Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models
High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on high‐dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention...
        Saved in:
      
    
          | Published in | Journal of time series analysis Vol. 42; no. 5-6; pp. 554 - 579 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford, UK
          John Wiley & Sons, Ltd
    
        01.09.2021
     Blackwell Publishing Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0143-9782 1467-9892  | 
| DOI | 10.1111/jtsa.12586 | 
Cover
| Abstract | High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on high‐dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention is paid to the different sparsity assumptions imposed on the VAR parameters and how these sparsity assumptions are related to the particular consistency properties of the estimators established. A sparsity scheme for high‐dimensional VAR models is proposed which is found to be more appropriate for the time series setting. Furthermore, it is shown that, under this sparsity setting, thresholding extends the consistency properties of regularized estimators to a wide range of matrix norms. Among other things, this enables application of the VAR parameters estimators to different problems, like forecasting or estimating the second‐order characteristics of the underlying VAR process. Extensive simulations compare the finite sample behavior of the different regularized estimators proposed using a variety of performance criteria. | 
    
|---|---|
| AbstractList | High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on high‐dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention is paid to the different sparsity assumptions imposed on the VAR parameters and how these sparsity assumptions are related to the particular consistency properties of the estimators established. A sparsity scheme for high‐dimensional VAR models is proposed which is found to be more appropriate for the time series setting. Furthermore, it is shown that, under this sparsity setting, thresholding extends the consistency properties of regularized estimators to a wide range of matrix norms. Among other things, this enables application of the VAR parameters estimators to different problems, like forecasting or estimating the second‐order characteristics of the underlying VAR process. Extensive simulations compare the finite sample behavior of the different regularized estimators proposed using a variety of performance criteria. | 
    
| Author | Krampe, Jonas Paparoditis, Efstathios  | 
    
| Author_xml | – sequence: 1 givenname: Jonas surname: Krampe fullname: Krampe, Jonas organization: University of Mannheim – sequence: 2 givenname: Efstathios orcidid: 0000-0003-1958-781X surname: Paparoditis fullname: Paparoditis, Efstathios email: stathisp@ucy.ac.cy organization: University of Cyprus  | 
    
| BookMark | eNp9kL1OwzAURi1UJEph4QkisSGl2InrOGNV8atKDC2z5dg3ras0CbZT1I1H4Bl5EtyGCSE82MM9n_Xdc44GdVMDQlcEj0k4txvv5JgkE85O0JBQlsU5z5MBGmJC0zjPeHKGzp3bYEwYzcgQiUUrrTN-H6mmVtB6F8laR-C82UpvmjpqbaNAdxZcVDY2WpvV-uvjU5st1C7MZRXtQPkwkV24YRVAZ3YQbRsNlbtAp6WsHFz-vCP0en-3nD3G85eHp9l0Hqs0pSzWqmA5LynhhS4JS7imoHPGOU8LnJZpkqWUTjQupCwSKInKZCFzVfIEU4lzSEfouv831H3rQn2xaTob2jkRbOBJTmnGAoV7StnGOQulUMYf1_RWmkoQLA4axUGjOGoMkZtfkdYGNXb_N0x6-N1UsP-HFM_LxbTPfAMfTIko | 
    
| CitedBy_id | crossref_primary_10_1016_j_jeconom_2022_01_003 crossref_primary_10_1080_01621459_2024_2311365 crossref_primary_10_1093_jjfinec_nbae020 crossref_primary_10_1111_obes_12664 crossref_primary_10_1080_07350015_2023_2257270 crossref_primary_10_3150_23_BEJ1628 crossref_primary_10_1080_01621459_2025_2479244  | 
    
| Cites_doi | 10.1214/13-AOS1171 10.1214/15-AOS1315 10.3386/w11467 10.1214/16-EJS1108 10.1561/0800000002 10.1214/08-AOS600 10.1016/j.jeconom.2015.02.013 10.1007/978-3-540-27752-1 10.1198/jasa.2011.tm10155 10.1080/10618600.2015.1092978 10.1198/jasa.2011.tm10560 10.32614/CRAN.package.FinCovRegularization 10.1007/978-1-4419-0320-4 10.1080/01621459.2014.951444 10.1016/bs.hesmac.2016.04.002 10.18637/jss.v039.i05 10.1198/jasa.2009.0101 10.1017/9781108164818 10.1093/oxfordhb/9780195398649.013.0003 10.1214/009053606000001523  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 John Wiley & Sons Ltd | 
    
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd | 
    
| DBID | AAYXX CITATION 8BJ FQK JBE JQ2  | 
    
| DOI | 10.1111/jtsa.12586 | 
    
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection  | 
    
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Mathematics  | 
    
| EISSN | 1467-9892 | 
    
| EndPage | 579 | 
    
| ExternalDocumentID | 10_1111_jtsa_12586 JTSA12586  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: German Research Foundation (DFG) | 
    
| GroupedDBID | -~X .3N .GA .L6 .Y3 05W 0R~ 10A 1OB 1OC 1OL 29L 3-9 31~ 33P 3R3 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEHJ ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FSPIC FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ TUS U5U UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 YQT ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 8BJ FQK JBE JQ2  | 
    
| ID | FETCH-LOGICAL-c3346-dcb698f418bdf1628d4ed968883b03f3273445d0baab2ef1c7aba9cf8204a09e3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0143-9782 | 
    
| IngestDate | Wed Aug 13 03:15:41 EDT 2025 Wed Oct 01 01:43:10 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Wed Jan 22 16:29:02 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5-6 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3346-dcb698f418bdf1628d4ed968883b03f3273445d0baab2ef1c7aba9cf8204a09e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1958-781X | 
    
| PQID | 2580594476 | 
    
| PQPubID | 32430 | 
    
| PageCount | 26 | 
    
| ParticipantIDs | proquest_journals_2580594476 crossref_citationtrail_10_1111_jtsa_12586 crossref_primary_10_1111_jtsa_12586 wiley_primary_10_1111_jtsa_12586_JTSA12586  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September-November 2021 2021-09-00 20210901  | 
    
| PublicationDateYYYYMMDD | 2021-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2021 text: September-November 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford, UK | 
    
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford  | 
    
| PublicationTitle | Journal of time series analysis | 
    
| PublicationYear | 2021 | 
    
| Publisher | John Wiley & Sons, Ltd Blackwell Publishing Ltd  | 
    
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Blackwell Publishing Ltd  | 
    
| References | 2015; 16 2011; 106 2011 2015; 186 2015; 43 2015; 110 2008; 36 2016; 10 2019 2017 2005 2016 2008; 3 2003 1991 2013 2011; 39 2007; 35 2016; 25 2009; 104 2016; 44 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_28_1 Krampe J. (e_1_2_7_15_1) 2019 R Core Team (e_1_2_7_20_1) 2019 e_1_2_7_29_1 Tsay RS (e_1_2_7_27_1) 2013 Han F (e_1_2_7_11_1) 2015; 16 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 Reinsel GC (e_1_2_7_21_1) 2003  | 
    
| References_xml | – year: 2011 – volume: 35 start-page: 2313 issue: 6 year: 2007 end-page: 2351 article-title: The Dantzig selector: statistical estimation when is much larger than publication-title: The Annals of Statistics – volume: 3 start-page: 89 year: 2008 end-page: 163 article-title: Large dimensional factor analysis publication-title: Foundations and Trends in Econometrics – volume: 106 start-page: 672 issue: 494 year: 2011 end-page: 684 article-title: Adaptive thresholding for sparse covariance matrix estimation publication-title: Journal of the American Statistical Association – volume: 44 start-page: 455 issue: 2 year: 2016 end-page: 488 article-title: Estimating sparse precision matrix: optimal rates of convergence and adaptive estimation publication-title: The Annals of Statistics – year: 2005 – volume: 106 start-page: 594 issue: 494 year: 2011 end-page: 607 article-title: A constrained l1 minimization approach to sparse precision matrix estimation publication-title: Journal of the American Statistical Association – volume: 186 start-page: 325 issue: 2 year: 2015 end-page: 344 article-title: Oracle inequalities for high dimensional vector autoregressions publication-title: Journal of Econometrics – volume: 43 start-page: 1535 year: 2015 end-page: 1567 article-title: Regularized estimation in sparse high‐dimensional time series models publication-title: The Annals of Statistics – year: 2003 – volume: 16 start-page: 3115 issue: 1 year: 2015 end-page: 3150 article-title: A direct estimation of high dimensional stationary vector autoregressions publication-title: The Journal of Machine Learning Research – volume: 36 start-page: 2577 year: 2008 end-page: 2604 article-title: Covariance regularization by thresholding publication-title: The Annals of Statistics – volume: 110 start-page: 262 issue: 509 year: 2015 end-page: 269 article-title: Tuning parameter selection for the adaptive LASSO using ERIC publication-title: Journal of the American Statistical Association – year: 1991 – year: 2017 – year: 2016 – volume: 10 start-page: 352 issue: 1 year: 2016 end-page: 379 article-title: Performance bounds for parameter estimates of high‐dimensional linear models with correlated errors publication-title: Electronic Journal of Statistics – volume: 39 start-page: 1 issue: 5 year: 2011 end-page: 13 article-title: Regularization paths for Cox's proportional hazards model via coordinate descent publication-title: Journal of Statistical Software – year: 2019 – volume: 104 start-page: 177 issue: 485 year: 2009 end-page: 186 article-title: Generalized thresholding of large covariance matrices publication-title: Journal of the American Statistical Association – volume: 25 start-page: 1077 issue: 4 year: 2016 end-page: 1096 article-title: Sparse vector autoregressive modeling publication-title: Journal of Computational and Graphical Statistics – year: 2019 article-title: Bootstrap based inference for sparse high‐dimensional time series models publication-title: Bernoulli – year: 2013 – volume-title: R: A Language and Environment for Statistical Computing year: 2019 ident: e_1_2_7_20_1 – ident: e_1_2_7_8_1 doi: 10.1214/13-AOS1171 – ident: e_1_2_7_3_1 doi: 10.1214/15-AOS1315 – volume: 16 start-page: 3115 issue: 1 year: 2015 ident: e_1_2_7_11_1 article-title: A direct estimation of high dimensional stationary vector autoregressions publication-title: The Journal of Machine Learning Research – ident: e_1_2_7_24_1 doi: 10.3386/w11467 – ident: e_1_2_7_28_1 doi: 10.1214/16-EJS1108 – volume-title: Multivariate Time Series Analysis: With R and Financial Applications year: 2013 ident: e_1_2_7_27_1 – ident: e_1_2_7_2_1 doi: 10.1561/0800000002 – ident: e_1_2_7_17_1 – year: 2019 ident: e_1_2_7_15_1 article-title: Bootstrap based inference for sparse high‐dimensional time series models publication-title: Bernoulli – ident: e_1_2_7_4_1 doi: 10.1214/08-AOS600 – ident: e_1_2_7_14_1 doi: 10.1016/j.jeconom.2015.02.013 – volume-title: Elements of Multivariate Time Series Analysis year: 2003 ident: e_1_2_7_21_1 – ident: e_1_2_7_16_1 doi: 10.1007/978-3-540-27752-1 – ident: e_1_2_7_7_1 doi: 10.1198/jasa.2011.tm10155 – ident: e_1_2_7_10_1 doi: 10.1080/10618600.2015.1092978 – ident: e_1_2_7_6_1 doi: 10.1198/jasa.2011.tm10560 – ident: e_1_2_7_29_1 doi: 10.32614/CRAN.package.FinCovRegularization – ident: e_1_2_7_5_1 doi: 10.1007/978-1-4419-0320-4 – ident: e_1_2_7_19_1 – ident: e_1_2_7_12_1 doi: 10.1080/01621459.2014.951444 – ident: e_1_2_7_18_1 – ident: e_1_2_7_26_1 doi: 10.1016/bs.hesmac.2016.04.002 – ident: e_1_2_7_23_1 doi: 10.18637/jss.v039.i05 – ident: e_1_2_7_22_1 doi: 10.1198/jasa.2009.0101 – ident: e_1_2_7_13_1 doi: 10.1017/9781108164818 – ident: e_1_2_7_25_1 doi: 10.1093/oxfordhb/9780195398649.013.0003 – ident: e_1_2_7_9_1 doi: 10.1214/009053606000001523  | 
    
| SSID | ssj0016471 | 
    
| Score | 2.310872 | 
    
| Snippet | High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 554 | 
    
| SubjectTerms | Autoregressive models Consistency Dantzig selector Estimators Lasso Norms Parameter estimation Sparsity thresholdingMOS subject classification: 62M10 Time series vector autoregression Yule–Walker estimators  | 
    
| Title | Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjtsa.12586 https://www.proquest.com/docview/2580594476  | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate - TFS customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-9892 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016471 issn: 0143-9782 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1467-9892 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016471 issn: 0143-9782 databaseCode: AMVHM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0143-9782 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-9892 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016471 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMDD2Gke_JiK0ykBvSh09CPLGvAyxDEG8-A22EVKvnpR5rCdB0_-Cf6N_iXmJW2dIoLeCk1Lm7yX917y8nsInaWxTyWhXY8b6fGIpr7HmVIeA5iWMZdU26Xs8Q0dzsho3p3X0GV5FsbxIaoFN9AMO1-DgnORrSt5nvGOMc8x8LaDiNp46rZiRwEnyxUjhO1lYwcLNqlN46ke_WqNPl3MdUfVWprBFrorv9ElmNx3VrnoyJdv-Mb__sQ22ixcUNx3MrODanrRRBvjit-aNVEDfFCHcN5FyWTJbeoGlu6MY4b5QmHAc7hzj9haQbUykTs2PjAGBPL765uCwgEO-oGf7eYA5kBM0DbEN7MstmV4sj00G1xPr4ZeUZfBk1FEqKekoCxOSRALlQY0jBXRilETS0fCj9IIiDmkq3zBuQh1GsgeF5zJ1DgbhPtMR_uovnhc6AOEiWQ0VL42giSg6EccytRMIZQwcLWE30Ln5fgksoCWQ-2Mh6QKXkwPJrYHW-i0art0qI4fW7XLYU4Kdc0ScwO4NaRnbl_Y8frlDcloOunbq8O_ND5CjRDyYWx-WhvV86eVPjYOTS5OrOB-AE1i9Ik | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT8IwGMcbxYN48AU1oqhN9KLJyNhK2Y7ESBCBg0DCbenbLppJ3PDgyY_gZ_ST2KcdE40x0duSdkvWt-f_tE9_D0LnceBSQWjTYXr0OERR12GhlE4IMC1tLqkyW9mDIe1OSG_anOaxOXAXxvIhig03mBlmvYYJDhvSy7M8S1ld2-eArqI1QrWjAprorqBHASnLpiOEA2ZtCXM6qQnkKd79ao8-ReayVDW2prNlE6qmBlEIISb39XnG6-LlG8Dx37-xjTZzFYrbdtjsoBWVVNDGoEC4phVUBhlqKc67KBrNmInewMJec0wxSyQGQoe9-oiNIZRz7bxjLYMxUJDfX98k5A6w3A_8bM4HMANogjJevl5oscnEk-6hSed6fNV18tQMjvB9Qh0pOA2DmDQCLuMG9QJJlAypdqd97vqxD9Ac0pQuZ4x7Km6IFuMsFLHWG4S5ofL3USl5TNQBwkSE1JOu0mOJQ96PwBOxXkUoCUFtcbeKLhYdFImcWw7pMx6iwn_RLRiZFqyis6LuzNI6fqxVW_RzlM_YNNIFgK4hLV18aTrsly9EvfGobZ4O_1L5FK13x4N-1L8Z3h6hsgfhMSZcrYZK2dNcHWt9k_ETM4o_AJS3-Ko | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEICDriDrwbe4umpALwpdum2abY6LuqxPRF3YW8mrF6UutuvBkz_B3-gvMZN06wMR9FZIWmgyk5lJJt8gtJfGPpWERh430uMRTX2PM6U8BjAtYy6ptlvZF5e0PyCnw2hY5ubAXRjHh6g23EAz7HoNCq5HKv2s5UXOW8Y-x3QazZCIxZDRd3Rd0aOAlOXKEcIBs7GEJZ3UJvJU7361Rx9O5mdX1dqa3oIrqJpbRCGkmNy1xoVoyedvAMd__8Yimi-9UNx1YrOEpnS2jOYuKoRrvozq4IY6ivMKSm5G3GZvYOmuOeaYZwoDocNdfcTWEKqxCd6xcYMxUJDfXl4V1A5w3A_8ZM8HMAdogrZRvllosa3Ek6-iQe_49rDvlaUZPBmGhHpKCsrilLRjodI2DWJFtGLUhNOh8MM0BGgOiZQvOBeBTtuywwVnMjX-BuE-0-EaqmUPmV5HmEhGA-VrI0sC6n7EgUzNKkIJA29L-A20P5mgRJbcciifcZ9U8YsZwcSOYAPtVn1HjtbxY6_mZJ6TUmPzxDQAuoZ0TPOBnbBfvpCc3t507dPGXzrvoNmro15yfnJ5tonqAWTH2Gy1JqoVj2O9ZdybQmxbIX4HR9f4Lg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+concepts+and+estimation+procedures+for+high%E2%80%90dimensional+vector+autoregressive+models&rft.jtitle=Journal+of+time+series+analysis&rft.au=Krampe%2C+Jonas&rft.au=Paparoditis%2C+Efstathios&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0143-9782&rft.eissn=1467-9892&rft.volume=42&rft.issue=5-6&rft.spage=554&rft.epage=579&rft_id=info:doi/10.1111%2Fjtsa.12586&rft.externalDBID=10.1111%252Fjtsa.12586&rft.externalDocID=JTSA12586 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-9782&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-9782&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-9782&client=summon |