Contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement

Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic i...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 18; no. 13; pp. 4356 - 4367
Main Authors Pei, Xiaofang, Ma, Changsong, Zhou, Jin, Yang, Jihai, Xu, Yongheng
Format Journal Article
LanguageEnglish
Published Wiley 01.11.2024
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
1751-9667
DOI10.1049/ipr2.13256

Cover

Abstract Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection. Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information.
AbstractList Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection. Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information.
Abstract Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection.
Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection.
Author Zhou, Jin
Pei, Xiaofang
Ma, Changsong
Yang, Jihai
Xu, Yongheng
Author_xml – sequence: 1
  givenname: Xiaofang
  orcidid: 0000-0002-4814-4113
  surname: Pei
  fullname: Pei, Xiaofang
  email: xiaofangpei@163.com
  organization: Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Changsong
  orcidid: 0009-0001-6568-7793
  surname: Ma
  fullname: Ma, Changsong
  organization: Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Jin
  orcidid: 0009-0009-1851-8485
  surname: Zhou
  fullname: Zhou, Jin
  organization: Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Jihai
  surname: Yang
  fullname: Yang, Jihai
  organization: Nanjing University of Information Science and Technology
– sequence: 5
  givenname: Yongheng
  surname: Xu
  fullname: Xu, Yongheng
  organization: Nanjing University of Information Science and Technology
BookMark eNp9kMtKBDEQRYMo-Nz4BVkro3l1T2cpg48BQREFd6E6qYw99CRD0iK98xP8Rr_E1h5czqqqLqcul3tIdkMMSMgpZxecKX3ZrJO44FIU5Q454NOCT3RZTnf_90Lvk8Ocl4wVmlXFAVnOYugS1BAcddih7ZoYKLSLmJrubUV9TPT1-_MrQU8z2vdB7WkT8npDNitYYKY1ZHR0uBdtrKEd0BWErrEUwxsEiysM3THZ89BmPNnMI_Jyc_08u5vcP9zOZ1f3EyulKicVIBfO8YJr5y2TFsta2Fo5xZ2uvChZaVlVeyWsVFMttPKecVsq4FrLGuURmY--LsLSrNMQMfUmQmP-hJgWBtKQrUWDVeGdkJxLxZQfCgTnua-sZcXUQq0Hr_PR6z2sof-Atv035Mz8Vm5-Kzd_lQ_02UjbFHNO6LfDfIQ_mhb7LaSZPz6J8ecH0lyWWA
Cites_doi 10.1109/CVPR.2019.00059
10.1109/CVPR46437.2021.01008
10.1016/j.compeleceng.2022.108283
10.1080/09540091.2023.2257399
10.1016/j.neucom.2022.11.034
10.1109/ICIT.2013.6505833
10.1145/3394171.3413828
10.1109/CVPR52733.2024.01605
10.3233/XST-160606
10.1109/JSTARS.2024.3357496
10.1049/ipr2.12514
10.1016/j.ijar.2024.109181
10.1109/CVPR46437.2021.01352
10.3233/XST-221210
10.5244/C.27.130
10.1109/LSP.2023.3326088
10.1364/AO.461627
10.1007/978-3-031-19790-1_39
10.3390/mi13040565
10.1109/TIM.2023.3330184
10.3390/electronics12051179
10.1609/aaai.v34i07.6999
10.1109/ICCV48922.2021.00536
10.1071/WF23044
10.1109/CVPR46437.2021.00841
10.1109/CVPR.2019.00222
10.1109/ICME55011.2023.00214
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/ipr2.13256
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 4367
ExternalDocumentID oai_doaj_org_article_e85fd23113404f049adf1f8cc057cab9
10.1049/ipr2.13256
10_1049_ipr2_13256
IPR213256
Genre article
GrantInformation_xml – fundername: 2023 Jiangsu University Students' Innovation and Entrepreneurship Training Program Project
  funderid: 202313982007Z
– fundername: National Natural Science Foundation of China Youth Fund Project
  funderid: 42205078
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHJG
AAJGR
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
AENEX
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IDLOA
IPLJI
ITC
LAI
MCNEO
MS~
O9-
OK1
P2P
QWB
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3346-8ae12dd1519dfc03ce6b2cb4d41d98f2606c08bf42c3479294ff01c64a1993be3
IEDL.DBID 24P
ISSN 1751-9659
1751-9667
IngestDate Fri Oct 03 12:42:36 EDT 2025
Sun Sep 07 11:24:23 EDT 2025
Wed Oct 29 21:13:33 EDT 2025
Sun Jul 06 04:44:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3346-8ae12dd1519dfc03ce6b2cb4d41d98f2606c08bf42c3479294ff01c64a1993be3
ORCID 0009-0009-1851-8485
0009-0001-6568-7793
0000-0002-4814-4113
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13256
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_e85fd23113404f049adf1f8cc057cab9
unpaywall_primary_10_1049_ipr2_13256
crossref_primary_10_1049_ipr2_13256
wiley_primary_10_1049_ipr2_13256_IPR213256
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 31
2015; 1
2023; 30
2023; 35
2023; 33
2023; 12
2017; 25
2024; 80
2020; 34
2024; 169
2024; 17
2021; 35
2017; 59
2023
2022
2022; 61
2021
2020
2022; 13
2019
2015
2013
2023; 519
2022; 16
2023; 72
2022; 103
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Lu J. (e_1_2_9_16_1) 2024; 80
Zhang K. (e_1_2_9_18_1) 2021; 35
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_19_1
e_1_2_9_20_1
Xu Y. (e_1_2_9_10_1) 2023; 72
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Mery D. (e_1_2_9_9_1) 2017; 59
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 10213
  year: 2021
  end-page: 10224
  article-title: Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution
– volume: 16
  start-page: 2638
  issue: 10
  year: 2022
  end-page: 2651
  article-title: EAOD‐Net: Effective anomaly object detection networks for X‐ray images
  publication-title: IET Image Proc.
– volume: 31
  start-page: 13
  issue: 1
  year: 2023
  end-page: 26
  article-title: A deep learning‐based recognition for dangerous objects imaged in X‐ray security inspection device
  publication-title: J. X‐Ray Sci. Technol.
– volume: 103
  year: 2022
  article-title: LightRay: Lightweight network for prohibited items detection in X‐ray images during security inspection
  publication-title: Comput. Electr. Eng.
– volume: 33
  year: 2023
  article-title: LEF‐YOLO: A lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework
  publication-title: Int. J. Wildland Fire
– volume: 34
  start-page: 12993
  issue: 07
  year: 2020
  end-page: 13000
  article-title: Distance‐IoU loss: Faster and better learning for bounding box regression
– year: 2021
– volume: 72
  start-page: 1
  year: 2023
  end-page: 17
  article-title: PIXDet: Prohibited item detection in X‐ray image based on whole‐process feature fusion and local‐global semantic dependency interaction
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 5412
  year: 2021
  end-page: 5421
  article-title: Towards real‐world prohibited item detection: A large‐scale x‐ray benchmark
– start-page: 501
  year: 2019
  end-page: 509
  article-title: Feature denoising for improving adversarial robustness
– volume: 13
  start-page: 565
  issue: 4
  year: 2022
  article-title: Towards more efficient security inspection via deep learning: A task‐driven X‐ray image cropping scheme
  publication-title: Micromachines
– volume: 1
  year: 2015
  article-title: Faster r‐cnn: Towards real‐time object detection with region proposal networks
– volume: 61
  start-page: 6297
  issue: 21
  year: 2022
  end-page: 6310
  article-title: Improved YOLOX detection algorithm for contraband in X‐ray images
  publication-title: Appl. Opt.
– start-page: 16965
  year: 2023
  end-page: 16974
  article-title: DETRs beat YOLOs on real‐time object detection
– volume: 169
  year: 2024
  article-title: Feature selection for multi‐label learning based on variable‐degree multi‐granulation decision‐theoretic rough sets
  publication-title: Int. J. Approx. Reason
– volume: 519
  start-page: 1
  year: 2023
  end-page: 16
  article-title: Occluded prohibited object detection in X‐ray images with global Context‐aware multi‐scale feature aggregation
  publication-title: Neurocomputing
– start-page: 138
  year: 2020
  end-page: 146
  article-title: Occluded prohibited items detection: An x‐ray security inspection benchmark and de‐occlusion attention module
– volume: 35
  start-page: 1
  year: 2023
  end-page: 32
  article-title: NAS‐YOLOX: A SAR ship detection using neural architecture search and multi‐scale attention
  publication-title: Connection Sci.
– start-page: 13733
  year: 2021
  end-page: 13742
  article-title: Repvgg: Making vgg‐style convnets great again
– start-page: 649
  year: 2022
  end-page: 667
  article-title: Efficient long‐range attention network for image super‐resolution
– start-page: 1229
  year: 2023
  end-page: 1234
  article-title: ABTD‐Net: Autonomous baggage threat detection networks for X‐ray images
– year: 2013
  article-title: Object recognition in multi‐view dual energy X‐ray image
– volume: 12
  start-page: 1179
  issue: 5
  year: 2023
  article-title: Material‐aware path aggregation network and shape decoupled SIoU for X‐ray contraband detection
  publication-title: Electronics
– volume: 35
  start-page: 377
  year: 2021
  end-page: 389
  article-title: EATN: An efficient adaptive transfer network for aspect‐level sentiment analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 25
  start-page: 33
  issue: 1
  year: 2017
  end-page: 56
  article-title: Automated x‐ray image analysis for cargo security: Critical review and future promise
  publication-title: J. X‐Ray Sci. Technol.
– start-page: 8514
  year: 2021
  end-page: 8523
  article-title: Varifocalnet: An iou‐aware dense object detector
– volume: 59
  start-page: 92
  year: 2017
  article-title: Object recognition in X‐ray testing using an efficient search algorithm in multiple views
  publication-title: Insight: Non‐Destr. Test. Condition Monitor
– start-page: 2119
  year: 2019
  end-page: 2128
  article-title: Sixray: A large‐scale security inspection x‐ray benchmark for prohibited item discovery in overlapping images
– volume: 17
  start-page: 3999
  year: 2024
  end-page: 4014
  article-title: A detection method with antiinterference for infrared maritime small target
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 80
  start-page: 3047
  issue: 2
  year: 2024
  end-page: 3065
  article-title: Source camera identification algorithm based on multi‐scale feature fusion
  publication-title: Comput. Mater. Contin.
– start-page: 1140
  year: 2013
  end-page: 1145
  article-title: Improving feature‐based object recognition for X‐ray baggage security screening using primed visualwords
– volume: 30
  start-page: 1607
  year: 2023
  end-page: 1611
  article-title: A new few‐shot learning‐based model for prohibited objects detection in cluttered baggage X‐ray images through edge detection and reverse validation
  publication-title: IEEE Signal Process Lett. IEEE
– year: 2015
– ident: e_1_2_9_20_1
  doi: 10.1109/CVPR.2019.00059
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR46437.2021.01008
– ident: e_1_2_9_34_1
  doi: 10.1016/j.compeleceng.2022.108283
– ident: e_1_2_9_21_1
  doi: 10.1080/09540091.2023.2257399
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neucom.2022.11.034
– ident: e_1_2_9_7_1
  doi: 10.1109/ICIT.2013.6505833
– ident: e_1_2_9_11_1
  doi: 10.1145/3394171.3413828
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR52733.2024.01605
– ident: e_1_2_9_4_1
  doi: 10.3233/XST-160606
– ident: e_1_2_9_15_1
  doi: 10.1109/JSTARS.2024.3357496
– ident: e_1_2_9_33_1
  doi: 10.1049/ipr2.12514
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ijar.2024.109181
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR46437.2021.01352
– ident: e_1_2_9_5_1
  doi: 10.3233/XST-221210
– volume: 59
  start-page: 92
  year: 2017
  ident: e_1_2_9_9_1
  article-title: Object recognition in X‐ray testing using an efficient search algorithm in multiple views
  publication-title: Insight: Non‐Destr. Test. Condition Monitor
– ident: e_1_2_9_8_1
  doi: 10.5244/C.27.130
– ident: e_1_2_9_13_1
  doi: 10.1109/LSP.2023.3326088
– ident: e_1_2_9_3_1
  doi: 10.1364/AO.461627
– ident: e_1_2_9_22_1
  doi: 10.1007/978-3-031-19790-1_39
– ident: e_1_2_9_32_1
– ident: e_1_2_9_2_1
  doi: 10.3390/mi13040565
– ident: e_1_2_9_27_1
– volume: 72
  start-page: 1
  year: 2023
  ident: e_1_2_9_10_1
  article-title: PIXDet: Prohibited item detection in X‐ray image based on whole‐process feature fusion and local‐global semantic dependency interaction
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3330184
– ident: e_1_2_9_14_1
  doi: 10.3390/electronics12051179
– ident: e_1_2_9_26_1
  doi: 10.1609/aaai.v34i07.6999
– ident: e_1_2_9_30_1
– ident: e_1_2_9_29_1
  doi: 10.1109/ICCV48922.2021.00536
– volume: 35
  start-page: 377
  year: 2021
  ident: e_1_2_9_18_1
  article-title: EATN: An efficient adaptive transfer network for aspect‐level sentiment analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 80
  start-page: 3047
  issue: 2
  year: 2024
  ident: e_1_2_9_16_1
  article-title: Source camera identification algorithm based on multi‐scale feature fusion
  publication-title: Comput. Mater. Contin.
– ident: e_1_2_9_19_1
  doi: 10.1071/WF23044
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPR46437.2021.00841
– ident: e_1_2_9_28_1
  doi: 10.1109/CVPR.2019.00222
– ident: e_1_2_9_12_1
  doi: 10.1109/ICME55011.2023.00214
SSID ssj0059085
Score 2.3336663
Snippet Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security...
Abstract Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 4356
SubjectTerms image processing
image recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3rwLdYXC3oSYpPNJmaPKooKioiF3sI-NdKmpQ_Emz_B3-gvcWaTFr3Ui7ckDGSZ2ex8k5n5hpAjkSnDxKkLIqVwhFkkAum0DQx4O6mN5jbFRuG7-_S6xW_bSfvHqC-sCavogSvFNW2WOAMgJIp5yB3gWWlc5DKtAWhoqXzrXpiJSTBVncE4yDvxrZA4RD5NxISYlItm0R-wE4jBcGT1D1fkGfuXyMK47Mv3N9np_Ear3t1crZLlGifSs2p9a2TOlutkpcaMtP4ihxvkFemlMC9fGmrsyBdWlVR2nnsQ9b90KWBS2v76-BzIdzqsZ9XRoqwaLEGy6MKBMqTozAyF-4ogBES7oPJCU1u-4L7Af4ibpHV1-XRxHdTzEwIdxzwNMmkjZgz4dGGcDmNtU8W04oZHRmQOIplUh5lynGnsJ2WCOxdGOuUSq_qUjbfIfNkr7TahQlkXKqyfkQmPZJol3BqDad7QslMjGuRwosq8X9Fk5D69zUWOCs-9whvkHLU8lUBqa_8ADJ7XBs__MniDHE1tNPNdx958M0Tym4dH5q92_mNhu2SRAeKpGhX3yPxoMLb7gFhG6sBvzm8p3en2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-Cctg4jH0KNjZZjBNSusRx3PgICMQmgdC0SuUU-XMNtKFqU03sxJ_A37i_hGcnReoOFTcnerEtv-e8n_2-APZFrgwVPRclSvkSZomIpNM2MqjtpDaaWe4Dhc8v-Fmf_RhkgzXYW8TCLNnvmfhWTqa0iyemjK_DBs8Qb3dgo39xeXgVIh19jXgeKqK1bd5b5CBd-nhJ64Tk_JvwYl5N5N0fORotA9OgWU634Hgxp8ah5KY7r1VX__0vXePqSb-GVy2wJIeNJLyBNVu9ha0WZJJ2C8_ewbXPR-UN-ZUhxtbBE6sicvT7dlrWwzFBEEsG_-4fpvKOzNridqSsmohMpCzH-AeaEa_9DMHnJqMIko6RR6Umthp6QfKXju-hf3ry6_gsagsuRDpNGY9yaRNqDIIAYZyOU225oloxwxIjcodHH67jXDlGtQ9ApYI5FyeaM-ndAJVNP0Cnuq3sNhChrIuVd7iRGUskzzNmjfF24djSnhE78HXBkGLS5NUogj2cicIvXxGWbweOPK-eKHwu7PACV7tot1Zh88wZhKlJymLmsANpXOJyrRGKaqlwqP0nTq8c6yAIwQqS4vvlTxpaH5_X5yd4SREENbGLu9Cpp3P7GUFMrb60UvwIvjrueA
  priority: 102
  providerName: Unpaywall
Title Contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13256
https://doi.org/10.1049/ipr2.13256
https://doaj.org/article/e85fd23113404f049adf1f8cc057cab9
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEB7S5ND20KY_oWkbs9CcCmq1q9VGC7mkJSEpNJhSg3sS-5u42LKxHUpufYQ-Y56kMyvZIZdAbpIYSTCzs_PN7s43APu6sl7og5hxa6mFGdeZiS5kHqOdcd7JoKhQ-Pu5Oh3Ib8NyuAGHq1qYlh9iveBGnpHma3JwY9suJAhq0Yij2Vx8wlyqVI9giyOQofEtZH81D1Mz7zKVQ1IjeVXqFTmp1J9v370TjhJr_1N4fNXMzPUfMx7fRawp5Jxsw7MOK7Kj1rgvYCM0L-F5hxtZ55WLV_CbKKZob77xzIdlOlzVMDO-mGLmfzlhiEvZ8Obvv7m5ZouuXx0bNW2RJUqOJjipLBgFNM_wviUJQdEJqn3kWGguaWzQOuJrGJwc__x6mnU9FDJXFFJllQlceI9xXfvo8sIFZYWz0kvudRUxm1Eur2yUwlFNqdAyxpw7JQ2d7LOh2IHNZtqEN8C0DTG3dIbGlJIbVZUyeE9bvXkQB17vwoeVKutZS5VRpy1uqWtSeJ0UvgtfSMtrCaK3Tg-m84u685Y6VGX0iDx5IXMZ8QPGRx4r5xBdOmPxV_trG937r4_JfPeI1Gf9HyJdvX2I8Dt4IhDdtEWJ72FzOb8Ke4hOlraXBmEv5fY92Bqc949-_QdLz-SG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoHGgPLf1BpbRgqZwqpY2diYmPbVW0UECoAmlvkX9hq93sandRxY1H4Bl5ks442a24IPWWRJNEGns839gz3zC2pyvrpd6PmbCWWpgJnZnoQubR2xnnHQRFhcInp6p3AUf9st_l5lAtTMsPsdxwI8tI6zUZOG1ItwEnEEnmYDKVnzGYKtUTtgZKKIq9JJwtFmLq5l2mekjqJK9KvWAnBf3l37sP_FGi7X_G1q-bibn5Y4bDh5A1-ZyDDfa8A4v8azu6L9lKaF6xFx1w5J1Zzl6z38QxRYfzjec-zFN2VcPN8HKMof_ViCMw5f3727upueGzrmEdHzRtlSVKDka4qsw4eTTP8b5lCUHREep94Hhormhy0EbiG3Zx8OP8ey_rmihkrihAZZUJQnqPjl376PLCBWWls-BBeF1FDGeUyysbQToqKpUaYsyFU2Aotc-GYpOtNuMmvGVc2xBzS0k0pgRhVFVC8J7OevMg973eYh8XqqwnLVdGnc64Qdek8DopfIt9Iy0vJYjfOj0YTy_rzlzqUJXRI_QUBeQQ8QPGRxEr5xBeOmPxV3vLMXr0X5_S8D0iUh-e_ZLp6t3_CO-y9d75yXF9fHj6c5s9lQh12grF92x1Pr0OHxCqzO1OmpB_ARdc5U0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2FNjjsHYvrFu7ClhPA7zasqxax76Cdu2KYliGYBdDEqU2Q-IESYqht_2E_sb9kpGyk6GXArvZBm0DlCh-lMiPjG3r0oLQuyHJrKUWZplOTHA-AfR2xoGTXlGh8JdzddyTn_tFv83NoVqYhh9iueFGlhHXazJwP4HQBJySSDIHk6n4hMFUoR6yFXTkqeywlb3vvR-9xVJM_byLWBFJveRVoRf8pFLv_Hv7jkeKxP1P2ePremJufpnh8C5ojV6nu8aetXCR7zXj-5w98PULttpCR94a5uwl-0ksU3Q8XwMHP4_5VTU3w8sxBv9XI47QlPf__L6dmhs-a1vW8UHd1Fmi5GCE68qMk08DjvcNTwiKjlDzA8d9fUXTg7YSX7Fe9-jbwXHStlFIXJ5LlZTGZwIAXbuG4NLceWWFsxJkBroMGNAol5Y2SOGorFRoGUKaOSUNJfdZn79mnXpc-zeMa-tDaimNxhQyM6ospAeg097Ui13Q6-zDQpXVpGHLqOIpt9QVKbyKCl9n-6TlpQQxXMcH4-ll1RpM5csiAILPLJepDPgBAyELpXMIMJ2x-Kvt5Rjd-6-PcfjuEalOLr6KePX2f4S32KOLw251dnJ--o49EYh1mhLFDdaZT6_9JmKVuX3fzsi_QqHmoQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-Cctg4jH0KNjZZjBNSusRx3PgICMQmgdC0SuUU-XMNtKFqU03sxJ_A37i_hGcnReoOFTcnerEtv-e8n_2-APZFrgwVPRclSvkSZomIpNM2MqjtpDaaWe4Dhc8v-Fmf_RhkgzXYW8TCLNnvmfhWTqa0iyemjK_DBs8Qb3dgo39xeXgVIh19jXgeKqK1bd5b5CBd-nhJ64Tk_JvwYl5N5N0fORotA9OgWU634Hgxp8ah5KY7r1VX__0vXePqSb-GVy2wJIeNJLyBNVu9ha0WZJJ2C8_ewbXPR-UN-ZUhxtbBE6sicvT7dlrWwzFBEEsG_-4fpvKOzNridqSsmohMpCzH-AeaEa_9DMHnJqMIko6RR6Umthp6QfKXju-hf3ry6_gsagsuRDpNGY9yaRNqDIIAYZyOU225oloxwxIjcodHH67jXDlGtQ9ApYI5FyeaM-ndAJVNP0Cnuq3sNhChrIuVd7iRGUskzzNmjfF24djSnhE78HXBkGLS5NUogj2cicIvXxGWbweOPK-eKHwu7PACV7tot1Zh88wZhKlJymLmsANpXOJyrRGKaqlwqP0nTq8c6yAIwQqS4vvlTxpaH5_X5yd4SREENbGLu9Cpp3P7GUFMrb60UvwIvjrueA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contraband+detection+algorithm+for+X%E2%80%90ray+security+inspection+images+based+on+global+semantic+enhancement&rft.jtitle=IET+image+processing&rft.au=Pei%2C+Xiaofang&rft.au=Ma%2C+Changsong&rft.au=Zhou%2C+Jin&rft.au=Yang%2C+Jihai&rft.date=2024-11-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=13&rft.spage=4356&rft.epage=4367&rft_id=info:doi/10.1049%2Fipr2.13256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon