Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (DAC) in wireless sensor networks
Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast – process of routing data from many sources to a sink – is commonly performed operation in WSNs. Data aggregation is a frequently used...
        Saved in:
      
    
          | Published in | Ad hoc networks Vol. 5; no. 5; pp. 626 - 648 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2007
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1570-8705 1570-8713  | 
| DOI | 10.1016/j.adhoc.2006.04.004 | 
Cover
| Abstract | Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast – process of routing data from many sources to a sink – is commonly performed operation in WSNs. Data aggregation is a frequently used energy-conversing technique in WSNs. The rationale is to reduce volume of communicated data by using in-network processing capability at sensor nodes. In this paper, we address the problem of performing the operation of data aggregation enhanced convergecast (DAC) in an energy and latency efficient manner. We assume that all the nodes in the network have a data item and there is an
a priori known application dependent data compression factor (or
compression factor),
γ, that approximates the useful fraction of the total data collected.
The paper first presents two DAC tree construction algorithms. One is a variant of the Minimum Spanning Tree (MST) algorithm and the other is a variant of the Single Source Shortest Path Spanning Tree (SPT) algorithm. These two algorithms serve as a motivation for our Combined algorithm (COM) which generalized the SPT and MST based algorithm. The COM algorithm tries to construct an energy optimal DAC tree for any fixed value of
α (=
1
−
γ), the
data growth factor. The nodes of these trees are scheduled for collision-free communication using a channel allocation algorithm. To achieve low latency, these algorithms use the
β-constraint, which puts a soft limit on the maximum number of children a node can have in a DAC tree. The DAC tree obtained from
energy minimizing phase of tree construction algorithms is re-structured using the
β-constraint (in the
latency minimizing phase) to reduce latency (at the expense of increasing energy cost). The effectiveness of these algorithms is evaluated by using energy efficiency, latency and network lifetime as metrics. With these metrics, the algorithms’ performance is compared with an existing data aggregation technique. From the experimental results, for a given network density and data compression factor
γ at intermediate nodes, one can choose an appropriate algorithm depending upon whether the primary goal is to minimize the latency or the energy consumption. | 
    
|---|---|
| AbstractList | Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast – process of routing data from many sources to a sink – is commonly performed operation in WSNs. Data aggregation is a frequently used energy-conversing technique in WSNs. The rationale is to reduce volume of communicated data by using in-network processing capability at sensor nodes. In this paper, we address the problem of performing the operation of data aggregation enhanced convergecast (DAC) in an energy and latency efficient manner. We assume that all the nodes in the network have a data item and there is an
a priori known application dependent data compression factor (or
compression factor),
γ, that approximates the useful fraction of the total data collected.
The paper first presents two DAC tree construction algorithms. One is a variant of the Minimum Spanning Tree (MST) algorithm and the other is a variant of the Single Source Shortest Path Spanning Tree (SPT) algorithm. These two algorithms serve as a motivation for our Combined algorithm (COM) which generalized the SPT and MST based algorithm. The COM algorithm tries to construct an energy optimal DAC tree for any fixed value of
α (=
1
−
γ), the
data growth factor. The nodes of these trees are scheduled for collision-free communication using a channel allocation algorithm. To achieve low latency, these algorithms use the
β-constraint, which puts a soft limit on the maximum number of children a node can have in a DAC tree. The DAC tree obtained from
energy minimizing phase of tree construction algorithms is re-structured using the
β-constraint (in the
latency minimizing phase) to reduce latency (at the expense of increasing energy cost). The effectiveness of these algorithms is evaluated by using energy efficiency, latency and network lifetime as metrics. With these metrics, the algorithms’ performance is compared with an existing data aggregation technique. From the experimental results, for a given network density and data compression factor
γ at intermediate nodes, one can choose an appropriate algorithm depending upon whether the primary goal is to minimize the latency or the energy consumption. Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources. Convergecast - process of routing data from many sources to a sink - is commonly performed operation in WSNs. Data aggregation is a frequently used energy-conversing technique in WSNs. The rationale is to reduce volume of communicated data by using in-network processing capability at sensor nodes. In this paper, we address the problem of performing the operation of data aggregation enhanced convergecast (DAC) in an energy and latency efficient manner. We assume that all the nodes in the network have a data item and there is an a priori known application dependent data compression factor (or compression factor), gamma, that approximates the useful fraction of the total data collected. The paper first presents two DAC tree construction algorithms. One is a variant of the Minimum Spanning Tree (MST) algorithm and the other is a variant of the Single Source Shortest Path Spanning Tree (SPT) algorithm. These two algorithms serve as a motivation for our Combined algorithm (COM) which generalized the SPT and MST based algorithm. The COM algorithm tries to construct an energy optimal DAC tree for any fixed value of alpha (=1-gamma), the data growth factor. The nodes of these trees are scheduled for collision-free communication using a channel allocation algorithm. To achieve low latency, these algorithms use the beta-constraint, which puts a soft limit on the maximum number of children a node can have in a DAC tree. The DAC tree obtained from energy minimizing phase of tree construction algorithms is re-structured using the beta-constraint (in the latency minimizing phase) to reduce latency (at the expense of increasing energy cost). The effectiveness of these algorithms is evaluated by using energy efficiency, latency and network lifetime as metrics. With these metrics, the algorithms' performance is compared with an existing data aggregation technique. From the experimental results, for a given network density and data compression factor gamma at intermediate nodes, one can choose an appropriate algorithm depending upon whether the primary goal is to minimize the latency or the energy consumption.  | 
    
| Author | Upadhyayula, S. Gupta, S.K.S.  | 
    
| Author_xml | – sequence: 1 givenname: S. surname: Upadhyayula fullname: Upadhyayula, S. email: sarma@asu.edu – sequence: 2 givenname: S.K.S. surname: Gupta fullname: Gupta, S.K.S. email: sandeep.gupta@asu.edu  | 
    
| BookMark | eNqFkD1vFDEQhi0UJJLAL6BxhaC4Zbz2fhUU0fEpRaJIqK05e3bPx5592E5O9x_yo_HlEAVFqGaK93lH81ywMx88MfZaQCVAtO83Fdp1MFUN0FagKgD1jJ2LpoNF3wl59neH5gW7SGkDUA81iHP2cLND752feI5EfIWJLMd5CtHl9TbxMUQ-hz2fMZM3B47ecvIUpwOncXTGkc_cYkaO0xRpwuyCL4k1elOaTPD3JUwGU-ZvP14t33Hn-d5FmiklnsincsBT3of4M71kz0ecE736My_Zj8-fbpdfF9ffv3xbXl0vjJQqL6QYLVq7Gns1WBBI2Bmwq2Yle6xBdZ0SQ9-LxoKCzrYD1iN2g5JC2to0fS0v2ZtT7y6GX3eUst66ZGie0VO4S1rWbQdtcwwOp6CJIaVIozYuP76YI7pZC9BH_3qjH_3ro38NShf_hZX_sLvothgP_6E-nCgq_987ijodHReXxZnJ2gb3JP8bqsGk1A | 
    
| CitedBy_id | crossref_primary_10_1016_j_procs_2014_08_086 crossref_primary_10_1109_ACCESS_2019_2927627 crossref_primary_10_1109_TMC_2011_22 crossref_primary_10_1016_j_comnet_2016_12_011 crossref_primary_10_4028_www_scientific_net_KEM_392_394_985 crossref_primary_10_1109_ACCESS_2019_2891944 crossref_primary_10_1145_3014430 crossref_primary_10_1093_comjnl_bxaa135 crossref_primary_10_1007_s40747_020_00258_w crossref_primary_10_1016_j_adhoc_2020_102083 crossref_primary_10_1016_j_adhoc_2020_102182 crossref_primary_10_7840_KICS_2011_36B_4_346 crossref_primary_10_3390_s16060923 crossref_primary_10_1002_wcm_901 crossref_primary_10_1016_j_adhoc_2019_101928 crossref_primary_10_1016_j_jnca_2012_10_003 crossref_primary_10_1142_S012905412050015X crossref_primary_10_1109_ACCESS_2018_2882639 crossref_primary_10_3390_s140916972 crossref_primary_10_1109_TPDS_2010_68 crossref_primary_10_1145_1777406_1777410 crossref_primary_10_3745_KTCCS_2013_2_5_191 crossref_primary_10_3745_KIPSTC_2009_16_C_1_83 crossref_primary_10_1007_s11277_012_0561_2 crossref_primary_10_1109_SURV_2014_031914_00029 crossref_primary_10_1109_TGCN_2018_2864582 crossref_primary_10_1007_s11277_010_0202_6 crossref_primary_10_29121_granthaalayah_v1_i1_2014_3084 crossref_primary_10_1016_j_jnca_2017_08_006 crossref_primary_10_1007_s11276_015_0971_7 crossref_primary_10_1007_s11277_018_5747_9 crossref_primary_10_1007_s00542_017_3339_3 crossref_primary_10_1142_S0129054113400030 crossref_primary_10_1016_j_compeleceng_2016_07_009 crossref_primary_10_1155_2018_1539642 crossref_primary_10_1016_j_jksuci_2019_05_009 crossref_primary_10_1109_JCN_2011_6157247 crossref_primary_10_1155_2014_713427 crossref_primary_10_1016_j_comcom_2010_04_022 crossref_primary_10_1080_1206212X_2020_1724679  | 
    
| Cites_doi | 10.1109/WCNC.2003.1200684 10.1109/ACSSC.2001.986894 10.1007/BFb0023489 10.1016/S1389-1286(01)00302-4 10.1109/TPDS.2002.1036066 10.1007/BF01187035 10.1109/GLOCOM.2003.1258890 10.1109/TC.1987.1676861 10.1109/26.79285 10.1023/A:1009758919736  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2006 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2006 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.adhoc.2006.04.004 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1570-8713 | 
    
| EndPage | 648 | 
    
| ExternalDocumentID | 10_1016_j_adhoc_2006_04_004 S1570870506000242  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c334t-31fdaddbf849d01aea7c0db5b38a204774198815d0407d69a2fa794313d2c5823 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 1570-8705 | 
    
| IngestDate | Thu Oct 02 08:59:19 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Wed Oct 29 21:11:25 EDT 2025 Fri Feb 23 02:27:34 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Data aggregation Convergecast Wireless sensor networks Spanning trees Energy-efficiency  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c334t-31fdaddbf849d01aea7c0db5b38a204774198815d0407d69a2fa794313d2c5823 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 32670652 | 
    
| PQPubID | 23500 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_miscellaneous_32670652 crossref_citationtrail_10_1016_j_adhoc_2006_04_004 crossref_primary_10_1016_j_adhoc_2006_04_004 elsevier_sciencedirect_doi_10_1016_j_adhoc_2006_04_004  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2007-07-01 | 
    
| PublicationDateYYYYMMDD | 2007-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationTitle | Ad hoc networks | 
    
| PublicationYear | 2007 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Takahashi, Matsuyama (bib10) 1980; 6 Akyildiz, Su, Sankarasubramaniam, Cayirci (bib19) 2002; 3 Chlamtac, Kutten (bib1) 1987; C-36 Lindsey, Raghavendra, Sivalingam (bib14) 2002; 13 J.L. Gao, Analysis of energy consumption for ad hoc wireless networks using bit-meter-per-joule metric, IPN Progress Report 42-150, August, 2002. Cormen, Leiserson, Rivest, Stein (bib18) 2001 Hans J. Promel, Angelika Steger, RNC-approximation algorithms for the Steiner tree problems, in: Proceedings of 14th Annual Symposium on Theoretical Aspects of Computer Science, 1997, pp. 559–570. Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker, Impact of data aggregation in wireless sensor networks, in: International Workshop on Distributed Event-Based Systems (DEBS’02) Vienna, Austria, July 2002. . Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari Balakrishnan, Energy-efficient communication protocol for wireless micro sensor networks, in: Proceedings of the Hawaii International Conference on System Science, January 2000. Rex Min, Anantha Chandrakasan, Energy-efficient communication for ad-hoc wireless sensor networks, in: Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001, vol. 1, 4–7 November 2001. Karpinski, Zelikovsky (bib9) 1997; 1 Zelikovsky (bib12) 1993; 9 Jie Chen, David Seah, Wen Xu, Channel allocation for cellular networks using heuristic methods. Available from Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, John Heidemann, Impact of network density on data aggregation in wireless sensor networks, in: Proceedings of International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002. Skeina (bib8) 1997 Alexander Zelikovsky, Better approximation bounds for the network and Euclidean Steiner tree problems, Technical Report CS-96-06, University of Virginia. Sarma Upadhyayula, Valliappan Annamalai, Sandeep Gupta, A low-latency and energy-efficient algorithm for convergecast in wireless sensor networks, in: IEEE Global Communications Conference, 2003. Chlamtac, Weinstein (bib2) 1991; 39 Valliappan Annamalai, Sandeep K.S. Gupta, On tree-base convergecasting for wireless sensor networks, in: Proceedings of IEEE Wireless Communications and Networking Conference, 2003, Louisiana, USA. Akyildiz (10.1016/j.adhoc.2006.04.004_bib19) 2002; 3 Karpinski (10.1016/j.adhoc.2006.04.004_bib9) 1997; 1 Takahashi (10.1016/j.adhoc.2006.04.004_bib10) 1980; 6 10.1016/j.adhoc.2006.04.004_bib16 10.1016/j.adhoc.2006.04.004_bib17 Chlamtac (10.1016/j.adhoc.2006.04.004_bib1) 1987; C-36 Lindsey (10.1016/j.adhoc.2006.04.004_bib14) 2002; 13 Chlamtac (10.1016/j.adhoc.2006.04.004_bib2) 1991; 39 10.1016/j.adhoc.2006.04.004_bib7 Skeina (10.1016/j.adhoc.2006.04.004_bib8) 1997 10.1016/j.adhoc.2006.04.004_bib6 Cormen (10.1016/j.adhoc.2006.04.004_bib18) 2001 10.1016/j.adhoc.2006.04.004_bib5 10.1016/j.adhoc.2006.04.004_bib4 10.1016/j.adhoc.2006.04.004_bib3 10.1016/j.adhoc.2006.04.004_bib15 Zelikovsky (10.1016/j.adhoc.2006.04.004_bib12) 1993; 9 10.1016/j.adhoc.2006.04.004_bib13 10.1016/j.adhoc.2006.04.004_bib11  | 
    
| References_xml | – reference: Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari Balakrishnan, Energy-efficient communication protocol for wireless micro sensor networks, in: Proceedings of the Hawaii International Conference on System Science, January 2000. – reference: Rex Min, Anantha Chandrakasan, Energy-efficient communication for ad-hoc wireless sensor networks, in: Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001, vol. 1, 4–7 November 2001. – reference: Jie Chen, David Seah, Wen Xu, Channel allocation for cellular networks using heuristic methods. Available from: – volume: 3 start-page: 393 year: 2002 end-page: 422 ident: bib19 article-title: Wireless sensor networks: a survey publication-title: Computer Networks – reference: Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker, Impact of data aggregation in wireless sensor networks, in: International Workshop on Distributed Event-Based Systems (DEBS’02) Vienna, Austria, July 2002. – volume: 9 start-page: 463 year: 1993 end-page: 470 ident: bib12 article-title: An 11/6-approximation algorithm for the network Steiner problem publication-title: Algorithmica – volume: 6 start-page: 573 year: 1980 end-page: 577 ident: bib10 article-title: An approximate solutions for the Steiner problem in graphs publication-title: Mathematica Japonica – reference: Sarma Upadhyayula, Valliappan Annamalai, Sandeep Gupta, A low-latency and energy-efficient algorithm for convergecast in wireless sensor networks, in: IEEE Global Communications Conference, 2003. – volume: C-36 year: 1987 ident: bib1 article-title: Tree-based broadcasting in multi-hop radio networks publication-title: IEEE Transactions on Computers – volume: 13 year: 2002 ident: bib14 article-title: Data gathering algorithms in sensor networks using energy metrics publication-title: IEEE Transactions on Parallel and Distributed Systems – reference: Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, John Heidemann, Impact of network density on data aggregation in wireless sensor networks, in: Proceedings of International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002. – volume: 1 start-page: 47 year: 1997 end-page: 65 ident: bib9 article-title: New Approximation Algorithms for the Steiner Tree Problems publication-title: Journal of Combinatorial Optimization – year: 1997 ident: bib8 article-title: The Algorithm Design Manual – volume: 39 year: 1991 ident: bib2 article-title: The wave expansion approach to broadcasting in multi-hop radio networks publication-title: IEEE Transactions on Communications – reference: J.L. Gao, Analysis of energy consumption for ad hoc wireless networks using bit-meter-per-joule metric, IPN Progress Report 42-150, August, 2002. – reference: Valliappan Annamalai, Sandeep K.S. Gupta, On tree-base convergecasting for wireless sensor networks, in: Proceedings of IEEE Wireless Communications and Networking Conference, 2003, Louisiana, USA. – reference: Hans J. Promel, Angelika Steger, RNC-approximation algorithms for the Steiner tree problems, in: Proceedings of 14th Annual Symposium on Theoretical Aspects of Computer Science, 1997, pp. 559–570. – year: 2001 ident: bib18 article-title: Introduction to Algorithms – reference: Alexander Zelikovsky, Better approximation bounds for the network and Euclidean Steiner tree problems, Technical Report CS-96-06, University of Virginia. – reference: . – ident: 10.1016/j.adhoc.2006.04.004_bib13 – volume: 6 start-page: 573 year: 1980 ident: 10.1016/j.adhoc.2006.04.004_bib10 article-title: An approximate solutions for the Steiner problem in graphs publication-title: Mathematica Japonica – ident: 10.1016/j.adhoc.2006.04.004_bib15 doi: 10.1109/WCNC.2003.1200684 – ident: 10.1016/j.adhoc.2006.04.004_bib4 doi: 10.1109/ACSSC.2001.986894 – ident: 10.1016/j.adhoc.2006.04.004_bib3 – ident: 10.1016/j.adhoc.2006.04.004_bib11 doi: 10.1007/BFb0023489 – volume: 3 start-page: 393 year: 2002 ident: 10.1016/j.adhoc.2006.04.004_bib19 article-title: Wireless sensor networks: a survey publication-title: Computer Networks doi: 10.1016/S1389-1286(01)00302-4 – ident: 10.1016/j.adhoc.2006.04.004_bib6 – year: 1997 ident: 10.1016/j.adhoc.2006.04.004_bib8 – volume: 13 issue: 9 year: 2002 ident: 10.1016/j.adhoc.2006.04.004_bib14 article-title: Data gathering algorithms in sensor networks using energy metrics publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2002.1036066 – ident: 10.1016/j.adhoc.2006.04.004_bib7 – ident: 10.1016/j.adhoc.2006.04.004_bib17 – ident: 10.1016/j.adhoc.2006.04.004_bib16 – volume: 9 start-page: 463 year: 1993 ident: 10.1016/j.adhoc.2006.04.004_bib12 article-title: An 11/6-approximation algorithm for the network Steiner problem publication-title: Algorithmica doi: 10.1007/BF01187035 – year: 2001 ident: 10.1016/j.adhoc.2006.04.004_bib18 – ident: 10.1016/j.adhoc.2006.04.004_bib5 doi: 10.1109/GLOCOM.2003.1258890 – volume: C-36 issue: 10 year: 1987 ident: 10.1016/j.adhoc.2006.04.004_bib1 article-title: Tree-based broadcasting in multi-hop radio networks publication-title: IEEE Transactions on Computers doi: 10.1109/TC.1987.1676861 – volume: 39 issue: 3 year: 1991 ident: 10.1016/j.adhoc.2006.04.004_bib2 article-title: The wave expansion approach to broadcasting in multi-hop radio networks publication-title: IEEE Transactions on Communications doi: 10.1109/26.79285 – volume: 1 start-page: 47 year: 1997 ident: 10.1016/j.adhoc.2006.04.004_bib9 article-title: New Approximation Algorithms for the Steiner Tree Problems publication-title: Journal of Combinatorial Optimization doi: 10.1023/A:1009758919736  | 
    
| SSID | ssj0029201 | 
    
| Score | 2.0889485 | 
    
| Snippet | Many wireless sensor networks (WSNs) employ battery-powered sensor nodes. Communication in such networks is very taxing on its scarce energy resources.... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 626 | 
    
| SubjectTerms | Convergecast Data aggregation Energy-efficiency Spanning trees Wireless sensor networks  | 
    
| Title | Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (DAC) in wireless sensor networks | 
    
| URI | https://dx.doi.org/10.1016/j.adhoc.2006.04.004 https://www.proquest.com/docview/32670652  | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1570-8713 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029201 issn: 1570-8705 databaseCode: ACRLP dateStart: 20030701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1570-8713 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029201 issn: 1570-8705 databaseCode: .~1 dateStart: 20030701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1570-8713 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029201 issn: 1570-8705 databaseCode: AIKHN dateStart: 20030701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1570-8713 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029201 issn: 1570-8705 databaseCode: AKRWK dateStart: 20030701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QUOqLxEoSxz4AASYW3HeR1XC9XyqhClUm-W48fuopCsNqkQF34BP5qxk1SARA9cIzuJPOOZbzzjbwh56lhmERYUkUhVHglXiqhIdRZx40xaKE-h5s8hP5ymy3Px9iK52COL8S6ML6scbH9v04O1Hp7MhtWcbTeb2RlLMora5hnygqfZJwfof_J8Qg7mb94tT6_iroLTnjY1o5GfMJIPhTIvZdaNHpISnkhb_MtB_WWqg_85OSS3BuAI8_7fbpM9W98hN3-jE7xLfp5t-w5E4FPN4B2UAVWtmt2mW39tAfEpVM03qJQHyt9B1QZsuPsHNjBJoAMCXzIKaoVh-CoIDUesQ5UAhAL13cpq1Xbw7NV88Rw2NXiu4wrNJbQYEOMH6r6uvL1Hzk9ef14so6HbQqTjWHRojJ1BY1e6XBSGMmVVpqkpkzLOFacCYSIr8pwlBrd95uXInfLsciw2XCc5j--TSd3U9gEBhSCOJ1onGsGDizFqclyLsigdTSzL1BHh4xJLPVCR-44YlRxrzr7IIBffJDOVVEiUyxF5cTVp2zNxXD88HWUn_1Aoib7i-olPRklL3Go-f6Jq21y2EpGuTwrzh__76kfkxng0TNkxmXS7S_sYMU1XTsn-yx9sipq7-PT-43TQ4F97pPkw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUAPiKdoeXQOHEAibOLYeRyrhWqBtpe2Um-W48fuojRZNVtVXPgF_dGdcZIKkOiBa2Qnkcee-cb-_A1j73ySO4QFZSQyXUTCVyIqM5NH3HqblZok1Ggf8vAom52Kb2fybINNx7swRKscfH_v04O3Hp5MhtGcrJbLyXEi8xhnGynkhUhzj90XkueUgX36dcvzoGpMvWhqHkfUfJQeCiQvbRetGY4kSEZb_Cs8_eWoQ_TZf8weDbAR9vo_e8I2XPOUbf0mJviMXR-v-vpDQAfNQOHJgq7nLab_i_MOEJ1C3V5BrQkm_wTdWHDh5h-4oCOB4QeIMAp6jkn4PJgMWywCRwACPf1i7ozu1vD-8970AywbIKXjGp0ldJgO4weanlXePWen-19OprNoqLUQmTQVa3TF3qKrq3whShsn2uncxLaSVVpoHgsEiUlZFIm0uOhzsiL3mrTlktRyIwuevmCbTdu4lww0QjgujZEGoYNPMWfy3IiqrHwsXZLrbcbHIVZmECKnehi1GhlnP1SwC5XIzFQsFNplm3287bTqdTjubp6NtlN_TCeFkeLujrujpRUuNDo90Y1rLzuFOJeOhPnO_756lz2YnRweqIOvR99fsYfjJnGcvGab64tL9wbRzbp6G2bvDcxd-GM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spanning+tree+based+algorithms+for+low+latency+and+energy+efficient+data+aggregation+enhanced+convergecast+%28DAC%29+in+wireless+sensor+networks&rft.jtitle=Ad+hoc+networks&rft.au=Upadhyayula%2C+S.&rft.au=Gupta%2C+S.K.S.&rft.date=2007-07-01&rft.issn=1570-8705&rft.volume=5&rft.issue=5&rft.spage=626&rft.epage=648&rft_id=info:doi/10.1016%2Fj.adhoc.2006.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_adhoc_2006_04_004 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon |