Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models

High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on high‐dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention...

Full description

Saved in:
Bibliographic Details
Published inJournal of time series analysis Vol. 42; no. 5-6; pp. 554 - 579
Main Authors Krampe, Jonas, Paparoditis, Efstathios
Format Journal Article
LanguageEnglish
Published Oxford, UK John Wiley & Sons, Ltd 01.09.2021
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0143-9782
1467-9892
DOI10.1111/jtsa.12586

Cover

Abstract High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on high‐dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention is paid to the different sparsity assumptions imposed on the VAR parameters and how these sparsity assumptions are related to the particular consistency properties of the estimators established. A sparsity scheme for high‐dimensional VAR models is proposed which is found to be more appropriate for the time series setting. Furthermore, it is shown that, under this sparsity setting, thresholding extends the consistency properties of regularized estimators to a wide range of matrix norms. Among other things, this enables application of the VAR parameters estimators to different problems, like forecasting or estimating the second‐order characteristics of the underlying VAR process. Extensive simulations compare the finite sample behavior of the different regularized estimators proposed using a variety of performance criteria.
AbstractList High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on high‐dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention is paid to the different sparsity assumptions imposed on the VAR parameters and how these sparsity assumptions are related to the particular consistency properties of the estimators established. A sparsity scheme for high‐dimensional VAR models is proposed which is found to be more appropriate for the time series setting. Furthermore, it is shown that, under this sparsity setting, thresholding extends the consistency properties of regularized estimators to a wide range of matrix norms. Among other things, this enables application of the VAR parameters estimators to different problems, like forecasting or estimating the second‐order characteristics of the underlying VAR process. Extensive simulations compare the finite sample behavior of the different regularized estimators proposed using a variety of performance criteria.
Author Krampe, Jonas
Paparoditis, Efstathios
Author_xml – sequence: 1
  givenname: Jonas
  surname: Krampe
  fullname: Krampe, Jonas
  organization: University of Mannheim
– sequence: 2
  givenname: Efstathios
  orcidid: 0000-0003-1958-781X
  surname: Paparoditis
  fullname: Paparoditis, Efstathios
  email: stathisp@ucy.ac.cy
  organization: University of Cyprus
BookMark eNp9kL1OwzAURi1UJEph4QkisSGl2InrOGNV8atKDC2z5dg3ras0CbZT1I1H4Bl5EtyGCSE82MM9n_Xdc44GdVMDQlcEj0k4txvv5JgkE85O0JBQlsU5z5MBGmJC0zjPeHKGzp3bYEwYzcgQiUUrrTN-H6mmVtB6F8laR-C82UpvmjpqbaNAdxZcVDY2WpvV-uvjU5st1C7MZRXtQPkwkV24YRVAZ3YQbRsNlbtAp6WsHFz-vCP0en-3nD3G85eHp9l0Hqs0pSzWqmA5LynhhS4JS7imoHPGOU8LnJZpkqWUTjQupCwSKInKZCFzVfIEU4lzSEfouv831H3rQn2xaTob2jkRbOBJTmnGAoV7StnGOQulUMYf1_RWmkoQLA4axUGjOGoMkZtfkdYGNXb_N0x6-N1UsP-HFM_LxbTPfAMfTIko
CitedBy_id crossref_primary_10_1016_j_jeconom_2022_01_003
crossref_primary_10_1080_01621459_2024_2311365
crossref_primary_10_1093_jjfinec_nbae020
crossref_primary_10_1111_obes_12664
crossref_primary_10_1080_07350015_2023_2257270
crossref_primary_10_3150_23_BEJ1628
crossref_primary_10_1080_01621459_2025_2479244
Cites_doi 10.1214/13-AOS1171
10.1214/15-AOS1315
10.3386/w11467
10.1214/16-EJS1108
10.1561/0800000002
10.1214/08-AOS600
10.1016/j.jeconom.2015.02.013
10.1007/978-3-540-27752-1
10.1198/jasa.2011.tm10155
10.1080/10618600.2015.1092978
10.1198/jasa.2011.tm10560
10.32614/CRAN.package.FinCovRegularization
10.1007/978-1-4419-0320-4
10.1080/01621459.2014.951444
10.1016/bs.hesmac.2016.04.002
10.18637/jss.v039.i05
10.1198/jasa.2009.0101
10.1017/9781108164818
10.1093/oxfordhb/9780195398649.013.0003
10.1214/009053606000001523
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
8BJ
FQK
JBE
JQ2
DOI 10.1111/jtsa.12586
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9892
EndPage 579
ExternalDocumentID 10_1111_jtsa_12586
JTSA12586
Genre article
GrantInformation_xml – fundername: German Research Foundation (DFG)
GroupedDBID -~X
.3N
.GA
.L6
.Y3
05W
0R~
10A
1OB
1OC
1OL
29L
3-9
31~
33P
3R3
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEHJ
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FSPIC
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
TUS
U5U
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
YQT
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c3346-dcb698f418bdf1628d4ed968883b03f3273445d0baab2ef1c7aba9cf8204a09e3
IEDL.DBID DR2
ISSN 0143-9782
IngestDate Wed Aug 13 03:15:41 EDT 2025
Wed Oct 01 01:43:10 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Wed Jan 22 16:29:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3346-dcb698f418bdf1628d4ed968883b03f3273445d0baab2ef1c7aba9cf8204a09e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1958-781X
PQID 2580594476
PQPubID 32430
PageCount 26
ParticipantIDs proquest_journals_2580594476
crossref_citationtrail_10_1111_jtsa_12586
crossref_primary_10_1111_jtsa_12586
wiley_primary_10_1111_jtsa_12586_JTSA12586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September-November 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September-November 2021
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Journal of time series analysis
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Blackwell Publishing Ltd
References 2015; 16
2011; 106
2011
2015; 186
2015; 43
2015; 110
2008; 36
2016; 10
2019
2017
2005
2016
2008; 3
2003
1991
2013
2011; 39
2007; 35
2016; 25
2009; 104
2016; 44
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_28_1
Krampe J. (e_1_2_7_15_1) 2019
R Core Team (e_1_2_7_20_1) 2019
e_1_2_7_29_1
Tsay RS (e_1_2_7_27_1) 2013
Han F (e_1_2_7_11_1) 2015; 16
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
Reinsel GC (e_1_2_7_21_1) 2003
References_xml – year: 2011
– volume: 35
  start-page: 2313
  issue: 6
  year: 2007
  end-page: 2351
  article-title: The Dantzig selector: statistical estimation when is much larger than
  publication-title: The Annals of Statistics
– volume: 3
  start-page: 89
  year: 2008
  end-page: 163
  article-title: Large dimensional factor analysis
  publication-title: Foundations and Trends in Econometrics
– volume: 106
  start-page: 672
  issue: 494
  year: 2011
  end-page: 684
  article-title: Adaptive thresholding for sparse covariance matrix estimation
  publication-title: Journal of the American Statistical Association
– volume: 44
  start-page: 455
  issue: 2
  year: 2016
  end-page: 488
  article-title: Estimating sparse precision matrix: optimal rates of convergence and adaptive estimation
  publication-title: The Annals of Statistics
– year: 2005
– volume: 106
  start-page: 594
  issue: 494
  year: 2011
  end-page: 607
  article-title: A constrained l1 minimization approach to sparse precision matrix estimation
  publication-title: Journal of the American Statistical Association
– volume: 186
  start-page: 325
  issue: 2
  year: 2015
  end-page: 344
  article-title: Oracle inequalities for high dimensional vector autoregressions
  publication-title: Journal of Econometrics
– volume: 43
  start-page: 1535
  year: 2015
  end-page: 1567
  article-title: Regularized estimation in sparse high‐dimensional time series models
  publication-title: The Annals of Statistics
– year: 2003
– volume: 16
  start-page: 3115
  issue: 1
  year: 2015
  end-page: 3150
  article-title: A direct estimation of high dimensional stationary vector autoregressions
  publication-title: The Journal of Machine Learning Research
– volume: 36
  start-page: 2577
  year: 2008
  end-page: 2604
  article-title: Covariance regularization by thresholding
  publication-title: The Annals of Statistics
– volume: 110
  start-page: 262
  issue: 509
  year: 2015
  end-page: 269
  article-title: Tuning parameter selection for the adaptive LASSO using ERIC
  publication-title: Journal of the American Statistical Association
– year: 1991
– year: 2017
– year: 2016
– volume: 10
  start-page: 352
  issue: 1
  year: 2016
  end-page: 379
  article-title: Performance bounds for parameter estimates of high‐dimensional linear models with correlated errors
  publication-title: Electronic Journal of Statistics
– volume: 39
  start-page: 1
  issue: 5
  year: 2011
  end-page: 13
  article-title: Regularization paths for Cox's proportional hazards model via coordinate descent
  publication-title: Journal of Statistical Software
– year: 2019
– volume: 104
  start-page: 177
  issue: 485
  year: 2009
  end-page: 186
  article-title: Generalized thresholding of large covariance matrices
  publication-title: Journal of the American Statistical Association
– volume: 25
  start-page: 1077
  issue: 4
  year: 2016
  end-page: 1096
  article-title: Sparse vector autoregressive modeling
  publication-title: Journal of Computational and Graphical Statistics
– year: 2019
  article-title: Bootstrap based inference for sparse high‐dimensional time series models
  publication-title: Bernoulli
– year: 2013
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2019
  ident: e_1_2_7_20_1
– ident: e_1_2_7_8_1
  doi: 10.1214/13-AOS1171
– ident: e_1_2_7_3_1
  doi: 10.1214/15-AOS1315
– volume: 16
  start-page: 3115
  issue: 1
  year: 2015
  ident: e_1_2_7_11_1
  article-title: A direct estimation of high dimensional stationary vector autoregressions
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_7_24_1
  doi: 10.3386/w11467
– ident: e_1_2_7_28_1
  doi: 10.1214/16-EJS1108
– volume-title: Multivariate Time Series Analysis: With R and Financial Applications
  year: 2013
  ident: e_1_2_7_27_1
– ident: e_1_2_7_2_1
  doi: 10.1561/0800000002
– ident: e_1_2_7_17_1
– year: 2019
  ident: e_1_2_7_15_1
  article-title: Bootstrap based inference for sparse high‐dimensional time series models
  publication-title: Bernoulli
– ident: e_1_2_7_4_1
  doi: 10.1214/08-AOS600
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jeconom.2015.02.013
– volume-title: Elements of Multivariate Time Series Analysis
  year: 2003
  ident: e_1_2_7_21_1
– ident: e_1_2_7_16_1
  doi: 10.1007/978-3-540-27752-1
– ident: e_1_2_7_7_1
  doi: 10.1198/jasa.2011.tm10155
– ident: e_1_2_7_10_1
  doi: 10.1080/10618600.2015.1092978
– ident: e_1_2_7_6_1
  doi: 10.1198/jasa.2011.tm10560
– ident: e_1_2_7_29_1
  doi: 10.32614/CRAN.package.FinCovRegularization
– ident: e_1_2_7_5_1
  doi: 10.1007/978-1-4419-0320-4
– ident: e_1_2_7_19_1
– ident: e_1_2_7_12_1
  doi: 10.1080/01621459.2014.951444
– ident: e_1_2_7_18_1
– ident: e_1_2_7_26_1
  doi: 10.1016/bs.hesmac.2016.04.002
– ident: e_1_2_7_23_1
  doi: 10.18637/jss.v039.i05
– ident: e_1_2_7_22_1
  doi: 10.1198/jasa.2009.0101
– ident: e_1_2_7_13_1
  doi: 10.1017/9781108164818
– ident: e_1_2_7_25_1
  doi: 10.1093/oxfordhb/9780195398649.013.0003
– ident: e_1_2_7_9_1
  doi: 10.1214/009053606000001523
SSID ssj0016471
Score 2.310872
Snippet High‐dimensional‐20 vector autoregressive (VAR) models are important tools for the analysis of multi‐variate time series. This article focuses on...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 554
SubjectTerms Autoregressive models
Consistency
Dantzig selector
Estimators
Lasso
Norms
Parameter estimation
Sparsity
thresholdingMOS subject classification: 62M10
Time series
vector autoregression
Yule–Walker estimators
Title Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjtsa.12586
https://www.proquest.com/docview/2580594476
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-9892
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016471
  issn: 0143-9782
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1467-9892
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016471
  issn: 0143-9782
  databaseCode: AMVHM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0143-9782
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-9892
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016471
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMDD2Gke_JiK0ykBvSh09CPLGvAyxDEG8-A22EVKvnpR5rCdB0_-Cf6N_iXmJW2dIoLeCk1Lm7yX917y8nsInaWxTyWhXY8b6fGIpr7HmVIeA5iWMZdU26Xs8Q0dzsho3p3X0GV5FsbxIaoFN9AMO1-DgnORrSt5nvGOMc8x8LaDiNp46rZiRwEnyxUjhO1lYwcLNqlN46ke_WqNPl3MdUfVWprBFrorv9ElmNx3VrnoyJdv-Mb__sQ22ixcUNx3MrODanrRRBvjit-aNVEDfFCHcN5FyWTJbeoGlu6MY4b5QmHAc7hzj9haQbUykTs2PjAGBPL765uCwgEO-oGf7eYA5kBM0DbEN7MstmV4sj00G1xPr4ZeUZfBk1FEqKekoCxOSRALlQY0jBXRilETS0fCj9IIiDmkq3zBuQh1GsgeF5zJ1DgbhPtMR_uovnhc6AOEiWQ0VL42giSg6EccytRMIZQwcLWE30Ln5fgksoCWQ-2Mh6QKXkwPJrYHW-i0art0qI4fW7XLYU4Kdc0ScwO4NaRnbl_Y8frlDcloOunbq8O_ND5CjRDyYWx-WhvV86eVPjYOTS5OrOB-AE1i9Ik
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT8IwGMcbxYN48AU1oqhN9KLJyNhK2Y7ESBCBg0DCbenbLppJ3PDgyY_gZ_ST2KcdE40x0duSdkvWt-f_tE9_D0LnceBSQWjTYXr0OERR12GhlE4IMC1tLqkyW9mDIe1OSG_anOaxOXAXxvIhig03mBlmvYYJDhvSy7M8S1ld2-eArqI1QrWjAprorqBHASnLpiOEA2ZtCXM6qQnkKd79ao8-ReayVDW2prNlE6qmBlEIISb39XnG6-LlG8Dx37-xjTZzFYrbdtjsoBWVVNDGoEC4phVUBhlqKc67KBrNmInewMJec0wxSyQGQoe9-oiNIZRz7bxjLYMxUJDfX98k5A6w3A_8bM4HMANogjJevl5oscnEk-6hSed6fNV18tQMjvB9Qh0pOA2DmDQCLuMG9QJJlAypdqd97vqxD9Ac0pQuZ4x7Km6IFuMsFLHWG4S5ofL3USl5TNQBwkSE1JOu0mOJQ96PwBOxXkUoCUFtcbeKLhYdFImcWw7pMx6iwn_RLRiZFqyis6LuzNI6fqxVW_RzlM_YNNIFgK4hLV18aTrsly9EvfGobZ4O_1L5FK13x4N-1L8Z3h6hsgfhMSZcrYZK2dNcHWt9k_ETM4o_AJS3-Ko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEICDriDrwbe4umpALwpdum2abY6LuqxPRF3YW8mrF6UutuvBkz_B3-gvMZN06wMR9FZIWmgyk5lJJt8gtJfGPpWERh430uMRTX2PM6U8BjAtYy6ptlvZF5e0PyCnw2hY5ubAXRjHh6g23EAz7HoNCq5HKv2s5UXOW8Y-x3QazZCIxZDRd3Rd0aOAlOXKEcIBs7GEJZ3UJvJU7361Rx9O5mdX1dqa3oIrqJpbRCGkmNy1xoVoyedvAMd__8Yimi-9UNx1YrOEpnS2jOYuKoRrvozq4IY6ivMKSm5G3GZvYOmuOeaYZwoDocNdfcTWEKqxCd6xcYMxUJDfXl4V1A5w3A_8ZM8HMAdogrZRvllosa3Ek6-iQe_49rDvlaUZPBmGhHpKCsrilLRjodI2DWJFtGLUhNOh8MM0BGgOiZQvOBeBTtuywwVnMjX-BuE-0-EaqmUPmV5HmEhGA-VrI0sC6n7EgUzNKkIJA29L-A20P5mgRJbcciifcZ9U8YsZwcSOYAPtVn1HjtbxY6_mZJ6TUmPzxDQAuoZ0TPOBnbBfvpCc3t507dPGXzrvoNmro15yfnJ5tonqAWTH2Gy1JqoVj2O9ZdybQmxbIX4HR9f4Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+concepts+and+estimation+procedures+for+high%E2%80%90dimensional+vector+autoregressive+models&rft.jtitle=Journal+of+time+series+analysis&rft.au=Krampe%2C+Jonas&rft.au=Paparoditis%2C+Efstathios&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0143-9782&rft.eissn=1467-9892&rft.volume=42&rft.issue=5-6&rft.spage=554&rft.epage=579&rft_id=info:doi/10.1111%2Fjtsa.12586&rft.externalDBID=10.1111%252Fjtsa.12586&rft.externalDocID=JTSA12586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-9782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-9782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-9782&client=summon