Automatic computation of regions of interest by robust principal component analysis. Application to automatic dementia diagnosis

Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic recognizing of neurodegenerative patterns that characterize the disease. In this regard, determining regions related to the disease results cr...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 123; pp. 229 - 237
Main Authors Lozano, Francisco, Ortiz, Andrés, Munilla, Jorge, Peinado, Alberto, Initiative, for the Alzheimer’s Disease Neuroimaging
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2017.02.025

Cover

Abstract Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic recognizing of neurodegenerative patterns that characterize the disease. In this regard, determining regions related to the disease results crucial to select the most discriminative voxels and to optimize the number of features to be used in the learning algorithm. In this paper, we propose a method based on the robust principal component analysis (Robust PCA) algorithm that allows to automatically compute Regions Of Interest (ROIs) over a training set of images and rank them according to their diagnostic relevance. Robust PCA is used to compute the sparse error matrix, which is, in turn, employed to determine the brain areas related to the Alzheimer’s disease. These areas are further used as a mask to select and weight the most discriminative voxels to construct a classification model. We then describe a method to fuse the features computed from different image modalities based on the weights assigned by the individual Support Vector Classifiers during the training process. The method presented here has been applied to multimodal image containing both functional (18F-FDG PET) and structural (Magnetic Resonance) data. Experiments, conducted using 68 control subjects and 70 CE patients, show the effectiveness of the proposed approach for the exploratory analysis. At the same time, classification experiments using the features computed by the proposed method and assessed by cross-validation showed accuracy values up to 92% and AUC (Area Under the Curve) of 0.95. Thus, the proposal seems as an effective technique to reveal ROIs in differential diagnosis applications and to combine multimodal image data, outperforming other classification methods, including the voxel-as-features (VAF) baseline.
AbstractList Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic recognizing of neurodegenerative patterns that characterize the disease. In this regard, determining regions related to the disease results crucial to select the most discriminative voxels and to optimize the number of features to be used in the learning algorithm. In this paper, we propose a method based on the robust principal component analysis (Robust PCA) algorithm that allows to automatically compute Regions Of Interest (ROIs) over a training set of images and rank them according to their diagnostic relevance. Robust PCA is used to compute the sparse error matrix, which is, in turn, employed to determine the brain areas related to the Alzheimer’s disease. These areas are further used as a mask to select and weight the most discriminative voxels to construct a classification model. We then describe a method to fuse the features computed from different image modalities based on the weights assigned by the individual Support Vector Classifiers during the training process. The method presented here has been applied to multimodal image containing both functional (18F-FDG PET) and structural (Magnetic Resonance) data. Experiments, conducted using 68 control subjects and 70 CE patients, show the effectiveness of the proposed approach for the exploratory analysis. At the same time, classification experiments using the features computed by the proposed method and assessed by cross-validation showed accuracy values up to 92% and AUC (Area Under the Curve) of 0.95. Thus, the proposal seems as an effective technique to reveal ROIs in differential diagnosis applications and to combine multimodal image data, outperforming other classification methods, including the voxel-as-features (VAF) baseline.
Author Ortiz, Andrés
Lozano, Francisco
Munilla, Jorge
Initiative, for the Alzheimer’s Disease Neuroimaging
Peinado, Alberto
Author_xml – sequence: 1
  givenname: Francisco
  surname: Lozano
  fullname: Lozano, Francisco
  email: lozano@uma.es
– sequence: 2
  givenname: Andrés
  surname: Ortiz
  fullname: Ortiz, Andrés
  email: aortiz@ic.uma.es
– sequence: 3
  givenname: Jorge
  surname: Munilla
  fullname: Munilla, Jorge
  email: munilla@ic.uma.es
– sequence: 4
  givenname: Alberto
  surname: Peinado
  fullname: Peinado, Alberto
  email: apeinado@ic.uma.es
– sequence: 5
  givenname: for the Alzheimer’s Disease Neuroimaging
  surname: Initiative
  fullname: Initiative, for the Alzheimer’s Disease Neuroimaging
BookMark eNqFUEFrFTEYDNKCr7X_oIeA512_ZJPNxoPwKFYLBS96DtlsUvLcl6xJVng3f7p5XfHQg8IHmcPMZGau0EWIwSJ0S6AlQPp3h_Z7iPmUWwpEtEDr8VdoRwZBG8FAXqAdSA6NAE5eo6ucDwBAKRl26Nd-LfGoizfYxOOylgpjwNHhZJ8qymfoQ7HJ5oLHE05xXCtakg_GL3p-ltU4oWAd9HzKPrd4vyyzN5tViVj__WOyx8r0Gk9eP9XMPr9Bl07P2d78ea_Rt_uPX-8-N49fPj3c7R8b03WsNMTZjg5uIMYMbGQMzEhcJxxo3hNCjQQ9kFGT3jkzSSGF4Gzk3FqwUvTUdNfo7ea7pPhjrWXUIa6pJs6KyG6QkveMVRbbWCbFnJN1qhY96nRSBNR5a3VQ29bqvLUCWo9X2fsXMuO3JUvSfv6f-MMmtrX-T2-TysbbYOzkkzVFTdH_2-A3KYijDQ
CitedBy_id crossref_primary_10_1007_s00128_020_03084_5
crossref_primary_10_3389_fninf_2019_00048
crossref_primary_10_1142_S0129065718500405
crossref_primary_10_1016_j_knosys_2018_04_020
crossref_primary_10_1016_j_knosys_2017_05_019
crossref_primary_10_2478_amns_2023_1_00101
crossref_primary_10_1007_s10916_021_01714_x
crossref_primary_10_1016_j_eswa_2020_113592
Cites_doi 10.1016/j.neuroimage.2010.08.044
10.1016/j.neuroimage.2010.06.013
10.1371/journal.pone.0093851
10.1016/j.neuroimage.2014.10.002
10.1016/j.patcog.2013.06.031
10.1109/34.75512
10.1016/j.patrec.2013.04.014
10.1162/jocn.1991.3.1.71
10.1007/s11063-011-9200-2
10.1016/j.neuroimage.2012.01.055
10.1145/1970392.1970395
10.1016/j.patrec.2010.03.004
10.1016/j.neucom.2011.02.024
10.1016/j.knosys.2015.11.010
10.2174/1567205013666160314145158
10.1016/j.knosys.2015.02.025
10.1016/j.cviu.2013.11.009
10.1109/TPAMI.2008.79
10.1016/j.neuroimage.2011.09.069
10.1016/j.cmpb.2013.03.015
10.1016/j.knosys.2012.08.024
10.1016/j.neuroimage.2013.12.015
10.1016/j.neuroimage.2014.06.077
10.1016/j.neuroimage.2011.01.008
10.1016/S0950-7051(01)00120-4
10.1093/brain/awm319
10.1002/ana.410420114
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. May 1, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. May 1, 2017
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2017.02.025
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 237
ExternalDocumentID 10_1016_j_knosys_2017_02_025
S0950705117301090
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-1fe328f81cc84b440cb1f37f0a56112c90a81ba16ffcd9797754b55ee0e9762c3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 04:00:51 EDT 2025
Sat Oct 25 05:29:58 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robust PCA
Exploratory analysis
Alzheimer’s disease
Information fusion
Multimodal image data
Regions of interest
Computer-aided diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-1fe328f81cc84b440cb1f37f0a56112c90a81ba16ffcd9797754b55ee0e9762c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
PQID 1938995644
PQPubID 2035257
PageCount 9
ParticipantIDs proquest_journals_1938995644
crossref_primary_10_1016_j_knosys_2017_02_025
crossref_citationtrail_10_1016_j_knosys_2017_02_025
elsevier_sciencedirect_doi_10_1016_j_knosys_2017_02_025
PublicationCentury 2000
PublicationDate 2017-05-01
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Wright (bib0034) 2009
Anderson, Douglas, Kerr, Haynes, Yuille, Xie, Wu, Brown, Cohen (bib0015) 2014; 102, Part 1
Zhang, Shen (bib0017) 2012; 59
Candès, Li, Ma, Wright (bib0023) 2011; 58
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot, Alzheimer’s Disease Neuroimaging Initiative (bib0004) 2010; 56
Ortiz, Górriz, Ramírez, Martínez-Murcia (bib0020) 2013; 34
Theodoridis, Koutroumbas (bib0029) 2009
Sammut, Webb (bib0040) 2010
Ashburner, Group (bib0025) 2011
Moradi, Pepe, Gaser, Huttunen, Tohka (bib0009) 2015; 104
Hastie, Tibshirani, Friedman (bib0036) 2001
Structural Brain Mapping Group. Department of Psychiatry, Available
Alvarez, Gorriz, Ramirez, Salas-Gonzalez, Lopez, Segovia, Chaves, Gomez-Rio, García-Puntonet (bib0019) 2011; 184
Golobardes, Llor, Salam, Mart (bib0001) 2002; 15
Y. Chen, J. Yang, Intelligence Science and Big Data Engineering: 4th International Conference, IScIDE 2013, Beijing, China, July 31–August 2, 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 223–229Revised Selected Papers.
Martínez-Murcia, Górriz, Ramírez, Ortiz (bib0011) 2016; 13
Chyzhyk, Graña, Savio, Maiora (bib0006) 2012; 75
Plant, Sorg, Riedl, Wohlschläger (bib0013) 2011
Zhou, Zhou, Li (bib0039) 2016; 95
Álvarez, Górriz, Ramírez, Salas-González, López, Segovia, Padilla, García (bib0002) 2010; 31
Martínez-Murcia, Górriz, Ramírez, Ortiz (bib0012) 2016
Accessed 2014 March 10, 2014.
Turk, Pentland (bib0028) 1991; 3
Zhang, Wang, Zhou, Yuan, Shen, for the Alzheimer’s Disease Neuroimaging Initiative (bib0018) 2011; 55
Wang, Xie (bib0031) 2010
Suk, Lee, Shen (bib0016) 2014; 101
Westman, Simmons, Zhang, Muehlboeck, Tunnard, Liu, Collins, Evans, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Lovestone, Spenger, Wahlund, AddNeuroMed consortium (bib0008) 2011; 54
Minoshima, Giordani, Berent, Frey, Foster, Kuhl (bib0035) 1997; 42
Ortiz, Górriz, Ramírez, Martínez-Murcia (bib0027) 2014; 9
Dai (bib0041) 2013; 37
Martínez-Murcia, Górriz, Ramírez, Puntonet, Illán (bib0003) 2013; 111
Wright, Yang, Ganesh, Sastry, Ma (bib0022) 2009; 31
Hidalgo-Munñoz, Górriz, Ramírez, Padilla (bib0038) 2014; 6
Ortiz, Munilla, Górriz, Ramírez (bib0010) 2016
Termenon, Graña (bib0005) 2012; 35
Accessed 2014 Mar 10, 2014.
Luan, Fang, Liu, Yang, Qian (bib0033) 2014; 47
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib0014) 2008; 131
Liu, Zhang, Shen (bib0007) 2012; 60
Raudys, Jain (bib0021) 1991; 13
Wu (bib0037) 2015; 82
Navidi (bib0042) 2010
Bouwmans, Zahzah (bib0030) 2014; 122
Alzheimer’s Disease Neuroimaging Initiative, Available
Candès (10.1016/j.knosys.2017.02.025_bib0023) 2011; 58
Theodoridis (10.1016/j.knosys.2017.02.025_bib0029) 2009
Sammut (10.1016/j.knosys.2017.02.025_bib0040) 2010
Moradi (10.1016/j.knosys.2017.02.025_bib0009) 2015; 104
Zhang (10.1016/j.knosys.2017.02.025_bib0018) 2011; 55
Turk (10.1016/j.knosys.2017.02.025_bib0028) 1991; 3
Martínez-Murcia (10.1016/j.knosys.2017.02.025_bib0003) 2013; 111
Ortiz (10.1016/j.knosys.2017.02.025_bib0020) 2013; 34
Wright (10.1016/j.knosys.2017.02.025_bib0022) 2009; 31
Wang (10.1016/j.knosys.2017.02.025_bib0031) 2010
Raudys (10.1016/j.knosys.2017.02.025_bib0021) 1991; 13
Dai (10.1016/j.knosys.2017.02.025_bib0041) 2013; 37
Termenon (10.1016/j.knosys.2017.02.025_bib0005) 2012; 35
Ortiz (10.1016/j.knosys.2017.02.025_bib0027) 2014; 9
Zhou (10.1016/j.knosys.2017.02.025_bib0039) 2016; 95
Cuingnet (10.1016/j.knosys.2017.02.025_bib0004) 2010; 56
Golobardes (10.1016/j.knosys.2017.02.025_bib0001) 2002; 15
Martínez-Murcia (10.1016/j.knosys.2017.02.025_bib0012) 2016
Klöppel (10.1016/j.knosys.2017.02.025_bib0014) 2008; 131
Minoshima (10.1016/j.knosys.2017.02.025_bib0035) 1997; 42
Luan (10.1016/j.knosys.2017.02.025_bib0033) 2014; 47
Zhang (10.1016/j.knosys.2017.02.025_bib0017) 2012; 59
Anderson (10.1016/j.knosys.2017.02.025_bib0015) 2014; 102, Part 1
Suk (10.1016/j.knosys.2017.02.025_bib0016) 2014; 101
10.1016/j.knosys.2017.02.025_bib0032
Wright (10.1016/j.knosys.2017.02.025_bib0034) 2009
Wu (10.1016/j.knosys.2017.02.025_bib0037) 2015; 82
Ortiz (10.1016/j.knosys.2017.02.025_bib0010) 2016
Ashburner (10.1016/j.knosys.2017.02.025_bib0025) 2011
Westman (10.1016/j.knosys.2017.02.025_bib0008) 2011; 54
Martínez-Murcia (10.1016/j.knosys.2017.02.025_bib0011) 2016; 13
Plant (10.1016/j.knosys.2017.02.025_bib0013) 2011
Hidalgo-Munñoz (10.1016/j.knosys.2017.02.025_bib0038) 2014; 6
Alvarez (10.1016/j.knosys.2017.02.025_sbref0019) 2011; 184
Álvarez (10.1016/j.knosys.2017.02.025_bib0002) 2010; 31
Navidi (10.1016/j.knosys.2017.02.025_bib0042) 2010
Chyzhyk (10.1016/j.knosys.2017.02.025_bib0006) 2012; 75
Hastie (10.1016/j.knosys.2017.02.025_bib0036) 2001
10.1016/j.knosys.2017.02.025_bib0024
Liu (10.1016/j.knosys.2017.02.025_bib0007) 2012; 60
10.1016/j.knosys.2017.02.025_bib0026
Bouwmans (10.1016/j.knosys.2017.02.025_bib0030) 2014; 122
References_xml – start-page: Inpress
  year: 2016
  ident: bib0012
  article-title: A structural parametrization of the brain using hidden Markov models-based paths in the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– year: 2010
  ident: bib0040
  article-title: Statistical Learning Theory
– volume: 15
  start-page: 45
  year: 2002
  end-page: 52
  ident: bib0001
  article-title: Computer aided diagnosis with case-based reasoning and genetic algorithms
  publication-title: Knowl. Based Syst.
– volume: 111
  start-page: 255
  year: 2013
  end-page: 268
  ident: bib0003
  article-title: Functional activity maps based on significance measures and independent component analysis
  publication-title: Comput. Methods Prog. Biomed.
– volume: 56
  start-page: 766
  year: 2010
  end-page: 781
  ident: bib0004
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database
  publication-title: Neuroimage
– volume: 31
  start-page: 1342
  year: 2010
  end-page: 1347
  ident: bib0002
  article-title: Projecting independent components of spect images for computer aided diagnosis of Alzheimer’s disease
  publication-title: Pattern Recognit. Lett.
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib0009
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects
  publication-title: NeuroImage
– volume: 35
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib0005
  article-title: A two stage sequential ensemble applied to the classification of Alzheimer’s disease based on mri features
  publication-title: Neural Process. Lett.
– volume: 47
  start-page: 495
  year: 2014
  end-page: 508
  ident: bib0033
  article-title: Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion
  publication-title: Pattern Recognit.
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib0016
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib0018
  article-title: Multimodal classification of alzheimer’s disease and mild cognitive impairment
  publication-title: Neuroimage
– start-page: 99
  year: 2010
  end-page: 102
  ident: bib0031
  article-title: An efficient face recognition algorithm based on robust principal component analysis
  publication-title: Proceedings of the Second International Conference on Internet Multimedia Computing and Service
– year: 2009
  ident: bib0029
  article-title: Pattern Recognition
– volume: 184
  year: 2011
  ident: bib0019
  article-title: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis
  publication-title: Inf. Sci.
– reference: Y. Chen, J. Yang, Intelligence Science and Big Data Engineering: 4th International Conference, IScIDE 2013, Beijing, China, July 31–August 2, 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 223–229Revised Selected Papers.
– volume: 37
  start-page: 394
  year: 2013
  end-page: 414
  ident: bib0041
  article-title: A competitive ensemble pruning approach based on cross-validation technique
  publication-title: Knowl. Based Syst.
– start-page: Inpress
  year: 2016
  ident: bib0010
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– reference: . Accessed 2014 March 10, 2014.
– volume: 102, Part 1
  start-page: 207
  year: 2014
  end-page: 219
  ident: bib0015
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: NeuroImage
– year: 2010
  ident: bib0042
  article-title: Statistics for Engineers and Scientists
– volume: 13
  start-page: 252
  year: 1991
  end-page: 264
  ident: bib0021
  article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 58
  start-page: 11:1
  year: 2011
  end-page: 11:37
  ident: bib0023
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– reference: Structural Brain Mapping Group. Department of Psychiatry, Available:
– volume: 122
  start-page: 22
  year: 2014
  end-page: 34
  ident: bib0030
  article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance
  publication-title: Comput. Vision Image Understanding
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bib0014
  article-title: Automatic classification of mr scans in Alzheimer’s disease
  publication-title: Brain
– volume: 13
  start-page: 575
  year: 2016
  end-page: 588
  ident: bib0011
  article-title: A spherical brain mapping of mr images for the detection of the Alzheimer’s disease
  publication-title: Curr. Alzheimer Res.
– volume: 54
  start-page: 1178
  year: 2011
  end-page: 1187
  ident: bib0008
  article-title: Multivariate analysis of mri data for alzheimer’s disease, mild cognitive impairment and healthy controls
  publication-title: Neuroimage
– reference: . Accessed 2014 Mar 10, 2014.
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: bib0017
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease
  publication-title: NeuroImage
– volume: 6
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib0038
  article-title: Regions of interest computed by svm wrapped method for alzheimers disease examination from segmented mri
  publication-title: Front. Aging Neurosci.
– volume: 60
  start-page: 1106
  year: 2012
  end-page: 1116
  ident: bib0007
  article-title: Ensemble sparse classification of alzheimer’s disease
  publication-title: NeuroImage
– volume: 34
  start-page: 1725
  year: 2013
  end-page: 1733
  ident: bib0020
  article-title: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimers disease
  publication-title: Pattern Recognit. Lett.
– volume: 31
  year: 2009
  ident: bib0022
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE TPAMI
– volume: 95
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0039
  article-title: Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features
  publication-title: Knowl. Based Syst.
– year: 2011
  ident: bib0025
  article-title: SPM8
  publication-title: Institute of Neurology, 12, Queen Square, Lonon WC1N 3BG, UK
– volume: 75
  start-page: 72
  year: 2012
  end-page: 77
  ident: bib0006
  article-title: Hybrid dendritic computing with kernel-lica applied to Alzheimer’s disease detection in mri
  publication-title: Neurocomputing
– start-page: 33
  year: 2011
  end-page: 41
  ident: bib0013
  article-title: Homogeneity-based feature extraction for classification of early-stage Alzheimer’s disease from functional magnetic resonance images
  publication-title: Proceedings of the 2011 Workshop on Data Mining for Medicine and Healthcare
– year: 2001
  ident: bib0036
  article-title: The Elements of Statistical Learning
  publication-title: New York, NY, USA
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  ident: bib0028
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
– year: 2009
  ident: bib0034
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
  publication-title: Advances in Neural Information Processing Systems 22
– reference: Alzheimer’s Disease Neuroimaging Initiative, Available:
– volume: 9
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0027
  article-title: Automatic ROI selection in structural brain MRI using SOM 3D projection
  publication-title: PLOS One
– volume: 42
  start-page: 85
  year: 1997
  end-page: 94
  ident: bib0035
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease
  publication-title: Ann. Neurol.
– volume: 82
  start-page: 95
  year: 2015
  end-page: 101
  ident: bib0037
  article-title: Active reducing classification error for {CAD} systems
  publication-title: Knowl. Based Syst.
– volume: 54
  start-page: 1178
  year: 2011
  ident: 10.1016/j.knosys.2017.02.025_bib0008
  article-title: Multivariate analysis of mri data for alzheimer’s disease, mild cognitive impairment and healthy controls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.044
– year: 2009
  ident: 10.1016/j.knosys.2017.02.025_bib0034
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
– volume: 56
  start-page: 766
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2017.02.025_bib0004
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– start-page: 33
  year: 2011
  ident: 10.1016/j.knosys.2017.02.025_bib0013
  article-title: Homogeneity-based feature extraction for classification of early-stage Alzheimer’s disease from functional magnetic resonance images
– ident: 10.1016/j.knosys.2017.02.025_bib0032
– volume: 9
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2017.02.025_bib0027
  article-title: Automatic ROI selection in structural brain MRI using SOM 3D projection
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0093851
– year: 2011
  ident: 10.1016/j.knosys.2017.02.025_bib0025
  article-title: SPM8
– ident: 10.1016/j.knosys.2017.02.025_bib0026
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.knosys.2017.02.025_bib0009
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– ident: 10.1016/j.knosys.2017.02.025_bib0024
– year: 2009
  ident: 10.1016/j.knosys.2017.02.025_bib0029
– volume: 47
  start-page: 495
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2017.02.025_bib0033
  article-title: Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.06.031
– volume: 13
  start-page: 252
  issue: 3
  year: 1991
  ident: 10.1016/j.knosys.2017.02.025_bib0021
  article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.75512
– volume: 34
  start-page: 1725
  issue: 14
  year: 2013
  ident: 10.1016/j.knosys.2017.02.025_bib0020
  article-title: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimers disease
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.04.014
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  ident: 10.1016/j.knosys.2017.02.025_bib0028
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– volume: 6
  start-page: 1
  issue: 20
  year: 2014
  ident: 10.1016/j.knosys.2017.02.025_bib0038
  article-title: Regions of interest computed by svm wrapped method for alzheimers disease examination from segmented mri
  publication-title: Front. Aging Neurosci.
– volume: 35
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2017.02.025_bib0005
  article-title: A two stage sequential ensemble applied to the classification of Alzheimer’s disease based on mri features
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-011-9200-2
– volume: 60
  start-page: 1106
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2017.02.025_bib0007
  article-title: Ensemble sparse classification of alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.055
– volume: 58
  start-page: 11:1
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2017.02.025_bib0023
  article-title: Robust principal component analysis?
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– volume: 31
  start-page: 1342
  issue: 11
  year: 2010
  ident: 10.1016/j.knosys.2017.02.025_bib0002
  article-title: Projecting independent components of spect images for computer aided diagnosis of Alzheimer’s disease
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.03.004
– volume: 75
  start-page: 72
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2017.02.025_bib0006
  article-title: Hybrid dendritic computing with kernel-lica applied to Alzheimer’s disease detection in mri
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.02.024
– volume: 95
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2017.02.025_bib0039
  article-title: Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.11.010
– start-page: Inpress
  year: 2016
  ident: 10.1016/j.knosys.2017.02.025_bib0010
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– volume: 13
  start-page: 575
  year: 2016
  ident: 10.1016/j.knosys.2017.02.025_bib0011
  article-title: A spherical brain mapping of mr images for the detection of the Alzheimer’s disease
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/1567205013666160314145158
– volume: 82
  start-page: 95
  year: 2015
  ident: 10.1016/j.knosys.2017.02.025_bib0037
  article-title: Active reducing classification error for {CAD} systems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.02.025
– volume: 122
  start-page: 22
  year: 2014
  ident: 10.1016/j.knosys.2017.02.025_bib0030
  article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance
  publication-title: Comput. Vision Image Understanding
  doi: 10.1016/j.cviu.2013.11.009
– volume: 31
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2017.02.025_bib0022
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE TPAMI
  doi: 10.1109/TPAMI.2008.79
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2017.02.025_bib0017
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– start-page: Inpress
  year: 2016
  ident: 10.1016/j.knosys.2017.02.025_bib0012
  article-title: A structural parametrization of the brain using hidden Markov models-based paths in the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– year: 2010
  ident: 10.1016/j.knosys.2017.02.025_bib0042
– volume: 111
  start-page: 255
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2017.02.025_bib0003
  article-title: Functional activity maps based on significance measures and independent component analysis
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2013.03.015
– volume: 184
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2017.02.025_sbref0019
  article-title: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis
  publication-title: Inf. Sci.
– volume: 37
  start-page: 394
  year: 2013
  ident: 10.1016/j.knosys.2017.02.025_bib0041
  article-title: A competitive ensemble pruning approach based on cross-validation technique
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.08.024
– volume: 102, Part 1
  start-page: 207
  year: 2014
  ident: 10.1016/j.knosys.2017.02.025_bib0015
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.015
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.knosys.2017.02.025_bib0016
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 55
  start-page: 856
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2017.02.025_bib0018
  article-title: Multimodal classification of alzheimer’s disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– year: 2010
  ident: 10.1016/j.knosys.2017.02.025_bib0040
– volume: 15
  start-page: 45
  issue: 12
  year: 2002
  ident: 10.1016/j.knosys.2017.02.025_bib0001
  article-title: Computer aided diagnosis with case-based reasoning and genetic algorithms
  publication-title: Knowl. Based Syst.
  doi: 10.1016/S0950-7051(01)00120-4
– volume: 131
  start-page: 681
  year: 2008
  ident: 10.1016/j.knosys.2017.02.025_bib0014
  article-title: Automatic classification of mr scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 42
  start-page: 85
  year: 1997
  ident: 10.1016/j.knosys.2017.02.025_bib0035
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410420114
– year: 2001
  ident: 10.1016/j.knosys.2017.02.025_bib0036
  article-title: The Elements of Statistical Learning
– start-page: 99
  year: 2010
  ident: 10.1016/j.knosys.2017.02.025_bib0031
  article-title: An efficient face recognition algorithm based on robust principal component analysis
SSID ssj0002218
Score 2.2271547
Snippet Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic...
Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer's Disease (AD). The goal is the automatic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 229
SubjectTerms Algorithms
Alzheimer's disease
Brain
CAD
Computation
Computer aided design
Computer-aided diagnosis
Dementia
Diagnosis
Diagnostic systems
Exploratory analysis
Image classification
Information fusion
Machine learning
Magnetic resonance
Medical diagnosis
Multimodal image data
Neurodegeneration
Pattern recognition
Positron emission
Principal components analysis
Regions of interest
Robust PCA
Tomography
Training
Title Automatic computation of regions of interest by robust principal component analysis. Application to automatic dementia diagnosis
URI https://dx.doi.org/10.1016/j.knosys.2017.02.025
https://www.proquest.com/docview/1938995644
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL178Fj-m5OA1rk3SNT2O4ZiKu6jgLSRpC1NZh-sOXsQ_3ffS1KEIgtBD2iZNSF7yfnl9-T1CznkinLI8ZzxRlskiUQzUQsaSjKcYj9Eogwb920l__CCvH5PHDhm2Z2HQrTKs_c2a7lfr8KQXerM3n057dwAOQF4BMKCQRhnu26VMMYrBxfvKzYNzb-PDzAxzt8fnvI_X86xavCFpd5x65k4MmP27evqxUHvtM9ommwE20kHTsh3SKWa7ZKsNyUDDDN0jH4NlXXkWVur8S9_xtCopRmAACcMkUkRgSA5q3-hrZZeQmjc2d6gCi1UzUEXUBL6SCzpY_eWmdUXNVx25Ny5ODc0bj73pYp88jC7vh2MWgiwwJ4SsWVwWgqtSxc4paaWMnI1LkZaRAWQVc5dFBpCtiftl6fIszZAxzyZJUUQFIBnuxAFZm0GzDgnNkekT4AogpL4seY5bISWFEZHNMyvdERFt32oXGMgxEMaLbl3NnnQzIhpHREccruSIsK9S84aB44_8aTts-pskaVASf5TstqOsw0xeaAC4Ck__Snn87w-fkA28a_wku2Stfl0Wp4BlanvmhfWMrA-ubsaTT6j89ik
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcqOIzLgI1p5Ws-7Gqa-KNxjhWiKhv0MpC4WbaTSIWpqWh66AXxp_Oe4xQxISFNysGK7diyn_1-fnn-PUJ-ciW8drxgXGnHZKk0A7WQM5XzDOMxWm3RoH89HU5u5a87ddcj591dGHSrjHt_u6eH3Tq-GcTRHCxms8EfAAcgrwAYUEiTHM7t21LxDE9gZ0-vfh6cByMflmZYvLs_F5y8Hub1co2s3WkWqDsxYvb7-umfnTqon_Ee-RxxIx21XdsnvXL-hex2MRloXKJfyfNo1dSBhpX6kBlGntYVxRAMIGKYRI4IjMlB3Zo-1m4FqUVrdIcmsFo9B11EbSQsOaOj19_ctKmp3bRRBOvizNKiddmbLQ_I7fji5nzCYpQF5oWQDUurUnBd6dR7LZ2UiXdpJbIqsQCtUu7zxAK0temwqnyRZzlS5jmlyjIpAcpwL76RrTl06zuhBVJ9Al4BiDSUFS_wLKSlsCJxRe6k7xPRja3xkYIcI2H8NZ2v2b1pZ8TgjJiEw6P6hG1qLVoKjg_KZ920mTeiZEBLfFDzuJtlE5fy0gDC1Xj9V8rD__7wD_JpcnN9Za4up7-PyA7mtE6Tx2SreVyVJwBsGncaBPcFVxP3vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+computation+of+regions+of+interest+by+robust+principal+component+analysis.+Application+to+automatic+dementia+diagnosis&rft.jtitle=Knowledge-based+systems&rft.au=Lozano%2C+Francisco&rft.au=Ortiz%2C+Andr%C3%A9s&rft.au=Munilla%2C+Jorge&rft.au=Peinado%2C+Alberto&rft.date=2017-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=123&rft.spage=229&rft_id=info:doi/10.1016%2Fj.knosys.2017.02.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon