Automatic computation of regions of interest by robust principal component analysis. Application to automatic dementia diagnosis
Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic recognizing of neurodegenerative patterns that characterize the disease. In this regard, determining regions related to the disease results cr...
Saved in:
| Published in | Knowledge-based systems Vol. 123; pp. 229 - 237 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.05.2017
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 1872-7409 |
| DOI | 10.1016/j.knosys.2017.02.025 |
Cover
| Abstract | Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic recognizing of neurodegenerative patterns that characterize the disease. In this regard, determining regions related to the disease results crucial to select the most discriminative voxels and to optimize the number of features to be used in the learning algorithm. In this paper, we propose a method based on the robust principal component analysis (Robust PCA) algorithm that allows to automatically compute Regions Of Interest (ROIs) over a training set of images and rank them according to their diagnostic relevance. Robust PCA is used to compute the sparse error matrix, which is, in turn, employed to determine the brain areas related to the Alzheimer’s disease. These areas are further used as a mask to select and weight the most discriminative voxels to construct a classification model. We then describe a method to fuse the features computed from different image modalities based on the weights assigned by the individual Support Vector Classifiers during the training process. The method presented here has been applied to multimodal image containing both functional (18F-FDG PET) and structural (Magnetic Resonance) data. Experiments, conducted using 68 control subjects and 70 CE patients, show the effectiveness of the proposed approach for the exploratory analysis. At the same time, classification experiments using the features computed by the proposed method and assessed by cross-validation showed accuracy values up to 92% and AUC (Area Under the Curve) of 0.95. Thus, the proposal seems as an effective technique to reveal ROIs in differential diagnosis applications and to combine multimodal image data, outperforming other classification methods, including the voxel-as-features (VAF) baseline. |
|---|---|
| AbstractList | Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic recognizing of neurodegenerative patterns that characterize the disease. In this regard, determining regions related to the disease results crucial to select the most discriminative voxels and to optimize the number of features to be used in the learning algorithm. In this paper, we propose a method based on the robust principal component analysis (Robust PCA) algorithm that allows to automatically compute Regions Of Interest (ROIs) over a training set of images and rank them according to their diagnostic relevance. Robust PCA is used to compute the sparse error matrix, which is, in turn, employed to determine the brain areas related to the Alzheimer’s disease. These areas are further used as a mask to select and weight the most discriminative voxels to construct a classification model. We then describe a method to fuse the features computed from different image modalities based on the weights assigned by the individual Support Vector Classifiers during the training process. The method presented here has been applied to multimodal image containing both functional (18F-FDG PET) and structural (Magnetic Resonance) data. Experiments, conducted using 68 control subjects and 70 CE patients, show the effectiveness of the proposed approach for the exploratory analysis. At the same time, classification experiments using the features computed by the proposed method and assessed by cross-validation showed accuracy values up to 92% and AUC (Area Under the Curve) of 0.95. Thus, the proposal seems as an effective technique to reveal ROIs in differential diagnosis applications and to combine multimodal image data, outperforming other classification methods, including the voxel-as-features (VAF) baseline. |
| Author | Ortiz, Andrés Lozano, Francisco Munilla, Jorge Initiative, for the Alzheimer’s Disease Neuroimaging Peinado, Alberto |
| Author_xml | – sequence: 1 givenname: Francisco surname: Lozano fullname: Lozano, Francisco email: lozano@uma.es – sequence: 2 givenname: Andrés surname: Ortiz fullname: Ortiz, Andrés email: aortiz@ic.uma.es – sequence: 3 givenname: Jorge surname: Munilla fullname: Munilla, Jorge email: munilla@ic.uma.es – sequence: 4 givenname: Alberto surname: Peinado fullname: Peinado, Alberto email: apeinado@ic.uma.es – sequence: 5 givenname: for the Alzheimer’s Disease Neuroimaging surname: Initiative fullname: Initiative, for the Alzheimer’s Disease Neuroimaging |
| BookMark | eNqFUEFrFTEYDNKCr7X_oIeA512_ZJPNxoPwKFYLBS96DtlsUvLcl6xJVng3f7p5XfHQg8IHmcPMZGau0EWIwSJ0S6AlQPp3h_Z7iPmUWwpEtEDr8VdoRwZBG8FAXqAdSA6NAE5eo6ucDwBAKRl26Nd-LfGoizfYxOOylgpjwNHhZJ8qymfoQ7HJ5oLHE05xXCtakg_GL3p-ltU4oWAd9HzKPrd4vyyzN5tViVj__WOyx8r0Gk9eP9XMPr9Bl07P2d78ea_Rt_uPX-8-N49fPj3c7R8b03WsNMTZjg5uIMYMbGQMzEhcJxxo3hNCjQQ9kFGT3jkzSSGF4Gzk3FqwUvTUdNfo7ea7pPhjrWXUIa6pJs6KyG6QkveMVRbbWCbFnJN1qhY96nRSBNR5a3VQ29bqvLUCWo9X2fsXMuO3JUvSfv6f-MMmtrX-T2-TysbbYOzkkzVFTdH_2-A3KYijDQ |
| CitedBy_id | crossref_primary_10_1007_s00128_020_03084_5 crossref_primary_10_3389_fninf_2019_00048 crossref_primary_10_1142_S0129065718500405 crossref_primary_10_1016_j_knosys_2018_04_020 crossref_primary_10_1016_j_knosys_2017_05_019 crossref_primary_10_2478_amns_2023_1_00101 crossref_primary_10_1007_s10916_021_01714_x crossref_primary_10_1016_j_eswa_2020_113592 |
| Cites_doi | 10.1016/j.neuroimage.2010.08.044 10.1016/j.neuroimage.2010.06.013 10.1371/journal.pone.0093851 10.1016/j.neuroimage.2014.10.002 10.1016/j.patcog.2013.06.031 10.1109/34.75512 10.1016/j.patrec.2013.04.014 10.1162/jocn.1991.3.1.71 10.1007/s11063-011-9200-2 10.1016/j.neuroimage.2012.01.055 10.1145/1970392.1970395 10.1016/j.patrec.2010.03.004 10.1016/j.neucom.2011.02.024 10.1016/j.knosys.2015.11.010 10.2174/1567205013666160314145158 10.1016/j.knosys.2015.02.025 10.1016/j.cviu.2013.11.009 10.1109/TPAMI.2008.79 10.1016/j.neuroimage.2011.09.069 10.1016/j.cmpb.2013.03.015 10.1016/j.knosys.2012.08.024 10.1016/j.neuroimage.2013.12.015 10.1016/j.neuroimage.2014.06.077 10.1016/j.neuroimage.2011.01.008 10.1016/S0950-7051(01)00120-4 10.1093/brain/awm319 10.1002/ana.410420114 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. May 1, 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. May 1, 2017 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2017.02.025 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 237 |
| ExternalDocumentID | 10_1016_j_knosys_2017_02_025 S0950705117301090 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD AFXIZ AGCQF AGRNS E3H F2A JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c334t-1fe328f81cc84b440cb1f37f0a56112c90a81ba16ffcd9797754b55ee0e9762c3 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Fri Jul 25 04:00:51 EDT 2025 Sat Oct 25 05:29:58 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Robust PCA Exploratory analysis Alzheimer’s disease Information fusion Multimodal image data Regions of interest Computer-aided diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-1fe328f81cc84b440cb1f37f0a56112c90a81ba16ffcd9797754b55ee0e9762c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 |
| PQID | 1938995644 |
| PQPubID | 2035257 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_1938995644 crossref_primary_10_1016_j_knosys_2017_02_025 crossref_citationtrail_10_1016_j_knosys_2017_02_025 elsevier_sciencedirect_doi_10_1016_j_knosys_2017_02_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-01 2017-05-00 20170501 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Wright (bib0034) 2009 Anderson, Douglas, Kerr, Haynes, Yuille, Xie, Wu, Brown, Cohen (bib0015) 2014; 102, Part 1 Zhang, Shen (bib0017) 2012; 59 Candès, Li, Ma, Wright (bib0023) 2011; 58 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot, Alzheimer’s Disease Neuroimaging Initiative (bib0004) 2010; 56 Ortiz, Górriz, Ramírez, Martínez-Murcia (bib0020) 2013; 34 Theodoridis, Koutroumbas (bib0029) 2009 Sammut, Webb (bib0040) 2010 Ashburner, Group (bib0025) 2011 Moradi, Pepe, Gaser, Huttunen, Tohka (bib0009) 2015; 104 Hastie, Tibshirani, Friedman (bib0036) 2001 Structural Brain Mapping Group. Department of Psychiatry, Available Alvarez, Gorriz, Ramirez, Salas-Gonzalez, Lopez, Segovia, Chaves, Gomez-Rio, García-Puntonet (bib0019) 2011; 184 Golobardes, Llor, Salam, Mart (bib0001) 2002; 15 Y. Chen, J. Yang, Intelligence Science and Big Data Engineering: 4th International Conference, IScIDE 2013, Beijing, China, July 31–August 2, 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 223–229Revised Selected Papers. Martínez-Murcia, Górriz, Ramírez, Ortiz (bib0011) 2016; 13 Chyzhyk, Graña, Savio, Maiora (bib0006) 2012; 75 Plant, Sorg, Riedl, Wohlschläger (bib0013) 2011 Zhou, Zhou, Li (bib0039) 2016; 95 Álvarez, Górriz, Ramírez, Salas-González, López, Segovia, Padilla, García (bib0002) 2010; 31 Martínez-Murcia, Górriz, Ramírez, Ortiz (bib0012) 2016 Accessed 2014 March 10, 2014. Turk, Pentland (bib0028) 1991; 3 Zhang, Wang, Zhou, Yuan, Shen, for the Alzheimer’s Disease Neuroimaging Initiative (bib0018) 2011; 55 Wang, Xie (bib0031) 2010 Suk, Lee, Shen (bib0016) 2014; 101 Westman, Simmons, Zhang, Muehlboeck, Tunnard, Liu, Collins, Evans, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Lovestone, Spenger, Wahlund, AddNeuroMed consortium (bib0008) 2011; 54 Minoshima, Giordani, Berent, Frey, Foster, Kuhl (bib0035) 1997; 42 Ortiz, Górriz, Ramírez, Martínez-Murcia (bib0027) 2014; 9 Dai (bib0041) 2013; 37 Martínez-Murcia, Górriz, Ramírez, Puntonet, Illán (bib0003) 2013; 111 Wright, Yang, Ganesh, Sastry, Ma (bib0022) 2009; 31 Hidalgo-Munñoz, Górriz, Ramírez, Padilla (bib0038) 2014; 6 Ortiz, Munilla, Górriz, Ramírez (bib0010) 2016 Termenon, Graña (bib0005) 2012; 35 Accessed 2014 Mar 10, 2014. Luan, Fang, Liu, Yang, Qian (bib0033) 2014; 47 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib0014) 2008; 131 Liu, Zhang, Shen (bib0007) 2012; 60 Raudys, Jain (bib0021) 1991; 13 Wu (bib0037) 2015; 82 Navidi (bib0042) 2010 Bouwmans, Zahzah (bib0030) 2014; 122 Alzheimer’s Disease Neuroimaging Initiative, Available Candès (10.1016/j.knosys.2017.02.025_bib0023) 2011; 58 Theodoridis (10.1016/j.knosys.2017.02.025_bib0029) 2009 Sammut (10.1016/j.knosys.2017.02.025_bib0040) 2010 Moradi (10.1016/j.knosys.2017.02.025_bib0009) 2015; 104 Zhang (10.1016/j.knosys.2017.02.025_bib0018) 2011; 55 Turk (10.1016/j.knosys.2017.02.025_bib0028) 1991; 3 Martínez-Murcia (10.1016/j.knosys.2017.02.025_bib0003) 2013; 111 Ortiz (10.1016/j.knosys.2017.02.025_bib0020) 2013; 34 Wright (10.1016/j.knosys.2017.02.025_bib0022) 2009; 31 Wang (10.1016/j.knosys.2017.02.025_bib0031) 2010 Raudys (10.1016/j.knosys.2017.02.025_bib0021) 1991; 13 Dai (10.1016/j.knosys.2017.02.025_bib0041) 2013; 37 Termenon (10.1016/j.knosys.2017.02.025_bib0005) 2012; 35 Ortiz (10.1016/j.knosys.2017.02.025_bib0027) 2014; 9 Zhou (10.1016/j.knosys.2017.02.025_bib0039) 2016; 95 Cuingnet (10.1016/j.knosys.2017.02.025_bib0004) 2010; 56 Golobardes (10.1016/j.knosys.2017.02.025_bib0001) 2002; 15 Martínez-Murcia (10.1016/j.knosys.2017.02.025_bib0012) 2016 Klöppel (10.1016/j.knosys.2017.02.025_bib0014) 2008; 131 Minoshima (10.1016/j.knosys.2017.02.025_bib0035) 1997; 42 Luan (10.1016/j.knosys.2017.02.025_bib0033) 2014; 47 Zhang (10.1016/j.knosys.2017.02.025_bib0017) 2012; 59 Anderson (10.1016/j.knosys.2017.02.025_bib0015) 2014; 102, Part 1 Suk (10.1016/j.knosys.2017.02.025_bib0016) 2014; 101 10.1016/j.knosys.2017.02.025_bib0032 Wright (10.1016/j.knosys.2017.02.025_bib0034) 2009 Wu (10.1016/j.knosys.2017.02.025_bib0037) 2015; 82 Ortiz (10.1016/j.knosys.2017.02.025_bib0010) 2016 Ashburner (10.1016/j.knosys.2017.02.025_bib0025) 2011 Westman (10.1016/j.knosys.2017.02.025_bib0008) 2011; 54 Martínez-Murcia (10.1016/j.knosys.2017.02.025_bib0011) 2016; 13 Plant (10.1016/j.knosys.2017.02.025_bib0013) 2011 Hidalgo-Munñoz (10.1016/j.knosys.2017.02.025_bib0038) 2014; 6 Alvarez (10.1016/j.knosys.2017.02.025_sbref0019) 2011; 184 Álvarez (10.1016/j.knosys.2017.02.025_bib0002) 2010; 31 Navidi (10.1016/j.knosys.2017.02.025_bib0042) 2010 Chyzhyk (10.1016/j.knosys.2017.02.025_bib0006) 2012; 75 Hastie (10.1016/j.knosys.2017.02.025_bib0036) 2001 10.1016/j.knosys.2017.02.025_bib0024 Liu (10.1016/j.knosys.2017.02.025_bib0007) 2012; 60 10.1016/j.knosys.2017.02.025_bib0026 Bouwmans (10.1016/j.knosys.2017.02.025_bib0030) 2014; 122 |
| References_xml | – start-page: Inpress year: 2016 ident: bib0012 article-title: A structural parametrization of the brain using hidden Markov models-based paths in the Alzheimer’s disease publication-title: Int. J. Neural Syst. – year: 2010 ident: bib0040 article-title: Statistical Learning Theory – volume: 15 start-page: 45 year: 2002 end-page: 52 ident: bib0001 article-title: Computer aided diagnosis with case-based reasoning and genetic algorithms publication-title: Knowl. Based Syst. – volume: 111 start-page: 255 year: 2013 end-page: 268 ident: bib0003 article-title: Functional activity maps based on significance measures and independent component analysis publication-title: Comput. Methods Prog. Biomed. – volume: 56 start-page: 766 year: 2010 end-page: 781 ident: bib0004 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database publication-title: Neuroimage – volume: 31 start-page: 1342 year: 2010 end-page: 1347 ident: bib0002 article-title: Projecting independent components of spect images for computer aided diagnosis of Alzheimer’s disease publication-title: Pattern Recognit. Lett. – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib0009 article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects publication-title: NeuroImage – volume: 35 start-page: 1 year: 2012 end-page: 12 ident: bib0005 article-title: A two stage sequential ensemble applied to the classification of Alzheimer’s disease based on mri features publication-title: Neural Process. Lett. – volume: 47 start-page: 495 year: 2014 end-page: 508 ident: bib0033 article-title: Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion publication-title: Pattern Recognit. – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bib0016 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib0018 article-title: Multimodal classification of alzheimer’s disease and mild cognitive impairment publication-title: Neuroimage – start-page: 99 year: 2010 end-page: 102 ident: bib0031 article-title: An efficient face recognition algorithm based on robust principal component analysis publication-title: Proceedings of the Second International Conference on Internet Multimedia Computing and Service – year: 2009 ident: bib0029 article-title: Pattern Recognition – volume: 184 year: 2011 ident: bib0019 article-title: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis publication-title: Inf. Sci. – reference: Y. Chen, J. Yang, Intelligence Science and Big Data Engineering: 4th International Conference, IScIDE 2013, Beijing, China, July 31–August 2, 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 223–229Revised Selected Papers. – volume: 37 start-page: 394 year: 2013 end-page: 414 ident: bib0041 article-title: A competitive ensemble pruning approach based on cross-validation technique publication-title: Knowl. Based Syst. – start-page: Inpress year: 2016 ident: bib0010 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int. J. Neural Syst. – reference: . Accessed 2014 March 10, 2014. – volume: 102, Part 1 start-page: 207 year: 2014 end-page: 219 ident: bib0015 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: NeuroImage – year: 2010 ident: bib0042 article-title: Statistics for Engineers and Scientists – volume: 13 start-page: 252 year: 1991 end-page: 264 ident: bib0021 article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 58 start-page: 11:1 year: 2011 end-page: 11:37 ident: bib0023 article-title: Robust principal component analysis? publication-title: J. ACM – reference: Structural Brain Mapping Group. Department of Psychiatry, Available: – volume: 122 start-page: 22 year: 2014 end-page: 34 ident: bib0030 article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance publication-title: Comput. Vision Image Understanding – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bib0014 article-title: Automatic classification of mr scans in Alzheimer’s disease publication-title: Brain – volume: 13 start-page: 575 year: 2016 end-page: 588 ident: bib0011 article-title: A spherical brain mapping of mr images for the detection of the Alzheimer’s disease publication-title: Curr. Alzheimer Res. – volume: 54 start-page: 1178 year: 2011 end-page: 1187 ident: bib0008 article-title: Multivariate analysis of mri data for alzheimer’s disease, mild cognitive impairment and healthy controls publication-title: Neuroimage – reference: . Accessed 2014 Mar 10, 2014. – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: bib0017 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease publication-title: NeuroImage – volume: 6 start-page: 1 year: 2014 end-page: 14 ident: bib0038 article-title: Regions of interest computed by svm wrapped method for alzheimers disease examination from segmented mri publication-title: Front. Aging Neurosci. – volume: 60 start-page: 1106 year: 2012 end-page: 1116 ident: bib0007 article-title: Ensemble sparse classification of alzheimer’s disease publication-title: NeuroImage – volume: 34 start-page: 1725 year: 2013 end-page: 1733 ident: bib0020 article-title: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimers disease publication-title: Pattern Recognit. Lett. – volume: 31 year: 2009 ident: bib0022 article-title: Robust face recognition via sparse representation publication-title: IEEE TPAMI – volume: 95 start-page: 1 year: 2016 end-page: 11 ident: bib0039 article-title: Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features publication-title: Knowl. Based Syst. – year: 2011 ident: bib0025 article-title: SPM8 publication-title: Institute of Neurology, 12, Queen Square, Lonon WC1N 3BG, UK – volume: 75 start-page: 72 year: 2012 end-page: 77 ident: bib0006 article-title: Hybrid dendritic computing with kernel-lica applied to Alzheimer’s disease detection in mri publication-title: Neurocomputing – start-page: 33 year: 2011 end-page: 41 ident: bib0013 article-title: Homogeneity-based feature extraction for classification of early-stage Alzheimer’s disease from functional magnetic resonance images publication-title: Proceedings of the 2011 Workshop on Data Mining for Medicine and Healthcare – year: 2001 ident: bib0036 article-title: The Elements of Statistical Learning publication-title: New York, NY, USA – volume: 3 start-page: 71 year: 1991 end-page: 86 ident: bib0028 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. – year: 2009 ident: bib0034 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization publication-title: Advances in Neural Information Processing Systems 22 – reference: Alzheimer’s Disease Neuroimaging Initiative, Available: – volume: 9 start-page: 1 year: 2014 end-page: 12 ident: bib0027 article-title: Automatic ROI selection in structural brain MRI using SOM 3D projection publication-title: PLOS One – volume: 42 start-page: 85 year: 1997 end-page: 94 ident: bib0035 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease publication-title: Ann. Neurol. – volume: 82 start-page: 95 year: 2015 end-page: 101 ident: bib0037 article-title: Active reducing classification error for {CAD} systems publication-title: Knowl. Based Syst. – volume: 54 start-page: 1178 year: 2011 ident: 10.1016/j.knosys.2017.02.025_bib0008 article-title: Multivariate analysis of mri data for alzheimer’s disease, mild cognitive impairment and healthy controls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.044 – year: 2009 ident: 10.1016/j.knosys.2017.02.025_bib0034 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization – volume: 56 start-page: 766 issue: 2 year: 2010 ident: 10.1016/j.knosys.2017.02.025_bib0004 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – start-page: 33 year: 2011 ident: 10.1016/j.knosys.2017.02.025_bib0013 article-title: Homogeneity-based feature extraction for classification of early-stage Alzheimer’s disease from functional magnetic resonance images – ident: 10.1016/j.knosys.2017.02.025_bib0032 – volume: 9 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.knosys.2017.02.025_bib0027 article-title: Automatic ROI selection in structural brain MRI using SOM 3D projection publication-title: PLOS One doi: 10.1371/journal.pone.0093851 – year: 2011 ident: 10.1016/j.knosys.2017.02.025_bib0025 article-title: SPM8 – ident: 10.1016/j.knosys.2017.02.025_bib0026 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.knosys.2017.02.025_bib0009 article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.002 – ident: 10.1016/j.knosys.2017.02.025_bib0024 – year: 2009 ident: 10.1016/j.knosys.2017.02.025_bib0029 – volume: 47 start-page: 495 issue: 2 year: 2014 ident: 10.1016/j.knosys.2017.02.025_bib0033 article-title: Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.06.031 – volume: 13 start-page: 252 issue: 3 year: 1991 ident: 10.1016/j.knosys.2017.02.025_bib0021 article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.75512 – volume: 34 start-page: 1725 issue: 14 year: 2013 ident: 10.1016/j.knosys.2017.02.025_bib0020 article-title: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimers disease publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.04.014 – volume: 3 start-page: 71 issue: 1 year: 1991 ident: 10.1016/j.knosys.2017.02.025_bib0028 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1991.3.1.71 – volume: 6 start-page: 1 issue: 20 year: 2014 ident: 10.1016/j.knosys.2017.02.025_bib0038 article-title: Regions of interest computed by svm wrapped method for alzheimers disease examination from segmented mri publication-title: Front. Aging Neurosci. – volume: 35 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.knosys.2017.02.025_bib0005 article-title: A two stage sequential ensemble applied to the classification of Alzheimer’s disease based on mri features publication-title: Neural Process. Lett. doi: 10.1007/s11063-011-9200-2 – volume: 60 start-page: 1106 issue: 2 year: 2012 ident: 10.1016/j.knosys.2017.02.025_bib0007 article-title: Ensemble sparse classification of alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 58 start-page: 11:1 issue: 3 year: 2011 ident: 10.1016/j.knosys.2017.02.025_bib0023 article-title: Robust principal component analysis? publication-title: J. ACM doi: 10.1145/1970392.1970395 – volume: 31 start-page: 1342 issue: 11 year: 2010 ident: 10.1016/j.knosys.2017.02.025_bib0002 article-title: Projecting independent components of spect images for computer aided diagnosis of Alzheimer’s disease publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.03.004 – volume: 75 start-page: 72 issue: 1 year: 2012 ident: 10.1016/j.knosys.2017.02.025_bib0006 article-title: Hybrid dendritic computing with kernel-lica applied to Alzheimer’s disease detection in mri publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.02.024 – volume: 95 start-page: 1 year: 2016 ident: 10.1016/j.knosys.2017.02.025_bib0039 article-title: Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.11.010 – start-page: Inpress year: 2016 ident: 10.1016/j.knosys.2017.02.025_bib0010 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int. J. Neural Syst. – volume: 13 start-page: 575 year: 2016 ident: 10.1016/j.knosys.2017.02.025_bib0011 article-title: A spherical brain mapping of mr images for the detection of the Alzheimer’s disease publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205013666160314145158 – volume: 82 start-page: 95 year: 2015 ident: 10.1016/j.knosys.2017.02.025_bib0037 article-title: Active reducing classification error for {CAD} systems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.02.025 – volume: 122 start-page: 22 year: 2014 ident: 10.1016/j.knosys.2017.02.025_bib0030 article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2013.11.009 – volume: 31 issue: 2 year: 2009 ident: 10.1016/j.knosys.2017.02.025_bib0022 article-title: Robust face recognition via sparse representation publication-title: IEEE TPAMI doi: 10.1109/TPAMI.2008.79 – volume: 59 start-page: 895 issue: 2 year: 2012 ident: 10.1016/j.knosys.2017.02.025_bib0017 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – start-page: Inpress year: 2016 ident: 10.1016/j.knosys.2017.02.025_bib0012 article-title: A structural parametrization of the brain using hidden Markov models-based paths in the Alzheimer’s disease publication-title: Int. J. Neural Syst. – year: 2010 ident: 10.1016/j.knosys.2017.02.025_bib0042 – volume: 111 start-page: 255 issue: 1 year: 2013 ident: 10.1016/j.knosys.2017.02.025_bib0003 article-title: Functional activity maps based on significance measures and independent component analysis publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2013.03.015 – volume: 184 issue: 4 year: 2011 ident: 10.1016/j.knosys.2017.02.025_sbref0019 article-title: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis publication-title: Inf. Sci. – volume: 37 start-page: 394 year: 2013 ident: 10.1016/j.knosys.2017.02.025_bib0041 article-title: A competitive ensemble pruning approach based on cross-validation technique publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.08.024 – volume: 102, Part 1 start-page: 207 year: 2014 ident: 10.1016/j.knosys.2017.02.025_bib0015 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.015 – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.knosys.2017.02.025_bib0016 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 55 start-page: 856 issue: 3 year: 2011 ident: 10.1016/j.knosys.2017.02.025_bib0018 article-title: Multimodal classification of alzheimer’s disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – year: 2010 ident: 10.1016/j.knosys.2017.02.025_bib0040 – volume: 15 start-page: 45 issue: 12 year: 2002 ident: 10.1016/j.knosys.2017.02.025_bib0001 article-title: Computer aided diagnosis with case-based reasoning and genetic algorithms publication-title: Knowl. Based Syst. doi: 10.1016/S0950-7051(01)00120-4 – volume: 131 start-page: 681 year: 2008 ident: 10.1016/j.knosys.2017.02.025_bib0014 article-title: Automatic classification of mr scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 42 start-page: 85 year: 1997 ident: 10.1016/j.knosys.2017.02.025_bib0035 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.410420114 – year: 2001 ident: 10.1016/j.knosys.2017.02.025_bib0036 article-title: The Elements of Statistical Learning – start-page: 99 year: 2010 ident: 10.1016/j.knosys.2017.02.025_bib0031 article-title: An efficient face recognition algorithm based on robust principal component analysis |
| SSID | ssj0002218 |
| Score | 2.2271547 |
| Snippet | Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer’s Disease (AD). The goal is the automatic... Computer aided diagnosis systems based on brain imaging are a powerful tool to assist in the diagnosis of Alzheimer's Disease (AD). The goal is the automatic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 229 |
| SubjectTerms | Algorithms Alzheimer's disease Brain CAD Computation Computer aided design Computer-aided diagnosis Dementia Diagnosis Diagnostic systems Exploratory analysis Image classification Information fusion Machine learning Magnetic resonance Medical diagnosis Multimodal image data Neurodegeneration Pattern recognition Positron emission Principal components analysis Regions of interest Robust PCA Tomography Training |
| Title | Automatic computation of regions of interest by robust principal component analysis. Application to automatic dementia diagnosis |
| URI | https://dx.doi.org/10.1016/j.knosys.2017.02.025 https://www.proquest.com/docview/1938995644 |
| Volume | 123 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL178Fj-m5OA1rk3SNT2O4ZiKu6jgLSRpC1NZh-sOXsQ_3ffS1KEIgtBD2iZNSF7yfnl9-T1CznkinLI8ZzxRlskiUQzUQsaSjKcYj9Eogwb920l__CCvH5PHDhm2Z2HQrTKs_c2a7lfr8KQXerM3n057dwAOQF4BMKCQRhnu26VMMYrBxfvKzYNzb-PDzAxzt8fnvI_X86xavCFpd5x65k4MmP27evqxUHvtM9ommwE20kHTsh3SKWa7ZKsNyUDDDN0jH4NlXXkWVur8S9_xtCopRmAACcMkUkRgSA5q3-hrZZeQmjc2d6gCi1UzUEXUBL6SCzpY_eWmdUXNVx25Ny5ODc0bj73pYp88jC7vh2MWgiwwJ4SsWVwWgqtSxc4paaWMnI1LkZaRAWQVc5dFBpCtiftl6fIszZAxzyZJUUQFIBnuxAFZm0GzDgnNkekT4AogpL4seY5bISWFEZHNMyvdERFt32oXGMgxEMaLbl3NnnQzIhpHREccruSIsK9S84aB44_8aTts-pskaVASf5TstqOsw0xeaAC4Ck__Snn87w-fkA28a_wku2Stfl0Wp4BlanvmhfWMrA-ubsaTT6j89ik |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcqOIzLgI1p5Ws-7Gqa-KNxjhWiKhv0MpC4WbaTSIWpqWh66AXxp_Oe4xQxISFNysGK7diyn_1-fnn-PUJ-ciW8drxgXGnHZKk0A7WQM5XzDOMxWm3RoH89HU5u5a87ddcj591dGHSrjHt_u6eH3Tq-GcTRHCxms8EfAAcgrwAYUEiTHM7t21LxDE9gZ0-vfh6cByMflmZYvLs_F5y8Hub1co2s3WkWqDsxYvb7-umfnTqon_Ee-RxxIx21XdsnvXL-hex2MRloXKJfyfNo1dSBhpX6kBlGntYVxRAMIGKYRI4IjMlB3Zo-1m4FqUVrdIcmsFo9B11EbSQsOaOj19_ctKmp3bRRBOvizNKiddmbLQ_I7fji5nzCYpQF5oWQDUurUnBd6dR7LZ2UiXdpJbIqsQCtUu7zxAK0temwqnyRZzlS5jmlyjIpAcpwL76RrTl06zuhBVJ9Al4BiDSUFS_wLKSlsCJxRe6k7xPRja3xkYIcI2H8NZ2v2b1pZ8TgjJiEw6P6hG1qLVoKjg_KZ920mTeiZEBLfFDzuJtlE5fy0gDC1Xj9V8rD__7wD_JpcnN9Za4up7-PyA7mtE6Tx2SreVyVJwBsGncaBPcFVxP3vg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+computation+of+regions+of+interest+by+robust+principal+component+analysis.+Application+to+automatic+dementia+diagnosis&rft.jtitle=Knowledge-based+systems&rft.au=Lozano%2C+Francisco&rft.au=Ortiz%2C+Andr%C3%A9s&rft.au=Munilla%2C+Jorge&rft.au=Peinado%2C+Alberto&rft.date=2017-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=123&rft.spage=229&rft_id=info:doi/10.1016%2Fj.knosys.2017.02.025&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |