Survey on visual sentiment analysis
Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of techniques have been developed for various data sources and problems, resulting in a large body of research. This paper reviews pertinent publicatio...
Saved in:
| Published in | IET image processing Vol. 14; no. 8; pp. 1440 - 1456 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
19.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-9659 1751-9667 |
| DOI | 10.1049/iet-ipr.2019.1270 |
Cover
| Abstract | Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of techniques have been developed for various data sources and problems, resulting in a large body of research. This paper reviews pertinent publications and tries to present an exhaustive overview of the field. After a description of the task and the related applications, the subject is tackled under different main headings. The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view: emotional models, dataset definition, feature design. A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways. To this aim, this paper considers a structured formalization of the problem which is usually used for the analysis of text, and discusses it's suitability in the context of Visual Sentiment Analysis. The paper also includes a description of new challenges, the evaluation from the viewpoint of progress toward more sophisticated systems and related practical applications, as well as a summary of the insights resulting from this study. |
|---|---|
| AbstractList | Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of techniques have been developed for various data sources and problems, resulting in a large body of research. This paper reviews pertinent publications and tries to present an exhaustive overview of the field. After a description of the task and the related applications, the subject is tackled under different main headings. The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view: emotional models, dataset definition, feature design. A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways. To this aim, this paper considers a structured formalization of the problem which is usually used for the analysis of text, and discusses it's suitability in the context of Visual Sentiment Analysis. The paper also includes a description of new challenges, the evaluation from the viewpoint of progress toward more sophisticated systems and related practical applications, as well as a summary of the insights resulting from this study. |
| Author | Farinella, Giovanni Maria Battiato, Sebastiano Ortis, Alessandro |
| Author_xml | – sequence: 1 givenname: Alessandro orcidid: 0000-0003-3461-4679 surname: Ortis fullname: Ortis, Alessandro email: ortis@dmi.unict.it organization: Department of Mathematics and Computer Science, University of Catania, Catania, Sicily, Italy – sequence: 2 givenname: Giovanni Maria surname: Farinella fullname: Farinella, Giovanni Maria organization: Department of Mathematics and Computer Science, University of Catania, Catania, Sicily, Italy – sequence: 3 givenname: Sebastiano orcidid: 0000-0001-6127-2470 surname: Battiato fullname: Battiato, Sebastiano organization: Department of Mathematics and Computer Science, University of Catania, Catania, Sicily, Italy |
| BookMark | eNqFkEtLAzEQgINUsK3-AG8LnrdOkk2y8abFaqGg-DiHdHcWUra7JdlW9t-bpeLBQ73MA-ab4ZsJGTVtg4RcU5hRyPStwy51Oz9jQPWMMgVnZEyVoKmWUo1-a6EvyCSEDYDQkIsxuXnf-wP2SdskBxf2tk4CNp3bxpDYxtZ9cOGSnFe2Dnj1k6fkc_H4MX9OVy9Py_n9Ki04z1Sqy5LmDLBSJZYyF7FlAjRXmULkEqnIeYE5y7jMQJeFpOsqz0AB5igrteZTQo97C9-G4LEyO--21veGghksTbQ00dIMlmawjIz6wxSus51rm85bV58k747kl6ux__-UWb6-sYcFMC5UhNMjPIxt2r2Prwonjn0DxiR7sg |
| CitedBy_id | crossref_primary_10_1109_TAFFC_2021_3071131 crossref_primary_10_1016_j_knosys_2024_111429 crossref_primary_10_1109_TMM_2022_3217414 crossref_primary_10_1007_s11042_024_19999_8 crossref_primary_10_3390_s20247115 crossref_primary_10_1016_j_heliyon_2024_e30180 crossref_primary_10_1145_3450971 crossref_primary_10_1080_15230406_2023_2172081 crossref_primary_10_1007_s13278_025_01443_w crossref_primary_10_1109_ACCESS_2023_3274744 crossref_primary_10_1093_comjnl_bxae133 crossref_primary_10_1109_TCDS_2021_3135948 crossref_primary_10_1109_TAFFC_2022_3225238 crossref_primary_10_52965_001c_70401 crossref_primary_10_2139_ssrn_3998058 crossref_primary_10_3389_frai_2023_1125533 crossref_primary_10_1109_TMM_2021_3118208 crossref_primary_10_1016_j_eswa_2024_125970 crossref_primary_10_1145_3586075 crossref_primary_10_1007_s41060_024_00594_x crossref_primary_10_1007_s12046_025_02679_0 crossref_primary_10_1007_s00530_024_01553_z crossref_primary_10_1016_j_inffus_2024_102367 crossref_primary_10_1049_ipr2_13174 crossref_primary_10_1007_s11760_024_03074_8 crossref_primary_10_1177_01655515241293766 crossref_primary_10_1007_s42803_023_00077_8 crossref_primary_10_1155_2022_3612433 crossref_primary_10_3390_s22103628 crossref_primary_10_1007_s11042_023_18105_8 crossref_primary_10_4018_IJITWE_334595 crossref_primary_10_1007_s42979_025_03670_6 crossref_primary_10_1016_j_procs_2023_01_021 crossref_primary_10_1109_ACCESS_2023_3292588 crossref_primary_10_3390_app13052925 crossref_primary_10_1109_JPROC_2023_3309299 crossref_primary_10_3390_s21062136 crossref_primary_10_7763_IJCTE_2023_V15_1346 crossref_primary_10_1007_s10462_022_10212_6 crossref_primary_10_1007_s13042_023_02068_1 crossref_primary_10_1089_cyber_2020_0729 crossref_primary_10_1109_TNNLS_2022_3219615 crossref_primary_10_1016_j_patcog_2024_110261 crossref_primary_10_4018_IJITSA_335940 crossref_primary_10_1016_j_ipm_2024_103823 |
| Cites_doi | 10.1109/WACV.2013.6475008 10.1145/3123266.3127902 10.1109/ACCESS.2019.2953856 10.1145/2647868.2654930 10.1155/2015/715730 10.1145/2906152 10.1109/ICME.2016.7552961 10.2200/S00416ED1V01Y201204HLT016 10.1109/TPAMI.2012.28 10.1145/2647868.2655035 10.1145/1873951.1873987 10.1145/2502081.2502282 10.1016/0092-6566(77)90037-X 10.1145/1631272.1631359 10.1145/2502069.2502079 10.1007/978-3-319-10593-2_35 10.1109/MSP.2006.1621452 10.1109/TMM.2018.2862363 10.1509/jmkg.73.5.90 10.1109/TMM.2014.2306655 10.1145/2671470.2671475 10.1109/ICCV.2011.6126281 10.1016/B978-0-12-814601-9.00018-3 10.1016/j.imavis.2017.08.003 10.3758/s13428-011-0064-1 10.1007/978-3-030-30642-7_43 10.1145/2566486.2567996 10.1109/CVPR.2007.383218 10.1109/ICCV.2011.6126444 10.1109/ICIP.2008.4711701 10.1007/978-3-319-10605-2_38 10.1016/j.bushor.2011.01.007 10.1109/CVPR.2011.5995721 10.1109/CBMI.2018.8516481 10.6028/NIST.SP.500-302.microblog-overview 10.1007/978-1-4614-3223-4_13 10.1145/1873951.1873965 10.1145/2733373.2806361 10.1109/CVPR.2016.503 10.7551/mitpress/9780262027854.003.0012 10.1109/MSP.2011.941851 10.1145/1873951.1874060 10.1109/ICIP.2008.4711705 10.1140/epjds/s13688-017-0110-z 10.1007/s13042-017-0734-0 10.1007/s11042-016-4310-5 10.1371/journal.pone.0144296 10.1145/2578726.2578756 10.1007/978-3-319-68560-1_5 10.1145/3123266.3127903 10.1002/asi.21416 10.1016/j.imavis.2017.01.011 10.1109/CVPR.2017.59 10.1037/0096-3445.123.4.394 10.1007/s11263-013-0658-4 10.1016/B978-0-12-558701-3.50007-7 10.1109/ICCV.2013.340 10.1145/1743384.1743475 10.24963/ijcai.2017/427 10.1145/1592665.1592672 10.3115/1220575.1220619 10.1109/CVPR.2013.105 10.1145/2480362.2480498 10.1109/CVPR.2010.5540120 10.1145/2733373.2806335 10.1109/VSMM.2009.28 10.1109/30.681949 10.1145/2955129.2955154 10.1037/h0055737 10.1145/2578726.2578776 10.1109/TPAMI.2012.124 10.1037/0022-3514.52.6.1061 10.1109/ICASSP.2016.7472195 10.1109/ICCVW.2019.00550 10.1109/ICCV.2015.278 10.1109/TAFFC.2017.2660485 10.1037//0033-295X.99.3.561 10.1109/TPAMI.2015.2400461 10.1561/1500000011 10.1007/978-3-030-05710-7_22 10.1007/11744078_23 10.1037/0022-3514.53.4.712 10.1016/j.neucom.2018.05.104 10.1109/CVPR.2015.7298932 10.1002/asi.21043 10.1109/TMM.2004.840618 10.1109/CVPR.2015.7298791 10.1002/widm.1253 10.1109/ICCVW.2017.45 10.1145/2615569.2615700 10.3758/BF03192732 10.1023/B:BTTJ.0000047600.45421.6d 10.3758/s13428-013-0379-1 10.1145/2733373.2806246 10.1145/2671188.2749405 10.1007/s11042-018-6445-z 10.1109/TMM.2012.2188782 10.1145/2733373.2806311 10.32964/TJ17.04 10.1145/2661714.2661722 10.1016/j.knosys.2019.01.019 10.1109/93.790610 10.1145/2964284.2964289 10.1109/TSMC.1978.4309999 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-ipr.2019.1270 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 1456 |
| ExternalDocumentID | 10_1049_iet_ipr_2019_1270 IPR2BF02357 |
| Genre | reviewArticle |
| GroupedDBID | 0R 24P 29I 5GY 6IK 8VB AAJGR ABPTK ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX HZ IFIPE IPLJI JAVBF LAI M43 MS O9- OCL P2P QWB RIE RNS RUI UNR ZL0 .DC 0R~ 1OC 4.4 8FE 8FG AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO ITC K1G L6V M7S MCNEO MS~ OK1 P62 PTHSS ROL S0W AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3347-9dd1820ef7ded685dd125093747ee36e1583ce82436409dc61bf84070e8e6f7b3 |
| IEDL.DBID | IDLOA |
| ISSN | 1751-9659 |
| IngestDate | Thu Apr 24 23:00:11 EDT 2025 Wed Oct 29 21:14:30 EDT 2025 Wed Jan 22 16:32:18 EST 2025 Tue Jan 05 21:50:47 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | data sources text analysis emotional models sentiment analysis pertinent publications feature design publishing dataset definition general Visual Sentiment Analysis systems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3347-9dd1820ef7ded685dd125093747ee36e1583ce82436409dc61bf84070e8e6f7b3 |
| ORCID | 0000-0001-6127-2470 0000-0003-3461-4679 |
| PageCount | 17 |
| ParticipantIDs | wiley_primary_10_1049_iet_ipr_2019_1270_IPR2BF02357 iet_journals_10_1049_iet_ipr_2019_1270 crossref_citationtrail_10_1049_iet_ipr_2019_1270 crossref_primary_10_1049_iet_ipr_2019_1270 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-19 |
| PublicationDateYYYYMMDD | 2020-06-19 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Pang, B.; Lee, L. (C3) 2008; 2 Wu, L.; Jin, R.; Jain, A.K. (C89) 2013; 35 Katsurai, M.; Ogawa, T.; Haseyama, M. (C131) 2014; 16 Osgood, C.E. (C14) 1952; 49 Tamura, H.; Mori, S.; Yamawaki, T. (C80) 1978; 8 Russell, J.A.; Mehrabian, A. (C15) 1977; 11 Trusov, M.; Bucklin, R.E.; Pauwels, K. (C98) 2009; 73 Kralj Novak, P.; Smailović, J.; Sluban, B. (C124) 2015; 10 Lang, P.J. (C13) 1993; 6 Khosla, A.; Xiao, J.; Torralba, A. (C95) 2012 Ortis, A.; Farinella, G.M.; Battiato, S. (C110) 2019; 7 Marchewka, A.; Żurawski, Ł.; Jednoróg, K. (C75) 2014; 46 Valdez, P.; Mehrabian, A. (C16) 1994; 123 Dohaiha, H.H.; Prasad, P.; Maag, A. (C4) 2018; 118 Song, K.; Yao, T.; Ling, Q. (C56) 2018; 312 Campos, V.; Jou, B.; Nieto, X.G.i. (C50) 2017; 65 Hanna, R.; Rohm, A.; Crittenden, V.L. (C97) 2011; 54 Ekman, P.; Friesen, W.V.; O'Sullivan, M. (C36) 1987; 53 Soleymani, M.; Garcia, D.; Jou, B. (C66) 2017; 65 Reece, A.G.; Danforth, C.M. (C94) 2017; 6 Huang, F.; Zhang, X.; Zhao, Z. (C60) 2019; 167 Colombo, C.; Del Bimbo, A.; Pala, P. (C7) 1999; 6 Shaver, P.; Schwartz, J.; Kirson, D. (C71) 1987; 52 Gong, Y.; Ke, Q.; Isard, M. (C87) 2014; 106 Sang, J.; Xu, C.; Liu, J. (C88) 2012; 14 Li, X.; Uricchio, T.; Ballan, L. (C86) 2016; 49 Schmidt, S.; Stock, W.G. (C8) 2009; 60 Dan-Glauser, E.S.; Scherer, K.R. (C74) 2011; 43 Cappallo, S.; Svetlichnaya, S.; Garrigues, P. (C125) 2018; 21 Li, Z.; Liu, J.; Tang, J. (C132) 2015; 37 Zhang, L.; Wang, S.; Liu, B. (C5) 2018; 8 Plutchik, R. (C33) 1980; 1 Thelwall, M.; Buckley, K.; Paltoglou, G. (C55) 2010; 61 Hanjalic, A. (C83) 2006; 23 Li, Z.; Fan, Y.; Jiang, B. (C67) 2019; 78 Liu, H.; Singh, P. (C118) 2004; 22 Wu, L.; Qi, M.; Jian, M. (C64) 2019 Liu, B. (C81) 2012; 5 Alexe, B.; Deselaers, T.; Ferrari, V. (C82) 2012; 34 Corchs, S.; Fersini, E.; Gasparini, F. (C63) 2019; 10 Agarwal, B.; Mittal, N.; Bansal, P. (C117) 2015; 2015 Liu, Y.-J.; Yu, M.; Zhao, G. (C134) 2017; 9 Joshi, D.; Datta, R.; Fedorovskaya, E. (C19) 2011; 28 Hanjalic, A.; Xu, L.-Q. (C69) 2005; 7 Hayashi, T.; Hagiwara, M. (C68) 1998; 44 Li, Z.; Fan, Y.; Liu, W. (C54) 2018; 77 Mikels, J.A.; Fredrickson, B.L.; Larkin, G.R. (C31) 2005; 37 2017; 6 2004; 22 2015; 37 2019; 10 1973 2011; 54 2012; 14 2008; 2 1978; 8 2017; 9 2019; 167 1998; 44 2010; 61 1993; 6 2018; 8 2006; 23 April 2016 2014; 16 June 2015 2011; 28 2005; 37 2018; 77 2016; 49 2019; 7 1987; 53 1987; 52 2012 2011 2010 2009; 60 2017; 65 2019; 78 2015; 10 2009 2008 2007 2006 2006; 6 2014; 46 1994 2005 1992 1999; 6 2012; 34 2018; 21 1999 1994; 123 2014; 106 2009; 73 1952; 49 2013; 35 2018; 118 July 2017 1980; 1 2018; 312 2015; 2015 2019 2018 2005; 7 2017 2011; 43 1977; 11 2016 2015 2014 2013 2012; 5 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 Dohaiha H.H. (e_1_2_8_5_1) 2018; 118 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 Khosla A. (e_1_2_8_96_1) 2012 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Lang P.J. (e_1_2_8_71_1) 1999 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 Lang P.J. (e_1_2_8_14_1) 1993; 6 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 Itten J. (e_1_2_8_13_1) 1973 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Joshi D. (e_1_2_8_19_1) 2014 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 Bradley M.M. (e_1_2_8_12_1) 1994 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 Wu L. (e_1_2_8_65_1) 2019 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 37 start-page: 626 issue: 4 year: 2005 end-page: 630 ident: C31 article-title: Emotional category data on images from the international affective picture system publication-title: Beh. Res. Meth. – volume: 28 start-page: 94 issue: 5 year: 2011 end-page: 115 ident: C19 article-title: Aesthetics and emotions in images publication-title: IEEE Signal Process. Mag. – volume: 16 start-page: 1059 issue: 4 year: 2014 end-page: 1074 ident: C131 article-title: A cross-modal approach for extracting semantic relationships between concepts using tagged images publication-title: IEEE Trans. Multimed. – start-page: 305 year: 2012 end-page: 313 ident: C95 article-title: Memorability of image regions publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 2057 issue: 8 year: 2019 end-page: 2070 ident: C63 article-title: Ensemble learning on visual and textual data for social image emotion classification publication-title: Int. J. Machine Learn. Cybern. – volume: 10 start-page: 1 issue: 12 year: 2015 end-page: 22 ident: C124 article-title: Sentiment of emojis publication-title: PLOS ONE – volume: 52 start-page: 1061 issue: 6 year: 1987 ident: C71 article-title: Emotion knowledge: further exploration of a prototype approach publication-title: J. Personality Soc. Psychol. – volume: 34 start-page: 2189 issue: 11 year: 2012 end-page: 2202 ident: C82 article-title: Measuring the objectness of image windows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 65 start-page: 3 year: 2017 end-page: 14 ident: C66 article-title: A survey of multimodal sentiment analysis publication-title: Image Vis. Comput. – volume: 49 start-page: 197 issue: 3 year: 1952 ident: C14 article-title: The nature and measurement of meaning publication-title: Psychol. Bull. – volume: 22 start-page: 211 issue: 4 year: 2004 end-page: 226 ident: C118 article-title: Conceptnet — a practical commonsense reasoning tool-kit publication-title: BT Technol. J. – volume: 54 start-page: 265 issue: 3 year: 2011 end-page: 273 ident: C97 article-title: We're all connected: the power of the social media ecosystem publication-title: Bus. Horiz. – volume: 9 start-page: 550 issue: 4 year: 2017 end-page: 562 ident: C134 article-title: Real-time movie-induced discrete emotion recognition from eeg signals publication-title: IEEE Trans. Affective Comput. – volume: 73 start-page: 90 issue: 5 year: 2009 end-page: 102 ident: C98 article-title: Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site publication-title: J. Mark. – volume: 61 start-page: 2544 issue: 12 year: 2010 end-page: 2558 ident: C55 article-title: Sentiment strength detection in short informal text publication-title: J. Assoc. Inf. Sci. Technol. – volume: 8 start-page: e1253 issue: 4 year: 2018 ident: C5 article-title: Deep learning for sentiment analysis: a survey publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – volume: 60 start-page: 863 issue: 5 year: 2009 end-page: 876 ident: C8 article-title: Collective indexing of emotions in images. a study in emotional information retrieval publication-title: J. Am. Soc. Inf. Sci. Technol. – volume: 312 start-page: 218 year: 2018 end-page: 228 ident: C56 article-title: Boosting image sentiment analysis with visual attention publication-title: Neurocomputing – volume: 123 start-page: 394 issue: 4 year: 1994 ident: C16 article-title: Effects of color on emotions publication-title: J. Exper. Psychol.: Gen. – volume: 46 start-page: 596 issue: 2 year: 2014 end-page: 610 ident: C75 article-title: The nencki affective picture system (naps): introduction to a novel, standardized, wide-range, high-quality, realistic picture database publication-title: Beh. Res. Meth. – volume: 21 start-page: 402 issue: 2 year: 2018 end-page: 415 ident: C125 article-title: The new modality: emoji challenges in prediction, anticipation, and retrieval publication-title: IEEE Trans. Multimed. – volume: 37 start-page: 2085 issue: 10 year: 2015 end-page: 2098 ident: C132 article-title: Robust structured subspace learning for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 start-page: 143 issue: 1 year: 2005 end-page: 154 ident: C69 article-title: Affective video content representation and modeling publication-title: IEEE Trans. Multimedia – volume: 23 start-page: 90 issue: 2 year: 2006 end-page: 100 ident: C83 article-title: Extracting moods from pictures and sounds: towards truly personalized tv publication-title: IEEE Signal Process. Mag. – volume: 35 start-page: 716 issue: 3 year: 2013 end-page: 727 ident: C89 article-title: Tag completion for image retrieval publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 273 issue: 3 year: 1977 end-page: 294 ident: C15 article-title: Evidence for a three-factor theory of emotions publication-title: J. Res. Personality – volume: 65 start-page: 15 year: 2017 end-page: 22 ident: C50 article-title: From pixels to sentiment: fine-tuning CNNS for visual sentiment prediction publication-title: Image Vis. Comput. – volume: 8 start-page: 460 issue: 6 year: 1978 end-page: 473 ident: C80 article-title: Textural features corresponding to visual perception publication-title: IEEE Trans. Syst. Man Cybern. – volume: 6 start-page: 109 year: 1993 end-page: 133 ident: C13 article-title: The network model of emotion: motivational connections publication-title: Perspect. Anger Emotion: Adv. Soc. Cogn. – volume: 118 start-page: 272 year: 2018 end-page: 299 ident: C4 article-title: Deep learning for aspect-based sentiment analysis a comparative review publication-title: Expert Syst. Appl. – volume: 7 start-page: 1 year: 2019 end-page: 1 ident: C110 article-title: Predicting social image popularity dynamics at time zero publication-title: IEEE Access – volume: 44 start-page: 347 issue: 2 year: 1998 end-page: 352 ident: C68 article-title: Image query by impression words-the iqi system publication-title: IEEE Trans. Consum. Electron. – volume: 1 start-page: 3 year: 1980 end-page: 31 ident: C33 article-title: A general psychoevolutionary theory of emotion publication-title: Theor. Emotion – start-page: 1 year: 2019 end-page: 13 ident: C64 article-title: Visual sentiment analysis by combining global and local information publication-title: Neural Process. Lett. – volume: 43 start-page: 468 issue: 2 year: 2011 end-page: 477 ident: C74 article-title: The geneva affective picture database (gaped): a new 730-picture database focusing on valence and normative significance publication-title: Beh. Res. Meth. – volume: 49 start-page: 14 issue: 1 year: 2016 ident: C86 article-title: Socializing the semantic gap: a comparative survey on image tag assignment, refinement, and retrieval publication-title: ACM Comput. Surv. (CSUR) – volume: 14 start-page: 883 issue: 3 year: 2012 end-page: 895 ident: C88 article-title: User-aware image tag refinement via ternary semantic analysis publication-title: IEEE Trans. Multimed. – volume: 77 start-page: 1115 issue: 1 year: 2018 end-page: 1132 ident: C54 article-title: Image sentiment prediction based on textual descriptions with adjective noun pairs publication-title: Multimedia Tools Appl. – volume: 78 start-page: 6939 issue: 6 year: 2019 end-page: 6967 ident: C67 article-title: A survey on sentiment analysis and opinion mining for social multimedia publication-title: Multimedia Tools Appl. – volume: 5 start-page: 1 issue: 1 year: 2012 end-page: 167 ident: C81 article-title: Sentiment analysis and opinion mining publication-title: Synth. Lect. Hum. Lang. Technol. – volume: 2015 start-page: 9 year: 2015 ident: C117 article-title: Sentiment analysis using common-sense and context information publication-title: Comput. Intell. Neurosci. – volume: 2 start-page: 1 issue: 1–2 year: 2008 end-page: 135 ident: C3 article-title: Opinion mining and sentiment analysis publication-title: Found. trends Inf. Retr. – volume: 53 start-page: 712 issue: 4 year: 1987 ident: C36 article-title: Universals and cultural differences in the judgments of facial expressions of emotion publication-title: J. Personality Soc. Psychol. – volume: 6 start-page: 15 issue: 1 year: 2017 ident: C94 article-title: Instagram photos reveal predictive markers of depression publication-title: EPJ Data Sci. – volume: 167 start-page: 26 year: 2019 end-page: 37 ident: C60 article-title: Image–text sentiment analysis via deep multimodal attentive fusion publication-title: Knowl.-Based Syst. – volume: 6 start-page: 38 issue: 3 year: 1999 end-page: 53 ident: C7 article-title: Semantics in visual information retrieval publication-title: IEEE Multimedia – volume: 106 start-page: 210 issue: 2 year: 2014 end-page: 233 ident: C87 article-title: A multi-view embedding space for modeling internet images, tags, and their semantics publication-title: Int. J. Comput. Vis. – start-page: 1818 year: June 2015 end-page: 1826 – start-page: 584 year: 2014 end-page: 599 – start-page: 1025 year: 2014 end-page: 1028 – start-page: 385 year: 2014 – start-page: 83 year: 2010 end-page: 92 – start-page: 117 year: 2008 end-page: 120 – start-page: 860 year: 2015 end-page: 868 – volume: 37 start-page: 626 issue: 4 year: 2005 end-page: 630 article-title: Emotional category data on images from the international affective picture system publication-title: Beh. Res. Meth. – start-page: 42 year: 2014 end-page: 51 – volume: 22 start-page: 211 issue: 4 year: 2004 end-page: 226 article-title: Conceptnet — a practical commonsense reasoning tool‐kit publication-title: BT Technol. J. – start-page: 290 year: 2019 end-page: 300 – start-page: 487 year: 2014 end-page: 495 – start-page: 51 year: 2017 end-page: 61 – start-page: 149 year: 2009 end-page: 153 – year: 2014 – volume: 167 start-page: 26 year: 2019 end-page: 37 article-title: Image–text sentiment analysis via deep multimodal attentive fusion publication-title: Knowl.‐Based Syst. – volume: 35 start-page: 716 issue: 3 year: 2013 end-page: 727 article-title: Tag completion for image retrieval publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 477 year: 2019 end-page: 487 – volume: 53 start-page: 712 issue: 4 year: 1987 article-title: Universals and cultural differences in the judgments of facial expressions of emotion publication-title: J. Personality Soc. Psychol. – start-page: 2378 year: 2015 end-page: 2379 – start-page: 233 year: 2014 – start-page: 1912 year: 2017 end-page: 1917 – volume: 37 start-page: 2085 issue: 10 year: 2015 end-page: 2098 article-title: Robust structured subspace learning for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2019 end-page: 13 article-title: Visual sentiment analysis by combining global and local information publication-title: Neural Process. Lett. – volume: 28 start-page: 94 issue: 5 year: 2011 end-page: 115 article-title: Aesthetics and emotions in images publication-title: IEEE Signal Process. Mag. – start-page: 288 year: 2006 end-page: 301 – volume: 8 start-page: 460 issue: 6 year: 1978 end-page: 473 article-title: Textural features corresponding to visual perception publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 573 year: 2009 end-page: 576 – start-page: 97 year: 1994 end-page: 134 – year: 2019 – start-page: 907 year: 2015 end-page: 910 – start-page: 3534 year: 2006 end-page: 3539 – volume: 9 start-page: 550 issue: 4 year: 2017 end-page: 562 article-title: Real‐time movie‐induced discrete emotion recognition from eeg signals publication-title: IEEE Trans. Affective Comput. – start-page: 1385 year: 2016 end-page: 1394 – volume: 11 start-page: 273 issue: 3 year: 1977 end-page: 294 article-title: Evidence for a three‐factor theory of emotions publication-title: J. Res. Personality – start-page: 1 year: 2007 end-page: 8 – volume: 77 start-page: 1115 issue: 1 year: 2018 end-page: 1132 article-title: Image sentiment prediction based on textual descriptions with adjective noun pairs publication-title: Multimedia Tools Appl. – volume: 52 start-page: 1061 issue: 6 year: 1987 article-title: Emotion knowledge: further exploration of a prototype approach publication-title: J. Personality Soc. Psychol. – start-page: 867 year: 2014 end-page: 876 – volume: 65 start-page: 3 year: 2017 end-page: 14 article-title: A survey of multimodal sentiment analysis publication-title: Image Vis. Comput. – start-page: 101 year: 2008 end-page: 104 – year: 1973 – volume: 23 start-page: 90 issue: 2 year: 2006 end-page: 100 article-title: Extracting moods from pictures and sounds: towards truly personalized tv publication-title: IEEE Signal Process. Mag. – volume: 78 start-page: 6939 issue: 6 year: 2019 end-page: 6967 article-title: A survey on sentiment analysis and opinion mining for social multimedia publication-title: Multimedia Tools Appl. – volume: 46 start-page: 596 issue: 2 year: 2014 end-page: 610 article-title: The nencki affective picture system (naps): introduction to a novel, standardized, wide‐range, high‐quality, realistic picture database publication-title: Beh. Res. Meth. – start-page: 241 year: 2014 – year: 2016 – year: 1992 – start-page: 1 year: 2018 end-page: 6 – volume: 21 start-page: 402 issue: 2 year: 2018 end-page: 415 article-title: The new modality: emoji challenges in prediction, anticipation, and retrieval publication-title: IEEE Trans. Multimed. – start-page: 902 year: 2010 end-page: 909 – year: 2010 – start-page: 381 year: 2015 end-page: 388 – volume: 6 start-page: 417 year: 2006 end-page: 422 – volume: 61 start-page: 2544 issue: 12 year: 2010 end-page: 2558 article-title: Sentiment strength detection in short informal text publication-title: J. Assoc. Inf. Sci. Technol. – start-page: 264 year: 2019 end-page: 276 – start-page: 308 year: 2017 end-page: 317 – volume: 1 start-page: 3 year: 1980 end-page: 31 article-title: A general psychoevolutionary theory of emotion publication-title: Theor. Emotion – volume: 44 start-page: 347 issue: 2 year: 1998 end-page: 352 article-title: Image query by impression words‐the iqi system publication-title: IEEE Trans. Consum. Electron. – start-page: 10 year: 2013 – start-page: 2736 year: 2013 end-page: 2743 – start-page: 1784 year: 2011 end-page: 1791 – volume: 73 start-page: 90 issue: 5 year: 2009 end-page: 102 article-title: Effects of word‐of‐mouth versus traditional marketing: findings from an internet social networking site publication-title: J. Mark. – start-page: 1 year: 2016 end-page: 6 – start-page: 771 year: 2013 end-page: 778 – year: 2013 – volume: 43 start-page: 468 issue: 2 year: 2011 end-page: 477 article-title: The geneva affective picture database (gaped): a new 730‐picture database focusing on valence and normative significance publication-title: Beh. Res. Meth. – year: June 2015 – start-page: 1918 year: 2017 end-page: 1923 – volume: 10 start-page: 1 issue: 12 year: 2015 end-page: 22 article-title: Sentiment of emojis publication-title: PLOS ONE – start-page: 3 year: 2014 end-page: 8 – volume: 54 start-page: 265 issue: 3 year: 2011 end-page: 273 article-title: We're all connected: the power of the social media ecosystem publication-title: Bus. Horiz. – volume: 7 start-page: 1 year: 2019 end-page: 1 article-title: Predicting social image popularity dynamics at time zero publication-title: IEEE Access – start-page: 527 year: 2010 end-page: 536 – volume: 60 start-page: 863 issue: 5 year: 2009 end-page: 876 article-title: Collective indexing of emotions in images. a study in emotional information retrieval publication-title: J. Am. Soc. Inf. Sci. Technol. – start-page: 224 year: 2017 end-page: 230 – start-page: 306 year: 2014 end-page: 312 – start-page: 47 year: 2014 end-page: 56 – start-page: 1311 year: 2015 end-page: 1314 – volume: 2015 start-page: 9 year: 2015 article-title: Sentiment analysis using common‐sense and context information publication-title: Comput. Intell. Neurosci. – volume: 49 start-page: 14 issue: 1 year: 2016 article-title: Socializing the semantic gap: a comparative survey on image tag assignment, refinement, and retrieval publication-title: ACM Comput. Surv. (CSUR) – start-page: 57 year: 2015 end-page: 62 – volume: 6 start-page: 15 issue: 1 year: 2017 article-title: Instagram photos reveal predictive markers of depression publication-title: EPJ Data Sci. – start-page: 15 year: 2016 – start-page: 223 year: 2013 end-page: 232 – start-page: 33 year: 2014 end-page: 40 – volume: 14 start-page: 883 issue: 3 year: 2012 end-page: 895 article-title: User‐aware image tag refinement via ternary semantic analysis publication-title: IEEE Trans. Multimed. – start-page: 857 year: 2012 end-page: 860 – start-page: 5534 year: 2018 end-page: 5541 – start-page: 347 year: 2005 end-page: 354 – volume: 312 start-page: 218 year: 2018 end-page: 228 article-title: Boosting image sentiment analysis with visual attention publication-title: Neurocomputing – volume: 7 start-page: 143 issue: 1 year: 2005 end-page: 154 article-title: Affective video content representation and modeling publication-title: IEEE Trans. Multimedia – start-page: 305 year: 2012 end-page: 313 article-title: Memorability of image regions publication-title: Adv. Neural Inf. Process. Syst. – start-page: 415 year: 2012 end-page: 463 – start-page: 2048 year: 2015 end-page: 2057 – volume: 2 start-page: 1 issue: 1–2 year: 2008 end-page: 135 article-title: Opinion mining and sentiment analysis publication-title: Found. trends Inf. Retr. – volume: 6 start-page: 38 issue: 3 year: 1999 end-page: 53 article-title: Semantics in visual information retrieval publication-title: IEEE Multimedia – start-page: 1179 year: 2015 end-page: 1182 – start-page: 25 year: 2009 end-page: 30 – start-page: 529 year: 2014 end-page: 545 – volume: 106 start-page: 210 issue: 2 year: 2014 end-page: 233 article-title: A multi‐view embedding space for modeling internet images, tags, and their semantics publication-title: Int. J. Comput. Vis. – start-page: 117 year: 2013 end-page: 124 – year: April 2016 – start-page: 503 year: 2011 end-page: 510 – start-page: 3266 year: 2017 end-page: 3272 – volume: 5 start-page: 1 issue: 1 year: 2012 end-page: 167 article-title: Sentiment analysis and opinion mining publication-title: Synth. Lect. Hum. Lang. Technol. – volume: 118 start-page: 272 year: 2018 end-page: 299 article-title: Deep learning for aspect‐based sentiment analysis a comparative review publication-title: Expert Syst. Appl. – volume: 123 start-page: 394 issue: 4 year: 1994 article-title: Effects of color on emotions publication-title: J. Exper. Psychol.: Gen. – start-page: 251 year: 2010 end-page: 260 – start-page: 349 year: 2019 end-page: 367 – start-page: 1 year: 2012 end-page: 5 – volume: 8 issue: 4 year: 2018 article-title: Deep learning for sentiment analysis: a survey publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – start-page: 715 year: 2010 end-page: 718 – start-page: 159 year: 2015 end-page: 168 – volume: 10 start-page: 2057 issue: 8 year: 2019 end-page: 2070 article-title: Ensemble learning on visual and textual data for social image emotion classification publication-title: Int. J. Machine Learn. Cybern. – volume: 65 start-page: 15 year: 2017 end-page: 22 article-title: From pixels to sentiment: fine‐tuning CNNS for visual sentiment prediction publication-title: Image Vis. Comput. – volume: 49 start-page: 197 issue: 3 year: 1952 article-title: The nature and measurement of meaning publication-title: Psychol. Bull. – start-page: 2837 year: 2016 end-page: 2841 – start-page: 3128 year: 2015 end-page: 3137 – volume: 34 start-page: 2189 issue: 11 year: 2012 end-page: 2202 article-title: Measuring the objectness of image windows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 195 year: 2015 end-page: 202 – year: 2017 – start-page: 703 year: 2013 end-page: 710 – start-page: 2416 year: 2015 end-page: 2424 – volume: 16 start-page: 1059 issue: 4 year: 2014 end-page: 1074 article-title: A cross‐modal approach for extracting semantic relationships between concepts using tagged images publication-title: IEEE Trans. Multimed. – volume: 6 start-page: 109 year: 1993 end-page: 133 article-title: The network model of emotion: motivational connections publication-title: Perspect. Anger Emotion: Adv. Soc. Cogn. – start-page: 145 year: 2011 end-page: 152 – start-page: 484 year: July 2017 end-page: 492 – start-page: 4651 year: 2016 end-page: 4659 – year: 1999 – ident: e_1_2_8_114_1 doi: 10.1109/WACV.2013.6475008 – ident: e_1_2_8_109_1 doi: 10.1145/3123266.3127902 – ident: e_1_2_8_111_1 doi: 10.1109/ACCESS.2019.2953856 – ident: e_1_2_8_78_1 doi: 10.1145/2647868.2654930 – ident: e_1_2_8_118_1 doi: 10.1155/2015/715730 – ident: e_1_2_8_54_1 – ident: e_1_2_8_87_1 doi: 10.1145/2906152 – ident: e_1_2_8_22_1 – ident: e_1_2_8_46_1 doi: 10.1109/ICME.2016.7552961 – ident: e_1_2_8_82_1 doi: 10.2200/S00416ED1V01Y201204HLT016 – ident: e_1_2_8_83_1 doi: 10.1109/TPAMI.2012.28 – ident: e_1_2_8_11_1 doi: 10.1145/2647868.2655035 – ident: e_1_2_8_36_1 – ident: e_1_2_8_40_1 – ident: e_1_2_8_134_1 doi: 10.1145/1873951.1873987 – ident: e_1_2_8_33_1 doi: 10.1145/2502081.2502282 – ident: e_1_2_8_10_1 – ident: e_1_2_8_16_1 doi: 10.1016/0092-6566(77)90037-X – ident: e_1_2_8_66_1 – ident: e_1_2_8_91_1 doi: 10.1145/1631272.1631359 – ident: e_1_2_8_35_1 doi: 10.1145/2502069.2502079 – ident: e_1_2_8_97_1 – ident: e_1_2_8_130_1 doi: 10.1007/978-3-319-10593-2_35 – ident: e_1_2_8_84_1 doi: 10.1109/MSP.2006.1621452 – ident: e_1_2_8_108_1 – ident: e_1_2_8_126_1 doi: 10.1109/TMM.2018.2862363 – start-page: 97 volume-title: Emotions: Essays on Emotion Theory year: 1994 ident: e_1_2_8_12_1 – ident: e_1_2_8_99_1 doi: 10.1509/jmkg.73.5.90 – ident: e_1_2_8_132_1 doi: 10.1109/TMM.2014.2306655 – ident: e_1_2_8_93_1 doi: 10.1145/2671470.2671475 – ident: e_1_2_8_116_1 doi: 10.1109/ICCV.2011.6126281 – ident: e_1_2_8_53_1 – ident: e_1_2_8_62_1 doi: 10.1016/B978-0-12-814601-9.00018-3 – ident: e_1_2_8_67_1 doi: 10.1016/j.imavis.2017.08.003 – ident: e_1_2_8_75_1 doi: 10.3758/s13428-011-0064-1 – ident: e_1_2_8_42_1 – ident: e_1_2_8_59_1 doi: 10.1007/978-3-030-30642-7_43 – ident: e_1_2_8_26_1 doi: 10.1145/2566486.2567996 – ident: e_1_2_8_80_1 doi: 10.1109/CVPR.2007.383218 – ident: e_1_2_8_21_1 doi: 10.1109/ICCV.2011.6126444 – ident: e_1_2_8_74_1 doi: 10.1109/ICIP.2008.4711701 – ident: e_1_2_8_129_1 doi: 10.1007/978-3-319-10605-2_38 – ident: e_1_2_8_98_1 doi: 10.1016/j.bushor.2011.01.007 – ident: e_1_2_8_23_1 doi: 10.1109/CVPR.2011.5995721 – ident: e_1_2_8_58_1 doi: 10.1109/CBMI.2018.8516481 – ident: e_1_2_8_105_1 doi: 10.6028/NIST.SP.500-302.microblog-overview – ident: e_1_2_8_2_1 doi: 10.1007/978-1-4614-3223-4_13 – ident: e_1_2_8_31_1 doi: 10.1145/1873951.1873965 – ident: e_1_2_8_25_1 doi: 10.1145/2733373.2806361 – ident: e_1_2_8_121_1 doi: 10.1109/CVPR.2016.503 – start-page: 241 volume-title: Scene vision: making sense of what we see year: 2014 ident: e_1_2_8_19_1 doi: 10.7551/mitpress/9780262027854.003.0012 – ident: e_1_2_8_7_1 – ident: e_1_2_8_123_1 – ident: e_1_2_8_20_1 doi: 10.1109/MSP.2011.941851 – ident: e_1_2_8_29_1 doi: 10.1145/1873951.1874060 – ident: e_1_2_8_92_1 doi: 10.1109/ICIP.2008.4711705 – ident: e_1_2_8_95_1 doi: 10.1140/epjds/s13688-017-0110-z – ident: e_1_2_8_64_1 doi: 10.1007/s13042-017-0734-0 – ident: e_1_2_8_55_1 doi: 10.1007/s11042-016-4310-5 – ident: e_1_2_8_125_1 doi: 10.1371/journal.pone.0144296 – ident: e_1_2_8_39_1 doi: 10.1145/2578726.2578756 – ident: e_1_2_8_136_1 doi: 10.1007/978-3-319-68560-1_5 – ident: e_1_2_8_41_1 – ident: e_1_2_8_110_1 doi: 10.1145/3123266.3127903 – ident: e_1_2_8_56_1 doi: 10.1002/asi.21416 – ident: e_1_2_8_38_1 – start-page: 1 year: 2019 ident: e_1_2_8_65_1 article-title: Visual sentiment analysis by combining global and local information publication-title: Neural Process. Lett. – ident: e_1_2_8_51_1 doi: 10.1016/j.imavis.2017.01.011 – volume-title: The center for research in psychophysiology year: 1999 ident: e_1_2_8_71_1 – ident: e_1_2_8_112_1 doi: 10.1109/CVPR.2017.59 – ident: e_1_2_8_17_1 doi: 10.1037/0096-3445.123.4.394 – ident: e_1_2_8_88_1 doi: 10.1007/s11263-013-0658-4 – ident: e_1_2_8_34_1 doi: 10.1016/B978-0-12-558701-3.50007-7 – volume-title: The art of color: the subjective experience and objective rationale of color year: 1973 ident: e_1_2_8_13_1 – ident: e_1_2_8_115_1 doi: 10.1109/ICCV.2013.340 – volume: 6 start-page: 109 year: 1993 ident: e_1_2_8_14_1 article-title: The network model of emotion: motivational connections publication-title: Perspect. Anger Emotion: Adv. Soc. Cogn. – ident: e_1_2_8_104_1 doi: 10.1145/1743384.1743475 – ident: e_1_2_8_107_1 doi: 10.24963/ijcai.2017/427 – ident: e_1_2_8_101_1 doi: 10.1145/1592665.1592672 – ident: e_1_2_8_120_1 – ident: e_1_2_8_128_1 doi: 10.3115/1220575.1220619 – ident: e_1_2_8_48_1 doi: 10.1109/CVPR.2013.105 – ident: e_1_2_8_122_1 doi: 10.1145/2480362.2480498 – ident: e_1_2_8_131_1 doi: 10.1109/CVPR.2010.5540120 – ident: e_1_2_8_3_1 – ident: e_1_2_8_124_1 doi: 10.1145/2733373.2806335 – ident: e_1_2_8_79_1 doi: 10.1109/VSMM.2009.28 – start-page: 305 year: 2012 ident: e_1_2_8_96_1 article-title: Memorability of image regions publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_8_69_1 doi: 10.1109/30.681949 – ident: e_1_2_8_44_1 – ident: e_1_2_8_103_1 doi: 10.1145/2955129.2955154 – ident: e_1_2_8_63_1 – ident: e_1_2_8_15_1 doi: 10.1037/h0055737 – ident: e_1_2_8_27_1 doi: 10.1145/2578726.2578776 – ident: e_1_2_8_90_1 doi: 10.1109/TPAMI.2012.124 – ident: e_1_2_8_72_1 doi: 10.1037/0022-3514.52.6.1061 – ident: e_1_2_8_47_1 doi: 10.1109/ICASSP.2016.7472195 – volume: 118 start-page: 272 year: 2018 ident: e_1_2_8_5_1 article-title: Deep learning for aspect‐based sentiment analysis a comparative review publication-title: Expert Syst. Appl. – ident: e_1_2_8_127_1 doi: 10.1109/ICCVW.2019.00550 – ident: e_1_2_8_117_1 doi: 10.1109/ICCV.2015.278 – ident: e_1_2_8_135_1 doi: 10.1109/TAFFC.2017.2660485 – ident: e_1_2_8_73_1 doi: 10.1037//0033-295X.99.3.561 – ident: e_1_2_8_133_1 doi: 10.1109/TPAMI.2015.2400461 – ident: e_1_2_8_4_1 doi: 10.1561/1500000011 – ident: e_1_2_8_60_1 doi: 10.1007/978-3-030-05710-7_22 – ident: e_1_2_8_18_1 doi: 10.1007/11744078_23 – ident: e_1_2_8_50_1 – ident: e_1_2_8_37_1 doi: 10.1037/0022-3514.53.4.712 – ident: e_1_2_8_57_1 doi: 10.1016/j.neucom.2018.05.104 – ident: e_1_2_8_106_1 – ident: e_1_2_8_85_1 doi: 10.1109/CVPR.2015.7298932 – ident: e_1_2_8_43_1 – ident: e_1_2_8_9_1 doi: 10.1002/asi.21043 – ident: e_1_2_8_70_1 doi: 10.1109/TMM.2004.840618 – ident: e_1_2_8_113_1 doi: 10.1109/CVPR.2015.7298791 – ident: e_1_2_8_6_1 doi: 10.1002/widm.1253 – ident: e_1_2_8_52_1 doi: 10.1109/ICCVW.2017.45 – ident: e_1_2_8_28_1 doi: 10.1145/2615569.2615700 – ident: e_1_2_8_32_1 doi: 10.3758/BF03192732 – ident: e_1_2_8_119_1 doi: 10.1023/B:BTTJ.0000047600.45421.6d – ident: e_1_2_8_76_1 doi: 10.3758/s13428-013-0379-1 – ident: e_1_2_8_86_1 doi: 10.1109/CVPR.2015.7298932 – ident: e_1_2_8_45_1 doi: 10.1145/2733373.2806246 – ident: e_1_2_8_24_1 – ident: e_1_2_8_102_1 doi: 10.1145/2671188.2749405 – ident: e_1_2_8_68_1 doi: 10.1007/s11042-018-6445-z – ident: e_1_2_8_89_1 doi: 10.1109/TMM.2012.2188782 – ident: e_1_2_8_137_1 doi: 10.1145/2733373.2806311 – ident: e_1_2_8_94_1 doi: 10.32964/TJ17.04 – ident: e_1_2_8_100_1 doi: 10.1145/2661714.2661722 – ident: e_1_2_8_30_1 – ident: e_1_2_8_49_1 – ident: e_1_2_8_61_1 doi: 10.1016/j.knosys.2019.01.019 – ident: e_1_2_8_8_1 doi: 10.1109/93.790610 – ident: e_1_2_8_77_1 doi: 10.1145/2964284.2964289 – ident: e_1_2_8_81_1 doi: 10.1109/TSMC.1978.4309999 |
| SSID | ssj0059085 |
| Score | 2.476129 |
| SecondaryResourceType | review_article |
| Snippet | Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1440 |
| SubjectTerms | data sources dataset definition emotional models feature design general Visual Sentiment Analysis systems pertinent publications publishing Review Article sentiment analysis text analysis |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_bfPHFb3Hzg4LigxBtm6RNH3U4pg8y1MHeytJcYSDd2Bf433uXdoMhTPC1zR30kkt-18v9jrEboKymCIAPY-1zGYDhiQwlt8IojdGPVtbd8n2Lun35OlCDGmuvamFKfoj1DzfyDLdfk4MPTdmFBEEtTuII5nw0IUrPILmn_Gmd7QSIZ2iZh7K32o6pp7dyVZHUTz5SyTq1mTz8UrFxONXx9SZkdWdO54DtVWDReyxn95DVoDhi-xVw9Cq3nB2z64_FdAnf3rjwlqPZAkWopMjx9nvDinXkhPU7z5_tLq-6H_BMCBnzxFoiV4c8tmAjtJlFLOIjmpAxgIggUFpkoEMpIozRbBYFJsdoLfZBQ5THRpyyRjEu4Ix5SmeZ0lpIrXIpJRg8hLQwMYKvALWKJvNXn51mFTU4daj4Sl2KWiYpmiJFS6VkqZQs1WR3a5FJyYuxbfAtPau8Y7ZtoHDm_ltl-tJ7D586jq2n9S-pc7YbUuxMfYiSC9aYTxdwiQBjbq7cAvoB4XzFpQ priority: 102 providerName: Wiley-Blackwell |
| Title | Survey on visual sentiment analysis |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.1270 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.1270 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5se_HiW6yPElA8CGub7G6yOdZHqSJS1ErxEprsRApSpS_w3zuTpEpBqtdkdyDfbna_2dn5BuAEOaopXRT9wDSEcjEWofKUsDLWhrwfo212y_feb3fVbU_3ftKj7eCVa2WI-Ykbn5ZjnnnAV7dpHa4XGOcFSYjf1qmBGHywtqcbnnMgtQQVj7xzrwyVm6s7drHylZnLe-ssQZJLy_s6_I5y_mJkYZ8q0etF9pptP60NWCt4o9PMB3oTVnC4BesFh3SKP3S8DceP09EMP533oTMbjKfUhbOLMgl_p18IkOxAt3X9dNkWRSEEkUipAhFayzrrmAYWrU_wWaIlDSIWKkCUPrrayASNp6RP7ppNfDdOyXELGmjQT4NY7kJ5-D7EPXC0SRJtjFRGp0opjGk_MjIOiIe5ZFVWoTH_7CgpVMK5WMVblEWrVRgRFBEhFTFSESNVhbPvLh-5RMayxqf8bD6IyxrKDO6_TUY3nQfvopUJ9-z_1_wBrHrsOXMVovAQypPRFI-IXkziGpQ81alBpfncfenWijn0Bacjyhk |
| linkProvider | Institution of Engineering and Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aetCLb7E-A4oHYTXJPrI5-iqt1lK0hd5Ck51AQdLSF_jv3dmkhSJU8JrsDGSS2flmJ_MNIdeAVU3mAe0HyqXcg5iG3OdUs1gok_0ooe1fvi1Z7_LXnuiVyPOiFybnh1geuKFn2P0aHRwPpPOEkyNJ5gCmdDBCTk8vvMMCaplscOlJTMF83l7sxzjUW9i2SBwoL0W4rG2G979UrESnsrm9illt0Kntku0CLToP-evdIyXI9slOgRydwi8nB-Tqczaew7czzJz5YDIzIthTZIn7nX5BO3JIurWXzlOdFuMPaMIYD2ioNbKrQxpo0NIYTRsw4ho4wQMAJsETiiWgfM6kSdJ0Ir04Nela4IICmQYxOyKVbJjBMXGEShKhFONKpJxziE0UUiwODPryjFZWJe7isaOk4AbHERVfka1R8zAypoiMpSK0VISWqpLbpcgoJ8ZYt_gGrxXuMVm3kFlz_60yarQ__Meapes5-ZfUJdmsd96bUbPRejslWz4m0jiUKDwjlel4BucGbUzjC_sx_QCj5ckR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76APHiW6zPgOJBiCbZ3WRzrNbQqpSiVoqX0GQnUJC09AX-e3c320IRKnhNdgYyyex8k9n5BuAKVVWTuGj3A-7Y1MXEDqlHbUESxmX2w5nQp3zbfrNLn3qsV4LGohem4IdY_nBTnqH3a-XgOBJZkXBSRZI5wKk9GClOTze8VQXUMlRlPHdoBar1j-5nd7Ejq7HeTDdGqpHyPguX1c3w7peSlfhUlrdXUasOO9EObBm8aNWLF7wLJcz3YNtgR8t45mQfLt9m4zl-W8Pcmg8mMymiuoo0db_VN8QjB9CNHt8fmrYZgGCnhNDADoVQ_OqYBQKFL80mJBxxJKCgASLx0WWcpMg9SnyZponUd5NMJmyBgxz9LEjIIVTyYY5HYDGepoxzQjnLKKWYyDjESRJI_OVKraQGzuKx49Swg6shFV-xrlLTMJamiKWlYmWpWFmqBjdLkVFBjbFu8bW6Zhxksm4h0eb-W2Xc6rx695Em7Dn-l9QFbHQaUfzSaj-fwKanMmk1lSg8hcp0PMMzCTemybn5mn4AfePKZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+visual+sentiment+analysis&rft.jtitle=IET+image+processing&rft.au=Ortis%2C+Alessandro&rft.au=Farinella%2C+Giovanni+Maria&rft.au=Battiato%2C+Sebastiano&rft.date=2020-06-19&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=14&rft.issue=8&rft.spage=1440&rft.epage=1456&rft_id=info:doi/10.1049%2Fiet-ipr.2019.1270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ipr_2019_1270 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |