Survey on visual sentiment analysis

Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of techniques have been developed for various data sources and problems, resulting in a large body of research. This paper reviews pertinent publicatio...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 14; no. 8; pp. 1440 - 1456
Main Authors Ortis, Alessandro, Farinella, Giovanni Maria, Battiato, Sebastiano
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 19.06.2020
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/iet-ipr.2019.1270

Cover

Abstract Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of techniques have been developed for various data sources and problems, resulting in a large body of research. This paper reviews pertinent publications and tries to present an exhaustive overview of the field. After a description of the task and the related applications, the subject is tackled under different main headings. The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view: emotional models, dataset definition, feature design. A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways. To this aim, this paper considers a structured formalization of the problem which is usually used for the analysis of text, and discusses it's suitability in the context of Visual Sentiment Analysis. The paper also includes a description of new challenges, the evaluation from the viewpoint of progress toward more sophisticated systems and related practical applications, as well as a summary of the insights resulting from this study.
AbstractList Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of techniques have been developed for various data sources and problems, resulting in a large body of research. This paper reviews pertinent publications and tries to present an exhaustive overview of the field. After a description of the task and the related applications, the subject is tackled under different main headings. The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view: emotional models, dataset definition, feature design. A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways. To this aim, this paper considers a structured formalization of the problem which is usually used for the analysis of text, and discusses it's suitability in the context of Visual Sentiment Analysis. The paper also includes a description of new challenges, the evaluation from the viewpoint of progress toward more sophisticated systems and related practical applications, as well as a summary of the insights resulting from this study.
Author Farinella, Giovanni Maria
Battiato, Sebastiano
Ortis, Alessandro
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0003-3461-4679
  surname: Ortis
  fullname: Ortis, Alessandro
  email: ortis@dmi.unict.it
  organization: Department of Mathematics and Computer Science, University of Catania, Catania, Sicily, Italy
– sequence: 2
  givenname: Giovanni Maria
  surname: Farinella
  fullname: Farinella, Giovanni Maria
  organization: Department of Mathematics and Computer Science, University of Catania, Catania, Sicily, Italy
– sequence: 3
  givenname: Sebastiano
  orcidid: 0000-0001-6127-2470
  surname: Battiato
  fullname: Battiato, Sebastiano
  organization: Department of Mathematics and Computer Science, University of Catania, Catania, Sicily, Italy
BookMark eNqFkEtLAzEQgINUsK3-AG8LnrdOkk2y8abFaqGg-DiHdHcWUra7JdlW9t-bpeLBQ73MA-ab4ZsJGTVtg4RcU5hRyPStwy51Oz9jQPWMMgVnZEyVoKmWUo1-a6EvyCSEDYDQkIsxuXnf-wP2SdskBxf2tk4CNp3bxpDYxtZ9cOGSnFe2Dnj1k6fkc_H4MX9OVy9Py_n9Ki04z1Sqy5LmDLBSJZYyF7FlAjRXmULkEqnIeYE5y7jMQJeFpOsqz0AB5igrteZTQo97C9-G4LEyO--21veGghksTbQ00dIMlmawjIz6wxSus51rm85bV58k747kl6ux__-UWb6-sYcFMC5UhNMjPIxt2r2Prwonjn0DxiR7sg
CitedBy_id crossref_primary_10_1109_TAFFC_2021_3071131
crossref_primary_10_1016_j_knosys_2024_111429
crossref_primary_10_1109_TMM_2022_3217414
crossref_primary_10_1007_s11042_024_19999_8
crossref_primary_10_3390_s20247115
crossref_primary_10_1016_j_heliyon_2024_e30180
crossref_primary_10_1145_3450971
crossref_primary_10_1080_15230406_2023_2172081
crossref_primary_10_1007_s13278_025_01443_w
crossref_primary_10_1109_ACCESS_2023_3274744
crossref_primary_10_1093_comjnl_bxae133
crossref_primary_10_1109_TCDS_2021_3135948
crossref_primary_10_1109_TAFFC_2022_3225238
crossref_primary_10_52965_001c_70401
crossref_primary_10_2139_ssrn_3998058
crossref_primary_10_3389_frai_2023_1125533
crossref_primary_10_1109_TMM_2021_3118208
crossref_primary_10_1016_j_eswa_2024_125970
crossref_primary_10_1145_3586075
crossref_primary_10_1007_s41060_024_00594_x
crossref_primary_10_1007_s12046_025_02679_0
crossref_primary_10_1007_s00530_024_01553_z
crossref_primary_10_1016_j_inffus_2024_102367
crossref_primary_10_1049_ipr2_13174
crossref_primary_10_1007_s11760_024_03074_8
crossref_primary_10_1177_01655515241293766
crossref_primary_10_1007_s42803_023_00077_8
crossref_primary_10_1155_2022_3612433
crossref_primary_10_3390_s22103628
crossref_primary_10_1007_s11042_023_18105_8
crossref_primary_10_4018_IJITWE_334595
crossref_primary_10_1007_s42979_025_03670_6
crossref_primary_10_1016_j_procs_2023_01_021
crossref_primary_10_1109_ACCESS_2023_3292588
crossref_primary_10_3390_app13052925
crossref_primary_10_1109_JPROC_2023_3309299
crossref_primary_10_3390_s21062136
crossref_primary_10_7763_IJCTE_2023_V15_1346
crossref_primary_10_1007_s10462_022_10212_6
crossref_primary_10_1007_s13042_023_02068_1
crossref_primary_10_1089_cyber_2020_0729
crossref_primary_10_1109_TNNLS_2022_3219615
crossref_primary_10_1016_j_patcog_2024_110261
crossref_primary_10_4018_IJITSA_335940
crossref_primary_10_1016_j_ipm_2024_103823
Cites_doi 10.1109/WACV.2013.6475008
10.1145/3123266.3127902
10.1109/ACCESS.2019.2953856
10.1145/2647868.2654930
10.1155/2015/715730
10.1145/2906152
10.1109/ICME.2016.7552961
10.2200/S00416ED1V01Y201204HLT016
10.1109/TPAMI.2012.28
10.1145/2647868.2655035
10.1145/1873951.1873987
10.1145/2502081.2502282
10.1016/0092-6566(77)90037-X
10.1145/1631272.1631359
10.1145/2502069.2502079
10.1007/978-3-319-10593-2_35
10.1109/MSP.2006.1621452
10.1109/TMM.2018.2862363
10.1509/jmkg.73.5.90
10.1109/TMM.2014.2306655
10.1145/2671470.2671475
10.1109/ICCV.2011.6126281
10.1016/B978-0-12-814601-9.00018-3
10.1016/j.imavis.2017.08.003
10.3758/s13428-011-0064-1
10.1007/978-3-030-30642-7_43
10.1145/2566486.2567996
10.1109/CVPR.2007.383218
10.1109/ICCV.2011.6126444
10.1109/ICIP.2008.4711701
10.1007/978-3-319-10605-2_38
10.1016/j.bushor.2011.01.007
10.1109/CVPR.2011.5995721
10.1109/CBMI.2018.8516481
10.6028/NIST.SP.500-302.microblog-overview
10.1007/978-1-4614-3223-4_13
10.1145/1873951.1873965
10.1145/2733373.2806361
10.1109/CVPR.2016.503
10.7551/mitpress/9780262027854.003.0012
10.1109/MSP.2011.941851
10.1145/1873951.1874060
10.1109/ICIP.2008.4711705
10.1140/epjds/s13688-017-0110-z
10.1007/s13042-017-0734-0
10.1007/s11042-016-4310-5
10.1371/journal.pone.0144296
10.1145/2578726.2578756
10.1007/978-3-319-68560-1_5
10.1145/3123266.3127903
10.1002/asi.21416
10.1016/j.imavis.2017.01.011
10.1109/CVPR.2017.59
10.1037/0096-3445.123.4.394
10.1007/s11263-013-0658-4
10.1016/B978-0-12-558701-3.50007-7
10.1109/ICCV.2013.340
10.1145/1743384.1743475
10.24963/ijcai.2017/427
10.1145/1592665.1592672
10.3115/1220575.1220619
10.1109/CVPR.2013.105
10.1145/2480362.2480498
10.1109/CVPR.2010.5540120
10.1145/2733373.2806335
10.1109/VSMM.2009.28
10.1109/30.681949
10.1145/2955129.2955154
10.1037/h0055737
10.1145/2578726.2578776
10.1109/TPAMI.2012.124
10.1037/0022-3514.52.6.1061
10.1109/ICASSP.2016.7472195
10.1109/ICCVW.2019.00550
10.1109/ICCV.2015.278
10.1109/TAFFC.2017.2660485
10.1037//0033-295X.99.3.561
10.1109/TPAMI.2015.2400461
10.1561/1500000011
10.1007/978-3-030-05710-7_22
10.1007/11744078_23
10.1037/0022-3514.53.4.712
10.1016/j.neucom.2018.05.104
10.1109/CVPR.2015.7298932
10.1002/asi.21043
10.1109/TMM.2004.840618
10.1109/CVPR.2015.7298791
10.1002/widm.1253
10.1109/ICCVW.2017.45
10.1145/2615569.2615700
10.3758/BF03192732
10.1023/B:BTTJ.0000047600.45421.6d
10.3758/s13428-013-0379-1
10.1145/2733373.2806246
10.1145/2671188.2749405
10.1007/s11042-018-6445-z
10.1109/TMM.2012.2188782
10.1145/2733373.2806311
10.32964/TJ17.04
10.1145/2661714.2661722
10.1016/j.knosys.2019.01.019
10.1109/93.790610
10.1145/2964284.2964289
10.1109/TSMC.1978.4309999
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2019.1270
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1456
ExternalDocumentID 10_1049_iet_ipr_2019_1270
IPR2BF02357
Genre reviewArticle
GroupedDBID 0R
24P
29I
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS
O9-
OCL
P2P
QWB
RIE
RNS
RUI
UNR
ZL0
.DC
0R~
1OC
4.4
8FE
8FG
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3347-9dd1820ef7ded685dd125093747ee36e1583ce82436409dc61bf84070e8e6f7b3
IEDL.DBID IDLOA
ISSN 1751-9659
IngestDate Thu Apr 24 23:00:11 EDT 2025
Wed Oct 29 21:14:30 EDT 2025
Wed Jan 22 16:32:18 EST 2025
Tue Jan 05 21:50:47 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords data sources
text analysis
emotional models
sentiment analysis
pertinent publications
feature design
publishing
dataset definition
general Visual Sentiment Analysis systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3347-9dd1820ef7ded685dd125093747ee36e1583ce82436409dc61bf84070e8e6f7b3
ORCID 0000-0001-6127-2470
0000-0003-3461-4679
PageCount 17
ParticipantIDs wiley_primary_10_1049_iet_ipr_2019_1270_IPR2BF02357
iet_journals_10_1049_iet_ipr_2019_1270
crossref_citationtrail_10_1049_iet_ipr_2019_1270
crossref_primary_10_1049_iet_ipr_2019_1270
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-06-19
PublicationDateYYYYMMDD 2020-06-19
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-19
  day: 19
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Pang, B.; Lee, L. (C3) 2008; 2
Wu, L.; Jin, R.; Jain, A.K. (C89) 2013; 35
Katsurai, M.; Ogawa, T.; Haseyama, M. (C131) 2014; 16
Osgood, C.E. (C14) 1952; 49
Tamura, H.; Mori, S.; Yamawaki, T. (C80) 1978; 8
Russell, J.A.; Mehrabian, A. (C15) 1977; 11
Trusov, M.; Bucklin, R.E.; Pauwels, K. (C98) 2009; 73
Kralj Novak, P.; Smailović, J.; Sluban, B. (C124) 2015; 10
Lang, P.J. (C13) 1993; 6
Khosla, A.; Xiao, J.; Torralba, A. (C95) 2012
Ortis, A.; Farinella, G.M.; Battiato, S. (C110) 2019; 7
Marchewka, A.; Żurawski, Ł.; Jednoróg, K. (C75) 2014; 46
Valdez, P.; Mehrabian, A. (C16) 1994; 123
Dohaiha, H.H.; Prasad, P.; Maag, A. (C4) 2018; 118
Song, K.; Yao, T.; Ling, Q. (C56) 2018; 312
Campos, V.; Jou, B.; Nieto, X.G.i. (C50) 2017; 65
Hanna, R.; Rohm, A.; Crittenden, V.L. (C97) 2011; 54
Ekman, P.; Friesen, W.V.; O'Sullivan, M. (C36) 1987; 53
Soleymani, M.; Garcia, D.; Jou, B. (C66) 2017; 65
Reece, A.G.; Danforth, C.M. (C94) 2017; 6
Huang, F.; Zhang, X.; Zhao, Z. (C60) 2019; 167
Colombo, C.; Del Bimbo, A.; Pala, P. (C7) 1999; 6
Shaver, P.; Schwartz, J.; Kirson, D. (C71) 1987; 52
Gong, Y.; Ke, Q.; Isard, M. (C87) 2014; 106
Sang, J.; Xu, C.; Liu, J. (C88) 2012; 14
Li, X.; Uricchio, T.; Ballan, L. (C86) 2016; 49
Schmidt, S.; Stock, W.G. (C8) 2009; 60
Dan-Glauser, E.S.; Scherer, K.R. (C74) 2011; 43
Cappallo, S.; Svetlichnaya, S.; Garrigues, P. (C125) 2018; 21
Li, Z.; Liu, J.; Tang, J. (C132) 2015; 37
Zhang, L.; Wang, S.; Liu, B. (C5) 2018; 8
Plutchik, R. (C33) 1980; 1
Thelwall, M.; Buckley, K.; Paltoglou, G. (C55) 2010; 61
Hanjalic, A. (C83) 2006; 23
Li, Z.; Fan, Y.; Jiang, B. (C67) 2019; 78
Liu, H.; Singh, P. (C118) 2004; 22
Wu, L.; Qi, M.; Jian, M. (C64) 2019
Liu, B. (C81) 2012; 5
Alexe, B.; Deselaers, T.; Ferrari, V. (C82) 2012; 34
Corchs, S.; Fersini, E.; Gasparini, F. (C63) 2019; 10
Agarwal, B.; Mittal, N.; Bansal, P. (C117) 2015; 2015
Liu, Y.-J.; Yu, M.; Zhao, G. (C134) 2017; 9
Joshi, D.; Datta, R.; Fedorovskaya, E. (C19) 2011; 28
Hanjalic, A.; Xu, L.-Q. (C69) 2005; 7
Hayashi, T.; Hagiwara, M. (C68) 1998; 44
Li, Z.; Fan, Y.; Liu, W. (C54) 2018; 77
Mikels, J.A.; Fredrickson, B.L.; Larkin, G.R. (C31) 2005; 37
2017; 6
2004; 22
2015; 37
2019; 10
1973
2011; 54
2012; 14
2008; 2
1978; 8
2017; 9
2019; 167
1998; 44
2010; 61
1993; 6
2018; 8
2006; 23
April 2016
2014; 16
June 2015
2011; 28
2005; 37
2018; 77
2016; 49
2019; 7
1987; 53
1987; 52
2012
2011
2010
2009; 60
2017; 65
2019; 78
2015; 10
2009
2008
2007
2006
2006; 6
2014; 46
1994
2005
1992
1999; 6
2012; 34
2018; 21
1999
1994; 123
2014; 106
2009; 73
1952; 49
2013; 35
2018; 118
July 2017
1980; 1
2018; 312
2015; 2015
2019
2018
2005; 7
2017
2011; 43
1977; 11
2016
2015
2014
2013
2012; 5
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
Dohaiha H.H. (e_1_2_8_5_1) 2018; 118
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
Khosla A. (e_1_2_8_96_1) 2012
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Lang P.J. (e_1_2_8_71_1) 1999
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
Lang P.J. (e_1_2_8_14_1) 1993; 6
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
Itten J. (e_1_2_8_13_1) 1973
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Joshi D. (e_1_2_8_19_1) 2014
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
Bradley M.M. (e_1_2_8_12_1) 1994
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
Wu L. (e_1_2_8_65_1) 2019
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 37
  start-page: 626
  issue: 4
  year: 2005
  end-page: 630
  ident: C31
  article-title: Emotional category data on images from the international affective picture system
  publication-title: Beh. Res. Meth.
– volume: 28
  start-page: 94
  issue: 5
  year: 2011
  end-page: 115
  ident: C19
  article-title: Aesthetics and emotions in images
  publication-title: IEEE Signal Process. Mag.
– volume: 16
  start-page: 1059
  issue: 4
  year: 2014
  end-page: 1074
  ident: C131
  article-title: A cross-modal approach for extracting semantic relationships between concepts using tagged images
  publication-title: IEEE Trans. Multimed.
– start-page: 305
  year: 2012
  end-page: 313
  ident: C95
  article-title: Memorability of image regions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 2057
  issue: 8
  year: 2019
  end-page: 2070
  ident: C63
  article-title: Ensemble learning on visual and textual data for social image emotion classification
  publication-title: Int. J. Machine Learn. Cybern.
– volume: 10
  start-page: 1
  issue: 12
  year: 2015
  end-page: 22
  ident: C124
  article-title: Sentiment of emojis
  publication-title: PLOS ONE
– volume: 52
  start-page: 1061
  issue: 6
  year: 1987
  ident: C71
  article-title: Emotion knowledge: further exploration of a prototype approach
  publication-title: J. Personality Soc. Psychol.
– volume: 34
  start-page: 2189
  issue: 11
  year: 2012
  end-page: 2202
  ident: C82
  article-title: Measuring the objectness of image windows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 65
  start-page: 3
  year: 2017
  end-page: 14
  ident: C66
  article-title: A survey of multimodal sentiment analysis
  publication-title: Image Vis. Comput.
– volume: 49
  start-page: 197
  issue: 3
  year: 1952
  ident: C14
  article-title: The nature and measurement of meaning
  publication-title: Psychol. Bull.
– volume: 22
  start-page: 211
  issue: 4
  year: 2004
  end-page: 226
  ident: C118
  article-title: Conceptnet — a practical commonsense reasoning tool-kit
  publication-title: BT Technol. J.
– volume: 54
  start-page: 265
  issue: 3
  year: 2011
  end-page: 273
  ident: C97
  article-title: We're all connected: the power of the social media ecosystem
  publication-title: Bus. Horiz.
– volume: 9
  start-page: 550
  issue: 4
  year: 2017
  end-page: 562
  ident: C134
  article-title: Real-time movie-induced discrete emotion recognition from eeg signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 73
  start-page: 90
  issue: 5
  year: 2009
  end-page: 102
  ident: C98
  article-title: Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site
  publication-title: J. Mark.
– volume: 61
  start-page: 2544
  issue: 12
  year: 2010
  end-page: 2558
  ident: C55
  article-title: Sentiment strength detection in short informal text
  publication-title: J. Assoc. Inf. Sci. Technol.
– volume: 8
  start-page: e1253
  issue: 4
  year: 2018
  ident: C5
  article-title: Deep learning for sentiment analysis: a survey
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 60
  start-page: 863
  issue: 5
  year: 2009
  end-page: 876
  ident: C8
  article-title: Collective indexing of emotions in images. a study in emotional information retrieval
  publication-title: J. Am. Soc. Inf. Sci. Technol.
– volume: 312
  start-page: 218
  year: 2018
  end-page: 228
  ident: C56
  article-title: Boosting image sentiment analysis with visual attention
  publication-title: Neurocomputing
– volume: 123
  start-page: 394
  issue: 4
  year: 1994
  ident: C16
  article-title: Effects of color on emotions
  publication-title: J. Exper. Psychol.: Gen.
– volume: 46
  start-page: 596
  issue: 2
  year: 2014
  end-page: 610
  ident: C75
  article-title: The nencki affective picture system (naps): introduction to a novel, standardized, wide-range, high-quality, realistic picture database
  publication-title: Beh. Res. Meth.
– volume: 21
  start-page: 402
  issue: 2
  year: 2018
  end-page: 415
  ident: C125
  article-title: The new modality: emoji challenges in prediction, anticipation, and retrieval
  publication-title: IEEE Trans. Multimed.
– volume: 37
  start-page: 2085
  issue: 10
  year: 2015
  end-page: 2098
  ident: C132
  article-title: Robust structured subspace learning for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 143
  issue: 1
  year: 2005
  end-page: 154
  ident: C69
  article-title: Affective video content representation and modeling
  publication-title: IEEE Trans. Multimedia
– volume: 23
  start-page: 90
  issue: 2
  year: 2006
  end-page: 100
  ident: C83
  article-title: Extracting moods from pictures and sounds: towards truly personalized tv
  publication-title: IEEE Signal Process. Mag.
– volume: 35
  start-page: 716
  issue: 3
  year: 2013
  end-page: 727
  ident: C89
  article-title: Tag completion for image retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 273
  issue: 3
  year: 1977
  end-page: 294
  ident: C15
  article-title: Evidence for a three-factor theory of emotions
  publication-title: J. Res. Personality
– volume: 65
  start-page: 15
  year: 2017
  end-page: 22
  ident: C50
  article-title: From pixels to sentiment: fine-tuning CNNS for visual sentiment prediction
  publication-title: Image Vis. Comput.
– volume: 8
  start-page: 460
  issue: 6
  year: 1978
  end-page: 473
  ident: C80
  article-title: Textural features corresponding to visual perception
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 6
  start-page: 109
  year: 1993
  end-page: 133
  ident: C13
  article-title: The network model of emotion: motivational connections
  publication-title: Perspect. Anger Emotion: Adv. Soc. Cogn.
– volume: 118
  start-page: 272
  year: 2018
  end-page: 299
  ident: C4
  article-title: Deep learning for aspect-based sentiment analysis a comparative review
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 1
  ident: C110
  article-title: Predicting social image popularity dynamics at time zero
  publication-title: IEEE Access
– volume: 44
  start-page: 347
  issue: 2
  year: 1998
  end-page: 352
  ident: C68
  article-title: Image query by impression words-the iqi system
  publication-title: IEEE Trans. Consum. Electron.
– volume: 1
  start-page: 3
  year: 1980
  end-page: 31
  ident: C33
  article-title: A general psychoevolutionary theory of emotion
  publication-title: Theor. Emotion
– start-page: 1
  year: 2019
  end-page: 13
  ident: C64
  article-title: Visual sentiment analysis by combining global and local information
  publication-title: Neural Process. Lett.
– volume: 43
  start-page: 468
  issue: 2
  year: 2011
  end-page: 477
  ident: C74
  article-title: The geneva affective picture database (gaped): a new 730-picture database focusing on valence and normative significance
  publication-title: Beh. Res. Meth.
– volume: 49
  start-page: 14
  issue: 1
  year: 2016
  ident: C86
  article-title: Socializing the semantic gap: a comparative survey on image tag assignment, refinement, and retrieval
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 14
  start-page: 883
  issue: 3
  year: 2012
  end-page: 895
  ident: C88
  article-title: User-aware image tag refinement via ternary semantic analysis
  publication-title: IEEE Trans. Multimed.
– volume: 77
  start-page: 1115
  issue: 1
  year: 2018
  end-page: 1132
  ident: C54
  article-title: Image sentiment prediction based on textual descriptions with adjective noun pairs
  publication-title: Multimedia Tools Appl.
– volume: 78
  start-page: 6939
  issue: 6
  year: 2019
  end-page: 6967
  ident: C67
  article-title: A survey on sentiment analysis and opinion mining for social multimedia
  publication-title: Multimedia Tools Appl.
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  end-page: 167
  ident: C81
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 2015
  start-page: 9
  year: 2015
  ident: C117
  article-title: Sentiment analysis using common-sense and context information
  publication-title: Comput. Intell. Neurosci.
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  end-page: 135
  ident: C3
  article-title: Opinion mining and sentiment analysis
  publication-title: Found. trends Inf. Retr.
– volume: 53
  start-page: 712
  issue: 4
  year: 1987
  ident: C36
  article-title: Universals and cultural differences in the judgments of facial expressions of emotion
  publication-title: J. Personality Soc. Psychol.
– volume: 6
  start-page: 15
  issue: 1
  year: 2017
  ident: C94
  article-title: Instagram photos reveal predictive markers of depression
  publication-title: EPJ Data Sci.
– volume: 167
  start-page: 26
  year: 2019
  end-page: 37
  ident: C60
  article-title: Image–text sentiment analysis via deep multimodal attentive fusion
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 38
  issue: 3
  year: 1999
  end-page: 53
  ident: C7
  article-title: Semantics in visual information retrieval
  publication-title: IEEE Multimedia
– volume: 106
  start-page: 210
  issue: 2
  year: 2014
  end-page: 233
  ident: C87
  article-title: A multi-view embedding space for modeling internet images, tags, and their semantics
  publication-title: Int. J. Comput. Vis.
– start-page: 1818
  year: June 2015
  end-page: 1826
– start-page: 584
  year: 2014
  end-page: 599
– start-page: 1025
  year: 2014
  end-page: 1028
– start-page: 385
  year: 2014
– start-page: 83
  year: 2010
  end-page: 92
– start-page: 117
  year: 2008
  end-page: 120
– start-page: 860
  year: 2015
  end-page: 868
– volume: 37
  start-page: 626
  issue: 4
  year: 2005
  end-page: 630
  article-title: Emotional category data on images from the international affective picture system
  publication-title: Beh. Res. Meth.
– start-page: 42
  year: 2014
  end-page: 51
– volume: 22
  start-page: 211
  issue: 4
  year: 2004
  end-page: 226
  article-title: Conceptnet — a practical commonsense reasoning tool‐kit
  publication-title: BT Technol. J.
– start-page: 290
  year: 2019
  end-page: 300
– start-page: 487
  year: 2014
  end-page: 495
– start-page: 51
  year: 2017
  end-page: 61
– start-page: 149
  year: 2009
  end-page: 153
– year: 2014
– volume: 167
  start-page: 26
  year: 2019
  end-page: 37
  article-title: Image–text sentiment analysis via deep multimodal attentive fusion
  publication-title: Knowl.‐Based Syst.
– volume: 35
  start-page: 716
  issue: 3
  year: 2013
  end-page: 727
  article-title: Tag completion for image retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 477
  year: 2019
  end-page: 487
– volume: 53
  start-page: 712
  issue: 4
  year: 1987
  article-title: Universals and cultural differences in the judgments of facial expressions of emotion
  publication-title: J. Personality Soc. Psychol.
– start-page: 2378
  year: 2015
  end-page: 2379
– start-page: 233
  year: 2014
– start-page: 1912
  year: 2017
  end-page: 1917
– volume: 37
  start-page: 2085
  issue: 10
  year: 2015
  end-page: 2098
  article-title: Robust structured subspace learning for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2019
  end-page: 13
  article-title: Visual sentiment analysis by combining global and local information
  publication-title: Neural Process. Lett.
– volume: 28
  start-page: 94
  issue: 5
  year: 2011
  end-page: 115
  article-title: Aesthetics and emotions in images
  publication-title: IEEE Signal Process. Mag.
– start-page: 288
  year: 2006
  end-page: 301
– volume: 8
  start-page: 460
  issue: 6
  year: 1978
  end-page: 473
  article-title: Textural features corresponding to visual perception
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 573
  year: 2009
  end-page: 576
– start-page: 97
  year: 1994
  end-page: 134
– year: 2019
– start-page: 907
  year: 2015
  end-page: 910
– start-page: 3534
  year: 2006
  end-page: 3539
– volume: 9
  start-page: 550
  issue: 4
  year: 2017
  end-page: 562
  article-title: Real‐time movie‐induced discrete emotion recognition from eeg signals
  publication-title: IEEE Trans. Affective Comput.
– start-page: 1385
  year: 2016
  end-page: 1394
– volume: 11
  start-page: 273
  issue: 3
  year: 1977
  end-page: 294
  article-title: Evidence for a three‐factor theory of emotions
  publication-title: J. Res. Personality
– start-page: 1
  year: 2007
  end-page: 8
– volume: 77
  start-page: 1115
  issue: 1
  year: 2018
  end-page: 1132
  article-title: Image sentiment prediction based on textual descriptions with adjective noun pairs
  publication-title: Multimedia Tools Appl.
– volume: 52
  start-page: 1061
  issue: 6
  year: 1987
  article-title: Emotion knowledge: further exploration of a prototype approach
  publication-title: J. Personality Soc. Psychol.
– start-page: 867
  year: 2014
  end-page: 876
– volume: 65
  start-page: 3
  year: 2017
  end-page: 14
  article-title: A survey of multimodal sentiment analysis
  publication-title: Image Vis. Comput.
– start-page: 101
  year: 2008
  end-page: 104
– year: 1973
– volume: 23
  start-page: 90
  issue: 2
  year: 2006
  end-page: 100
  article-title: Extracting moods from pictures and sounds: towards truly personalized tv
  publication-title: IEEE Signal Process. Mag.
– volume: 78
  start-page: 6939
  issue: 6
  year: 2019
  end-page: 6967
  article-title: A survey on sentiment analysis and opinion mining for social multimedia
  publication-title: Multimedia Tools Appl.
– volume: 46
  start-page: 596
  issue: 2
  year: 2014
  end-page: 610
  article-title: The nencki affective picture system (naps): introduction to a novel, standardized, wide‐range, high‐quality, realistic picture database
  publication-title: Beh. Res. Meth.
– start-page: 241
  year: 2014
– year: 2016
– year: 1992
– start-page: 1
  year: 2018
  end-page: 6
– volume: 21
  start-page: 402
  issue: 2
  year: 2018
  end-page: 415
  article-title: The new modality: emoji challenges in prediction, anticipation, and retrieval
  publication-title: IEEE Trans. Multimed.
– start-page: 902
  year: 2010
  end-page: 909
– year: 2010
– start-page: 381
  year: 2015
  end-page: 388
– volume: 6
  start-page: 417
  year: 2006
  end-page: 422
– volume: 61
  start-page: 2544
  issue: 12
  year: 2010
  end-page: 2558
  article-title: Sentiment strength detection in short informal text
  publication-title: J. Assoc. Inf. Sci. Technol.
– start-page: 264
  year: 2019
  end-page: 276
– start-page: 308
  year: 2017
  end-page: 317
– volume: 1
  start-page: 3
  year: 1980
  end-page: 31
  article-title: A general psychoevolutionary theory of emotion
  publication-title: Theor. Emotion
– volume: 44
  start-page: 347
  issue: 2
  year: 1998
  end-page: 352
  article-title: Image query by impression words‐the iqi system
  publication-title: IEEE Trans. Consum. Electron.
– start-page: 10
  year: 2013
– start-page: 2736
  year: 2013
  end-page: 2743
– start-page: 1784
  year: 2011
  end-page: 1791
– volume: 73
  start-page: 90
  issue: 5
  year: 2009
  end-page: 102
  article-title: Effects of word‐of‐mouth versus traditional marketing: findings from an internet social networking site
  publication-title: J. Mark.
– start-page: 1
  year: 2016
  end-page: 6
– start-page: 771
  year: 2013
  end-page: 778
– year: 2013
– volume: 43
  start-page: 468
  issue: 2
  year: 2011
  end-page: 477
  article-title: The geneva affective picture database (gaped): a new 730‐picture database focusing on valence and normative significance
  publication-title: Beh. Res. Meth.
– year: June 2015
– start-page: 1918
  year: 2017
  end-page: 1923
– volume: 10
  start-page: 1
  issue: 12
  year: 2015
  end-page: 22
  article-title: Sentiment of emojis
  publication-title: PLOS ONE
– start-page: 3
  year: 2014
  end-page: 8
– volume: 54
  start-page: 265
  issue: 3
  year: 2011
  end-page: 273
  article-title: We're all connected: the power of the social media ecosystem
  publication-title: Bus. Horiz.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 1
  article-title: Predicting social image popularity dynamics at time zero
  publication-title: IEEE Access
– start-page: 527
  year: 2010
  end-page: 536
– volume: 60
  start-page: 863
  issue: 5
  year: 2009
  end-page: 876
  article-title: Collective indexing of emotions in images. a study in emotional information retrieval
  publication-title: J. Am. Soc. Inf. Sci. Technol.
– start-page: 224
  year: 2017
  end-page: 230
– start-page: 306
  year: 2014
  end-page: 312
– start-page: 47
  year: 2014
  end-page: 56
– start-page: 1311
  year: 2015
  end-page: 1314
– volume: 2015
  start-page: 9
  year: 2015
  article-title: Sentiment analysis using common‐sense and context information
  publication-title: Comput. Intell. Neurosci.
– volume: 49
  start-page: 14
  issue: 1
  year: 2016
  article-title: Socializing the semantic gap: a comparative survey on image tag assignment, refinement, and retrieval
  publication-title: ACM Comput. Surv. (CSUR)
– start-page: 57
  year: 2015
  end-page: 62
– volume: 6
  start-page: 15
  issue: 1
  year: 2017
  article-title: Instagram photos reveal predictive markers of depression
  publication-title: EPJ Data Sci.
– start-page: 15
  year: 2016
– start-page: 223
  year: 2013
  end-page: 232
– start-page: 33
  year: 2014
  end-page: 40
– volume: 14
  start-page: 883
  issue: 3
  year: 2012
  end-page: 895
  article-title: User‐aware image tag refinement via ternary semantic analysis
  publication-title: IEEE Trans. Multimed.
– start-page: 857
  year: 2012
  end-page: 860
– start-page: 5534
  year: 2018
  end-page: 5541
– start-page: 347
  year: 2005
  end-page: 354
– volume: 312
  start-page: 218
  year: 2018
  end-page: 228
  article-title: Boosting image sentiment analysis with visual attention
  publication-title: Neurocomputing
– volume: 7
  start-page: 143
  issue: 1
  year: 2005
  end-page: 154
  article-title: Affective video content representation and modeling
  publication-title: IEEE Trans. Multimedia
– start-page: 305
  year: 2012
  end-page: 313
  article-title: Memorability of image regions
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 415
  year: 2012
  end-page: 463
– start-page: 2048
  year: 2015
  end-page: 2057
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  end-page: 135
  article-title: Opinion mining and sentiment analysis
  publication-title: Found. trends Inf. Retr.
– volume: 6
  start-page: 38
  issue: 3
  year: 1999
  end-page: 53
  article-title: Semantics in visual information retrieval
  publication-title: IEEE Multimedia
– start-page: 1179
  year: 2015
  end-page: 1182
– start-page: 25
  year: 2009
  end-page: 30
– start-page: 529
  year: 2014
  end-page: 545
– volume: 106
  start-page: 210
  issue: 2
  year: 2014
  end-page: 233
  article-title: A multi‐view embedding space for modeling internet images, tags, and their semantics
  publication-title: Int. J. Comput. Vis.
– start-page: 117
  year: 2013
  end-page: 124
– year: April 2016
– start-page: 503
  year: 2011
  end-page: 510
– start-page: 3266
  year: 2017
  end-page: 3272
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  end-page: 167
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 118
  start-page: 272
  year: 2018
  end-page: 299
  article-title: Deep learning for aspect‐based sentiment analysis a comparative review
  publication-title: Expert Syst. Appl.
– volume: 123
  start-page: 394
  issue: 4
  year: 1994
  article-title: Effects of color on emotions
  publication-title: J. Exper. Psychol.: Gen.
– start-page: 251
  year: 2010
  end-page: 260
– start-page: 349
  year: 2019
  end-page: 367
– start-page: 1
  year: 2012
  end-page: 5
– volume: 8
  issue: 4
  year: 2018
  article-title: Deep learning for sentiment analysis: a survey
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– start-page: 715
  year: 2010
  end-page: 718
– start-page: 159
  year: 2015
  end-page: 168
– volume: 10
  start-page: 2057
  issue: 8
  year: 2019
  end-page: 2070
  article-title: Ensemble learning on visual and textual data for social image emotion classification
  publication-title: Int. J. Machine Learn. Cybern.
– volume: 65
  start-page: 15
  year: 2017
  end-page: 22
  article-title: From pixels to sentiment: fine‐tuning CNNS for visual sentiment prediction
  publication-title: Image Vis. Comput.
– volume: 49
  start-page: 197
  issue: 3
  year: 1952
  article-title: The nature and measurement of meaning
  publication-title: Psychol. Bull.
– start-page: 2837
  year: 2016
  end-page: 2841
– start-page: 3128
  year: 2015
  end-page: 3137
– volume: 34
  start-page: 2189
  issue: 11
  year: 2012
  end-page: 2202
  article-title: Measuring the objectness of image windows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 195
  year: 2015
  end-page: 202
– year: 2017
– start-page: 703
  year: 2013
  end-page: 710
– start-page: 2416
  year: 2015
  end-page: 2424
– volume: 16
  start-page: 1059
  issue: 4
  year: 2014
  end-page: 1074
  article-title: A cross‐modal approach for extracting semantic relationships between concepts using tagged images
  publication-title: IEEE Trans. Multimed.
– volume: 6
  start-page: 109
  year: 1993
  end-page: 133
  article-title: The network model of emotion: motivational connections
  publication-title: Perspect. Anger Emotion: Adv. Soc. Cogn.
– start-page: 145
  year: 2011
  end-page: 152
– start-page: 484
  year: July 2017
  end-page: 492
– start-page: 4651
  year: 2016
  end-page: 4659
– year: 1999
– ident: e_1_2_8_114_1
  doi: 10.1109/WACV.2013.6475008
– ident: e_1_2_8_109_1
  doi: 10.1145/3123266.3127902
– ident: e_1_2_8_111_1
  doi: 10.1109/ACCESS.2019.2953856
– ident: e_1_2_8_78_1
  doi: 10.1145/2647868.2654930
– ident: e_1_2_8_118_1
  doi: 10.1155/2015/715730
– ident: e_1_2_8_54_1
– ident: e_1_2_8_87_1
  doi: 10.1145/2906152
– ident: e_1_2_8_22_1
– ident: e_1_2_8_46_1
  doi: 10.1109/ICME.2016.7552961
– ident: e_1_2_8_82_1
  doi: 10.2200/S00416ED1V01Y201204HLT016
– ident: e_1_2_8_83_1
  doi: 10.1109/TPAMI.2012.28
– ident: e_1_2_8_11_1
  doi: 10.1145/2647868.2655035
– ident: e_1_2_8_36_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_134_1
  doi: 10.1145/1873951.1873987
– ident: e_1_2_8_33_1
  doi: 10.1145/2502081.2502282
– ident: e_1_2_8_10_1
– ident: e_1_2_8_16_1
  doi: 10.1016/0092-6566(77)90037-X
– ident: e_1_2_8_66_1
– ident: e_1_2_8_91_1
  doi: 10.1145/1631272.1631359
– ident: e_1_2_8_35_1
  doi: 10.1145/2502069.2502079
– ident: e_1_2_8_97_1
– ident: e_1_2_8_130_1
  doi: 10.1007/978-3-319-10593-2_35
– ident: e_1_2_8_84_1
  doi: 10.1109/MSP.2006.1621452
– ident: e_1_2_8_108_1
– ident: e_1_2_8_126_1
  doi: 10.1109/TMM.2018.2862363
– start-page: 97
  volume-title: Emotions: Essays on Emotion Theory
  year: 1994
  ident: e_1_2_8_12_1
– ident: e_1_2_8_99_1
  doi: 10.1509/jmkg.73.5.90
– ident: e_1_2_8_132_1
  doi: 10.1109/TMM.2014.2306655
– ident: e_1_2_8_93_1
  doi: 10.1145/2671470.2671475
– ident: e_1_2_8_116_1
  doi: 10.1109/ICCV.2011.6126281
– ident: e_1_2_8_53_1
– ident: e_1_2_8_62_1
  doi: 10.1016/B978-0-12-814601-9.00018-3
– ident: e_1_2_8_67_1
  doi: 10.1016/j.imavis.2017.08.003
– ident: e_1_2_8_75_1
  doi: 10.3758/s13428-011-0064-1
– ident: e_1_2_8_42_1
– ident: e_1_2_8_59_1
  doi: 10.1007/978-3-030-30642-7_43
– ident: e_1_2_8_26_1
  doi: 10.1145/2566486.2567996
– ident: e_1_2_8_80_1
  doi: 10.1109/CVPR.2007.383218
– ident: e_1_2_8_21_1
  doi: 10.1109/ICCV.2011.6126444
– ident: e_1_2_8_74_1
  doi: 10.1109/ICIP.2008.4711701
– ident: e_1_2_8_129_1
  doi: 10.1007/978-3-319-10605-2_38
– ident: e_1_2_8_98_1
  doi: 10.1016/j.bushor.2011.01.007
– ident: e_1_2_8_23_1
  doi: 10.1109/CVPR.2011.5995721
– ident: e_1_2_8_58_1
  doi: 10.1109/CBMI.2018.8516481
– ident: e_1_2_8_105_1
  doi: 10.6028/NIST.SP.500-302.microblog-overview
– ident: e_1_2_8_2_1
  doi: 10.1007/978-1-4614-3223-4_13
– ident: e_1_2_8_31_1
  doi: 10.1145/1873951.1873965
– ident: e_1_2_8_25_1
  doi: 10.1145/2733373.2806361
– ident: e_1_2_8_121_1
  doi: 10.1109/CVPR.2016.503
– start-page: 241
  volume-title: Scene vision: making sense of what we see
  year: 2014
  ident: e_1_2_8_19_1
  doi: 10.7551/mitpress/9780262027854.003.0012
– ident: e_1_2_8_7_1
– ident: e_1_2_8_123_1
– ident: e_1_2_8_20_1
  doi: 10.1109/MSP.2011.941851
– ident: e_1_2_8_29_1
  doi: 10.1145/1873951.1874060
– ident: e_1_2_8_92_1
  doi: 10.1109/ICIP.2008.4711705
– ident: e_1_2_8_95_1
  doi: 10.1140/epjds/s13688-017-0110-z
– ident: e_1_2_8_64_1
  doi: 10.1007/s13042-017-0734-0
– ident: e_1_2_8_55_1
  doi: 10.1007/s11042-016-4310-5
– ident: e_1_2_8_125_1
  doi: 10.1371/journal.pone.0144296
– ident: e_1_2_8_39_1
  doi: 10.1145/2578726.2578756
– ident: e_1_2_8_136_1
  doi: 10.1007/978-3-319-68560-1_5
– ident: e_1_2_8_41_1
– ident: e_1_2_8_110_1
  doi: 10.1145/3123266.3127903
– ident: e_1_2_8_56_1
  doi: 10.1002/asi.21416
– ident: e_1_2_8_38_1
– start-page: 1
  year: 2019
  ident: e_1_2_8_65_1
  article-title: Visual sentiment analysis by combining global and local information
  publication-title: Neural Process. Lett.
– ident: e_1_2_8_51_1
  doi: 10.1016/j.imavis.2017.01.011
– volume-title: The center for research in psychophysiology
  year: 1999
  ident: e_1_2_8_71_1
– ident: e_1_2_8_112_1
  doi: 10.1109/CVPR.2017.59
– ident: e_1_2_8_17_1
  doi: 10.1037/0096-3445.123.4.394
– ident: e_1_2_8_88_1
  doi: 10.1007/s11263-013-0658-4
– ident: e_1_2_8_34_1
  doi: 10.1016/B978-0-12-558701-3.50007-7
– volume-title: The art of color: the subjective experience and objective rationale of color
  year: 1973
  ident: e_1_2_8_13_1
– ident: e_1_2_8_115_1
  doi: 10.1109/ICCV.2013.340
– volume: 6
  start-page: 109
  year: 1993
  ident: e_1_2_8_14_1
  article-title: The network model of emotion: motivational connections
  publication-title: Perspect. Anger Emotion: Adv. Soc. Cogn.
– ident: e_1_2_8_104_1
  doi: 10.1145/1743384.1743475
– ident: e_1_2_8_107_1
  doi: 10.24963/ijcai.2017/427
– ident: e_1_2_8_101_1
  doi: 10.1145/1592665.1592672
– ident: e_1_2_8_120_1
– ident: e_1_2_8_128_1
  doi: 10.3115/1220575.1220619
– ident: e_1_2_8_48_1
  doi: 10.1109/CVPR.2013.105
– ident: e_1_2_8_122_1
  doi: 10.1145/2480362.2480498
– ident: e_1_2_8_131_1
  doi: 10.1109/CVPR.2010.5540120
– ident: e_1_2_8_3_1
– ident: e_1_2_8_124_1
  doi: 10.1145/2733373.2806335
– ident: e_1_2_8_79_1
  doi: 10.1109/VSMM.2009.28
– start-page: 305
  year: 2012
  ident: e_1_2_8_96_1
  article-title: Memorability of image regions
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_8_69_1
  doi: 10.1109/30.681949
– ident: e_1_2_8_44_1
– ident: e_1_2_8_103_1
  doi: 10.1145/2955129.2955154
– ident: e_1_2_8_63_1
– ident: e_1_2_8_15_1
  doi: 10.1037/h0055737
– ident: e_1_2_8_27_1
  doi: 10.1145/2578726.2578776
– ident: e_1_2_8_90_1
  doi: 10.1109/TPAMI.2012.124
– ident: e_1_2_8_72_1
  doi: 10.1037/0022-3514.52.6.1061
– ident: e_1_2_8_47_1
  doi: 10.1109/ICASSP.2016.7472195
– volume: 118
  start-page: 272
  year: 2018
  ident: e_1_2_8_5_1
  article-title: Deep learning for aspect‐based sentiment analysis a comparative review
  publication-title: Expert Syst. Appl.
– ident: e_1_2_8_127_1
  doi: 10.1109/ICCVW.2019.00550
– ident: e_1_2_8_117_1
  doi: 10.1109/ICCV.2015.278
– ident: e_1_2_8_135_1
  doi: 10.1109/TAFFC.2017.2660485
– ident: e_1_2_8_73_1
  doi: 10.1037//0033-295X.99.3.561
– ident: e_1_2_8_133_1
  doi: 10.1109/TPAMI.2015.2400461
– ident: e_1_2_8_4_1
  doi: 10.1561/1500000011
– ident: e_1_2_8_60_1
  doi: 10.1007/978-3-030-05710-7_22
– ident: e_1_2_8_18_1
  doi: 10.1007/11744078_23
– ident: e_1_2_8_50_1
– ident: e_1_2_8_37_1
  doi: 10.1037/0022-3514.53.4.712
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neucom.2018.05.104
– ident: e_1_2_8_106_1
– ident: e_1_2_8_85_1
  doi: 10.1109/CVPR.2015.7298932
– ident: e_1_2_8_43_1
– ident: e_1_2_8_9_1
  doi: 10.1002/asi.21043
– ident: e_1_2_8_70_1
  doi: 10.1109/TMM.2004.840618
– ident: e_1_2_8_113_1
  doi: 10.1109/CVPR.2015.7298791
– ident: e_1_2_8_6_1
  doi: 10.1002/widm.1253
– ident: e_1_2_8_52_1
  doi: 10.1109/ICCVW.2017.45
– ident: e_1_2_8_28_1
  doi: 10.1145/2615569.2615700
– ident: e_1_2_8_32_1
  doi: 10.3758/BF03192732
– ident: e_1_2_8_119_1
  doi: 10.1023/B:BTTJ.0000047600.45421.6d
– ident: e_1_2_8_76_1
  doi: 10.3758/s13428-013-0379-1
– ident: e_1_2_8_86_1
  doi: 10.1109/CVPR.2015.7298932
– ident: e_1_2_8_45_1
  doi: 10.1145/2733373.2806246
– ident: e_1_2_8_24_1
– ident: e_1_2_8_102_1
  doi: 10.1145/2671188.2749405
– ident: e_1_2_8_68_1
  doi: 10.1007/s11042-018-6445-z
– ident: e_1_2_8_89_1
  doi: 10.1109/TMM.2012.2188782
– ident: e_1_2_8_137_1
  doi: 10.1145/2733373.2806311
– ident: e_1_2_8_94_1
  doi: 10.32964/TJ17.04
– ident: e_1_2_8_100_1
  doi: 10.1145/2661714.2661722
– ident: e_1_2_8_30_1
– ident: e_1_2_8_49_1
– ident: e_1_2_8_61_1
  doi: 10.1016/j.knosys.2019.01.019
– ident: e_1_2_8_8_1
  doi: 10.1109/93.790610
– ident: e_1_2_8_77_1
  doi: 10.1145/2964284.2964289
– ident: e_1_2_8_81_1
  doi: 10.1109/TSMC.1978.4309999
SSID ssj0059085
Score 2.476129
SecondaryResourceType review_article
Snippet Visual Sentiment Analysis aims to understand how images affect people, in terms of evoked emotions. Although this field is rather new, a broad range of...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1440
SubjectTerms data sources
dataset definition
emotional models
feature design
general Visual Sentiment Analysis systems
pertinent publications
publishing
Review Article
sentiment analysis
text analysis
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_bfPHFb3Hzg4LigxBtm6RNH3U4pg8y1MHeytJcYSDd2Bf433uXdoMhTPC1zR30kkt-18v9jrEboKymCIAPY-1zGYDhiQwlt8IojdGPVtbd8n2Lun35OlCDGmuvamFKfoj1DzfyDLdfk4MPTdmFBEEtTuII5nw0IUrPILmn_Gmd7QSIZ2iZh7K32o6pp7dyVZHUTz5SyTq1mTz8UrFxONXx9SZkdWdO54DtVWDReyxn95DVoDhi-xVw9Cq3nB2z64_FdAnf3rjwlqPZAkWopMjx9nvDinXkhPU7z5_tLq-6H_BMCBnzxFoiV4c8tmAjtJlFLOIjmpAxgIggUFpkoEMpIozRbBYFJsdoLfZBQ5THRpyyRjEu4Ix5SmeZ0lpIrXIpJRg8hLQwMYKvALWKJvNXn51mFTU4daj4Sl2KWiYpmiJFS6VkqZQs1WR3a5FJyYuxbfAtPau8Y7ZtoHDm_ltl-tJ7D586jq2n9S-pc7YbUuxMfYiSC9aYTxdwiQBjbq7cAvoB4XzFpQ
  priority: 102
  providerName: Wiley-Blackwell
Title Survey on visual sentiment analysis
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.1270
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.1270
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5se_HiW6yPElA8CGub7G6yOdZHqSJS1ErxEprsRApSpS_w3zuTpEpBqtdkdyDfbna_2dn5BuAEOaopXRT9wDSEcjEWofKUsDLWhrwfo212y_feb3fVbU_3ftKj7eCVa2WI-Ykbn5ZjnnnAV7dpHa4XGOcFSYjf1qmBGHywtqcbnnMgtQQVj7xzrwyVm6s7drHylZnLe-ssQZJLy_s6_I5y_mJkYZ8q0etF9pptP60NWCt4o9PMB3oTVnC4BesFh3SKP3S8DceP09EMP533oTMbjKfUhbOLMgl_p18IkOxAt3X9dNkWRSEEkUipAhFayzrrmAYWrU_wWaIlDSIWKkCUPrrayASNp6RP7ppNfDdOyXELGmjQT4NY7kJ5-D7EPXC0SRJtjFRGp0opjGk_MjIOiIe5ZFVWoTH_7CgpVMK5WMVblEWrVRgRFBEhFTFSESNVhbPvLh-5RMayxqf8bD6IyxrKDO6_TUY3nQfvopUJ9-z_1_wBrHrsOXMVovAQypPRFI-IXkziGpQ81alBpfncfenWijn0Bacjyhk
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aetCLb7E-A4oHYTXJPrI5-iqt1lK0hd5Ck51AQdLSF_jv3dmkhSJU8JrsDGSS2flmJ_MNIdeAVU3mAe0HyqXcg5iG3OdUs1gok_0ooe1fvi1Z7_LXnuiVyPOiFybnh1geuKFn2P0aHRwPpPOEkyNJ5gCmdDBCTk8vvMMCaplscOlJTMF83l7sxzjUW9i2SBwoL0W4rG2G979UrESnsrm9illt0Kntku0CLToP-evdIyXI9slOgRydwi8nB-Tqczaew7czzJz5YDIzIthTZIn7nX5BO3JIurWXzlOdFuMPaMIYD2ioNbKrQxpo0NIYTRsw4ho4wQMAJsETiiWgfM6kSdJ0Ir04Nela4IICmQYxOyKVbJjBMXGEShKhFONKpJxziE0UUiwODPryjFZWJe7isaOk4AbHERVfka1R8zAypoiMpSK0VISWqpLbpcgoJ8ZYt_gGrxXuMVm3kFlz_60yarQ__Meapes5-ZfUJdmsd96bUbPRejslWz4m0jiUKDwjlel4BucGbUzjC_sx_QCj5ckR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76APHiW6zPgOJBiCbZ3WRzrNbQqpSiVoqX0GQnUJC09AX-e3c320IRKnhNdgYyyex8k9n5BuAKVVWTuGj3A-7Y1MXEDqlHbUESxmX2w5nQp3zbfrNLn3qsV4LGohem4IdY_nBTnqH3a-XgOBJZkXBSRZI5wKk9GClOTze8VQXUMlRlPHdoBar1j-5nd7Ejq7HeTDdGqpHyPguX1c3w7peSlfhUlrdXUasOO9EObBm8aNWLF7wLJcz3YNtgR8t45mQfLt9m4zl-W8Pcmg8mMymiuoo0db_VN8QjB9CNHt8fmrYZgGCnhNDADoVQ_OqYBQKFL80mJBxxJKCgASLx0WWcpMg9SnyZponUd5NMJmyBgxz9LEjIIVTyYY5HYDGepoxzQjnLKKWYyDjESRJI_OVKraQGzuKx49Swg6shFV-xrlLTMJamiKWlYmWpWFmqBjdLkVFBjbFu8bW6Zhxksm4h0eb-W2Xc6rx695Em7Dn-l9QFbHQaUfzSaj-fwKanMmk1lSg8hcp0PMMzCTemybn5mn4AfePKZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+visual+sentiment+analysis&rft.jtitle=IET+image+processing&rft.au=Ortis%2C+Alessandro&rft.au=Farinella%2C+Giovanni+Maria&rft.au=Battiato%2C+Sebastiano&rft.date=2020-06-19&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=14&rft.issue=8&rft.spage=1440&rft.epage=1456&rft_id=info:doi/10.1049%2Fiet-ipr.2019.1270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ipr_2019_1270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon