_bib6
Cormen (10.1016/j.adhoc.2006.04.004_bib18) 2001
10.1016/j.adhoc.2006.04.004_bib5
10.1016/j.adhoc.2006.04.004_bib4
10.1016/j.adhoc.2006.04.004_bib3
10.1016/j.adhoc.2006.04.004_bib15
Zelikovsky (10.1016/j.adhoc.2006.04.004_bib12) 1993; 9
10.1016/j.adhoc.2006.04.004_bib13
10.1016/j.adhoc.2006.04.004_bib11
References_xml – reference: Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari Balakrishnan, Energy-efficient communication protocol for wireless micro sensor networks, in: Proceedings of the Hawaii International Conference on System Science, January 2000.
– reference: Rex Min, Anantha Chandrakasan, Energy-efficient communication for ad-hoc wireless sensor networks, in: Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001, vol. 1, 4–7 November 2001.
– reference: Jie Chen, David Seah, Wen Xu, Channel allocation for cellular networks using heuristic methods. Available from:
– volume: 3
  start-page: 393
  year: 2002
  end-page: 422
  ident: bib19
  article-title: Wireless sensor networks: a survey
  publication-title: Computer Networks
– reference: Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker, Impact of data aggregation in wireless sensor networks, in: International Workshop on Distributed Event-Based Systems (DEBS’02) Vienna, Austria, July 2002.
– volume: 9
  start-page: 463
  year: 1993
  end-page: 470
  ident: bib12
  article-title: An 11/6-approximation algorithm for the network Steiner problem
  publication-title: Algorithmica
– volume: 6
  start-page: 573
  year: 1980
  end-page: 577
  ident: bib10
  article-title: An approximate solutions for the Steiner problem in graphs
  publication-title: Mathematica Japonica
– reference: Sarma Upadhyayula, Valliappan Annamalai, Sandeep Gupta, A low-latency and energy-efficient algorithm for convergecast in wireless sensor networks, in: IEEE Global Communications Conference, 2003.
– volume: C-36
  year: 1987
  ident: bib1
  article-title: Tree-based broadcasting in multi-hop radio networks
  publication-title: IEEE Transactions on Computers
– volume: 13
  year: 2002
  ident: bib14
  article-title: Data gathering algorithms in sensor networks using energy metrics
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– reference: Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, John Heidemann, Impact of network density on data aggregation in wireless sensor networks, in: Proceedings of International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002.
– volume: 1
  start-page: 47
  year: 1997
  end-page: 65
  ident: bib9
  article-title: New Approximation Algorithms for the Steiner Tree Problems
  publication-title: Journal of Combinatorial Optimization
– year: 1997
  ident: bib8
  article-title: The Algorithm Design Manual
– volume: 39
  year: 1991
  ident: bib2
  article-title: The wave expansion approach to broadcasting in multi-hop radio networks
  publication-title: IEEE Transactions on Communications
– reference: J.L. Gao, Analysis of energy consumption for ad hoc wireless networks using bit-meter-per-joule metric, IPN Progress Report 42-150, August, 2002.
– reference: Valliappan Annamalai, Sandeep K.S. Gupta, On tree-base convergecasting for wireless sensor networks, in: Proceedings of IEEE Wireless Communications and Networking Conference, 2003, Louisiana, USA.
– reference: Hans J. Promel, Angelika Steger, RNC-approximation algorithms for the Steiner tree problems, in: Proceedings of 14th Annual Symposium on Theoretical Aspects of Computer Science, 1997, pp. 559–570.
– year: 2001
  ident: bib18
  article-title: Introduction to Algorithms
– reference: Alexander Zelikovsky, Better approximation bounds for the network and Euclidean Steiner tree problems, Technical Report CS-96-06, University of Virginia.
– reference: .
– ident: 10.1016/j.adhoc.2006.04.004_bib13
– volume: 6
  start-page: 573
  year: 1980
  ident: 10.1016/j.adhoc.2006.04.004_bib10
  article-title: An approximate solutions for the Steiner problem in graphs
  publication-title: Mathematica Japonica
– ident: 10.1016/j.adhoc.2006.04.004_bib15
  doi: 10.1109/WCNC.2003.1200684
– ident: 10.1016/j.adhoc.2006.04.004_bib4
  doi: 10.1109/ACSSC.2001.986894
– ident: 10.1016/j.adhoc.2006.04.004_bib3
– ident: 10.1016/j.adhoc.2006.04.004_bib11
  doi: 10.1007/BFb0023489
– volume: 3
  start-page: 393
  year: 2002
  ident: 10.1016/j.adhoc.2006.04.004_bib19
  article-title: Wireless sensor networks: a survey
  publication-title: Computer Networks
  doi: 10.1016/S1389-1286(01)00302-4
– ident: 10.1016/j.adhoc.2006.04.004_bib6
– year: 1997
  ident: 10.1016/j.adhoc.2006.04.004_bib8
– volume: 13
  issue: 9
  year: 2002
  ident: 10.1016/j.adhoc.2006.04.004_bib14
  article-title: Data gathering algorithms in sensor networks using energy metrics
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2002.1036066
– ident: 10.1016/j.adhoc.2006.04.004_bib7
– ident: 10.1016/j.adhoc.2006.04.004_bib17
– ident: 10.1016/j.adhoc.2006.04.004_bib16
– volume: 9
  start-page: 463
  year: 1993
  ident: 10.1016/j.adhoc.2006.04.004_bib12
  article-title: An 11/6-approximation algorithm for the network Steiner problem
  publication-title: Algorithmica
  doi: 10.1007/BF01187035
– year: 2001
  ident: 10.1016/j.adhoc.2006.04.004_bib18
– ident: 10.1016/j.adhoc.2006.04.004_bib5
  doi: 10.1109/GLOCOM.2003.1258890
– volume: C-36
  issue: 10
  year: 1987
  ident: 10.1016/j.adhoc.2006.04.004_bib1
  article-title: Tree-based broadcasting in multi-hop radio networks
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1987.1676861
– volume: 39
  issue: 3
  year: 1991
  ident: 10.1016/j.adhoc.2006.04.004_bib2
  article-title: The wave expansion approach to broadcasting in multi-hop radio networks
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/26.79285
– volume: 1
  start-page: 47
  year: 1997
  ident: 10.1016/j.adhoc.2006.04.004_bib9
  article-title: New Approximation Algorithms for the Steiner Tree Problems
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1023/A:1009758919736
SSID ssj0029201
Score 2.0889485
Snippet Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 626
SubjectTerms Convergecast
Data aggregation
Energy-efficiency
Spanning trees
Wireless sensor networks
Title Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (DAC) in wireless sensor networks
URI https://dx.doi.org/10.1016/j.adhoc.2006.04.004
https://www.proquest.com/docview/32670652
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1570-8713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029201
  issn: 1570-8705
  databaseCode: ACRLP
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1570-8713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029201
  issn: 1570-8705
  databaseCode: .~1
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1570-8713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029201
  issn: 1570-8705
  databaseCode: AIKHN
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1570-8713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029201
  issn: 1570-8705
  databaseCode: AKRWK
  dateStart: 20030701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QUOqLxEoSxz4AASYW3HeR1XC9XyqhClUm-W48fuopCsNqkQF34BP5qxk1SARA9cIzuJPOOZbzzjbwh56lhmERYUkUhVHglXiqhIdRZx40xaKE-h5s8hP5ymy3Px9iK52COL8S6ML6scbH9v04O1Hp7MhtWcbTeb2RlLMora5hnygqfZJwfof_J8Qg7mb94tT6_iroLTnjY1o5GfMJIPhTIvZdaNHpISnkhb_MtB_WWqg_85OSS3BuAI8_7fbpM9W98hN3-jE7xLfp5t-w5E4FPN4B2UAVWtmt2mW39tAfEpVM03qJQHyt9B1QZsuPsHNjBJoAMCXzIKaoVh-CoIDUesQ5UAhAL13cpq1Xbw7NV88Rw2NXiu4wrNJbQYEOMH6r6uvL1Hzk9ef14so6HbQqTjWHRojJ1BY1e6XBSGMmVVpqkpkzLOFacCYSIr8pwlBrd95uXInfLsciw2XCc5j--TSd3U9gEBhSCOJ1onGsGDizFqclyLsigdTSzL1BHh4xJLPVCR-44YlRxrzr7IIBffJDOVVEiUyxF5cTVp2zNxXD88HWUn_1Aoib7i-olPRklL3Go-f6Jq21y2EpGuTwrzh__76kfkxng0TNkxmXS7S_sYMU1XTsn-yx9sipq7-PT-43TQ4F97pPkw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUAPiKdoeXQOHEAibOLYeRyrhWqBtpe2Um-W48fuojRZNVtVXPgF_dGdcZIKkOiBa2Qnkcee-cb-_A1j73ySO4QFZSQyXUTCVyIqM5NH3HqblZok1Ggf8vAom52Kb2fybINNx7swRKscfH_v04O3Hp5MhtGcrJbLyXEi8xhnGynkhUhzj90XkueUgX36dcvzoGpMvWhqHkfUfJQeCiQvbRetGY4kSEZb_Cs8_eWoQ_TZf8weDbAR9vo_e8I2XPOUbf0mJviMXR-v-vpDQAfNQOHJgq7nLab_i_MOEJ1C3V5BrQkm_wTdWHDh5h-4oCOB4QeIMAp6jkn4PJgMWywCRwACPf1i7ozu1vD-8970AywbIKXjGp0ldJgO4weanlXePWen-19OprNoqLUQmTQVa3TF3qKrq3whShsn2uncxLaSVVpoHgsEiUlZFIm0uOhzsiL3mrTlktRyIwuevmCbTdu4lww0QjgujZEGoYNPMWfy3IiqrHwsXZLrbcbHIVZmECKnehi1GhlnP1SwC5XIzFQsFNplm3287bTqdTjubp6NtlN_TCeFkeLujrujpRUuNDo90Y1rLzuFOJeOhPnO_756lz2YnRweqIOvR99fsYfjJnGcvGab64tL9wbRzbp6G2bvDcxd-GM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spanning+tree+based+algorithms+for+low+latency+and+energy+efficient+data+aggregation+enhanced+convergecast+%28DAC%29+in+wireless+sensor+networks&rft.jtitle=Ad+hoc+networks&rft.au=Upadhyayula%2C+S.&rft.au=Gupta%2C+S.K.S.&rft.date=2007-07-01&rft.issn=1570-8705&rft.volume=5&rft.issue=5&rft.spage=626&rft.epage=648&rft_id=info:doi/10.1016%2Fj.adhoc.2006.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_adhoc_2006_04_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon