Contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement
Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic i...
Saved in:
| Published in | IET image processing Vol. 18; no. 13; pp. 4356 - 4367 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-9659 1751-9667 1751-9667 |
| DOI | 10.1049/ipr2.13256 |
Cover
| Abstract | Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection.
Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. |
|---|---|
| AbstractList | Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection.
Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. Abstract Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection. Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement is proposed to achieve accurate contraband target detection by enhancing global semantic information. First, the disturbance suppression module is used to weaken the noise disturbance at different positions by local suppression and aggregate finer detail information. Then, the parallel cascade search module is used to capture long‐range dependencies and strengthen the representation of global semantic information, which helps the model identify contraband under overlapping occlusion. Finally, the contribution of different features is adaptively adjusted through the feature‐weighted fusion module, which promotes the effective fusion of multi‐scale features and improves the accuracy of model detection. The method in this article has been extensively evaluated and experimented on three mainstream benchmark datasets: SIXray, OPIXray, and PIDray. The mAPs of three datasets reach 93.5%, 91.9%, and 85.9%, respectively. The experimental results fully demonstrate that the method in this article has better performance compared with the latest method, which can meet the practical application requirements of real‐time target detection. |
| Author | Zhou, Jin Pei, Xiaofang Ma, Changsong Yang, Jihai Xu, Yongheng |
| Author_xml | – sequence: 1 givenname: Xiaofang orcidid: 0000-0002-4814-4113 surname: Pei fullname: Pei, Xiaofang email: xiaofangpei@163.com organization: Nanjing University of Information Science and Technology – sequence: 2 givenname: Changsong orcidid: 0009-0001-6568-7793 surname: Ma fullname: Ma, Changsong organization: Nanjing University of Information Science and Technology – sequence: 3 givenname: Jin orcidid: 0009-0009-1851-8485 surname: Zhou fullname: Zhou, Jin organization: Nanjing University of Information Science and Technology – sequence: 4 givenname: Jihai surname: Yang fullname: Yang, Jihai organization: Nanjing University of Information Science and Technology – sequence: 5 givenname: Yongheng surname: Xu fullname: Xu, Yongheng organization: Nanjing University of Information Science and Technology |
| BookMark | eNp9kMtKBDEQRYMo-Nz4BVkro3l1T2cpg48BQREFd6E6qYw99CRD0iK98xP8Rr_E1h5czqqqLqcul3tIdkMMSMgpZxecKX3ZrJO44FIU5Q454NOCT3RZTnf_90Lvk8Ocl4wVmlXFAVnOYugS1BAcddih7ZoYKLSLmJrubUV9TPT1-_MrQU8z2vdB7WkT8npDNitYYKY1ZHR0uBdtrKEd0BWErrEUwxsEiysM3THZ89BmPNnMI_Jyc_08u5vcP9zOZ1f3EyulKicVIBfO8YJr5y2TFsta2Fo5xZ2uvChZaVlVeyWsVFMttPKecVsq4FrLGuURmY--LsLSrNMQMfUmQmP-hJgWBtKQrUWDVeGdkJxLxZQfCgTnua-sZcXUQq0Hr_PR6z2sof-Atv035Mz8Vm5-Kzd_lQ_02UjbFHNO6LfDfIQ_mhb7LaSZPz6J8ecH0lyWWA |
| Cites_doi | 10.1109/CVPR.2019.00059 10.1109/CVPR46437.2021.01008 10.1016/j.compeleceng.2022.108283 10.1080/09540091.2023.2257399 10.1016/j.neucom.2022.11.034 10.1109/ICIT.2013.6505833 10.1145/3394171.3413828 10.1109/CVPR52733.2024.01605 10.3233/XST-160606 10.1109/JSTARS.2024.3357496 10.1049/ipr2.12514 10.1016/j.ijar.2024.109181 10.1109/CVPR46437.2021.01352 10.3233/XST-221210 10.5244/C.27.130 10.1109/LSP.2023.3326088 10.1364/AO.461627 10.1007/978-3-031-19790-1_39 10.3390/mi13040565 10.1109/TIM.2023.3330184 10.3390/electronics12051179 10.1609/aaai.v34i07.6999 10.1109/ICCV48922.2021.00536 10.1071/WF23044 10.1109/CVPR46437.2021.00841 10.1109/CVPR.2019.00222 10.1109/ICME55011.2023.00214 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1049/ipr2.13256 |
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 4367 |
| ExternalDocumentID | oai_doaj_org_article_e85fd23113404f049adf1f8cc057cab9 10.1049/ipr2.13256 10_1049_ipr2_13256 IPR213256 |
| Genre | article |
| GrantInformation_xml | – fundername: 2023 Jiangsu University Students' Innovation and Entrepreneurship Training Program Project funderid: 202313982007Z – fundername: National Natural Science Foundation of China Youth Fund Project funderid: 42205078 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHJG AAJGR ABQXS ACCMX ACESK ACGFS ACIWK ACXQS AENEX ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IDLOA IPLJI ITC LAI MCNEO MS~ O9- OK1 P2P QWB RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ K1G L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c3346-8ae12dd1519dfc03ce6b2cb4d41d98f2606c08bf42c3479294ff01c64a1993be3 |
| IEDL.DBID | 24P |
| ISSN | 1751-9659 1751-9667 |
| IngestDate | Fri Oct 03 12:42:36 EDT 2025 Sun Sep 07 11:24:23 EDT 2025 Wed Oct 29 21:13:33 EDT 2025 Sun Jul 06 04:44:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3346-8ae12dd1519dfc03ce6b2cb4d41d98f2606c08bf42c3479294ff01c64a1993be3 |
| ORCID | 0009-0009-1851-8485 0009-0001-6568-7793 0000-0002-4814-4113 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13256 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e85fd23113404f049adf1f8cc057cab9 unpaywall_primary_10_1049_ipr2_13256 crossref_primary_10_1049_ipr2_13256 wiley_primary_10_1049_ipr2_13256_IPR213256 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2023; 31 2015; 1 2023; 30 2023; 35 2023; 33 2023; 12 2017; 25 2024; 80 2020; 34 2024; 169 2024; 17 2021; 35 2017; 59 2023 2022 2022; 61 2021 2020 2022; 13 2019 2015 2013 2023; 519 2022; 16 2023; 72 2022; 103 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Lu J. (e_1_2_9_16_1) 2024; 80 Zhang K. (e_1_2_9_18_1) 2021; 35 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_19_1 e_1_2_9_20_1 Xu Y. (e_1_2_9_10_1) 2023; 72 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Mery D. (e_1_2_9_9_1) 2017; 59 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – start-page: 10213 year: 2021 end-page: 10224 article-title: Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution – volume: 16 start-page: 2638 issue: 10 year: 2022 end-page: 2651 article-title: EAOD‐Net: Effective anomaly object detection networks for X‐ray images publication-title: IET Image Proc. – volume: 31 start-page: 13 issue: 1 year: 2023 end-page: 26 article-title: A deep learning‐based recognition for dangerous objects imaged in X‐ray security inspection device publication-title: J. X‐Ray Sci. Technol. – volume: 103 year: 2022 article-title: LightRay: Lightweight network for prohibited items detection in X‐ray images during security inspection publication-title: Comput. Electr. Eng. – volume: 33 year: 2023 article-title: LEF‐YOLO: A lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework publication-title: Int. J. Wildland Fire – volume: 34 start-page: 12993 issue: 07 year: 2020 end-page: 13000 article-title: Distance‐IoU loss: Faster and better learning for bounding box regression – year: 2021 – volume: 72 start-page: 1 year: 2023 end-page: 17 article-title: PIXDet: Prohibited item detection in X‐ray image based on whole‐process feature fusion and local‐global semantic dependency interaction publication-title: IEEE Trans. Instrum. Meas. – start-page: 5412 year: 2021 end-page: 5421 article-title: Towards real‐world prohibited item detection: A large‐scale x‐ray benchmark – start-page: 501 year: 2019 end-page: 509 article-title: Feature denoising for improving adversarial robustness – volume: 13 start-page: 565 issue: 4 year: 2022 article-title: Towards more efficient security inspection via deep learning: A task‐driven X‐ray image cropping scheme publication-title: Micromachines – volume: 1 year: 2015 article-title: Faster r‐cnn: Towards real‐time object detection with region proposal networks – volume: 61 start-page: 6297 issue: 21 year: 2022 end-page: 6310 article-title: Improved YOLOX detection algorithm for contraband in X‐ray images publication-title: Appl. Opt. – start-page: 16965 year: 2023 end-page: 16974 article-title: DETRs beat YOLOs on real‐time object detection – volume: 169 year: 2024 article-title: Feature selection for multi‐label learning based on variable‐degree multi‐granulation decision‐theoretic rough sets publication-title: Int. J. Approx. Reason – volume: 519 start-page: 1 year: 2023 end-page: 16 article-title: Occluded prohibited object detection in X‐ray images with global Context‐aware multi‐scale feature aggregation publication-title: Neurocomputing – start-page: 138 year: 2020 end-page: 146 article-title: Occluded prohibited items detection: An x‐ray security inspection benchmark and de‐occlusion attention module – volume: 35 start-page: 1 year: 2023 end-page: 32 article-title: NAS‐YOLOX: A SAR ship detection using neural architecture search and multi‐scale attention publication-title: Connection Sci. – start-page: 13733 year: 2021 end-page: 13742 article-title: Repvgg: Making vgg‐style convnets great again – start-page: 649 year: 2022 end-page: 667 article-title: Efficient long‐range attention network for image super‐resolution – start-page: 1229 year: 2023 end-page: 1234 article-title: ABTD‐Net: Autonomous baggage threat detection networks for X‐ray images – year: 2013 article-title: Object recognition in multi‐view dual energy X‐ray image – volume: 12 start-page: 1179 issue: 5 year: 2023 article-title: Material‐aware path aggregation network and shape decoupled SIoU for X‐ray contraband detection publication-title: Electronics – volume: 35 start-page: 377 year: 2021 end-page: 389 article-title: EATN: An efficient adaptive transfer network for aspect‐level sentiment analysis publication-title: IEEE Trans. Knowl. Data Eng. – volume: 25 start-page: 33 issue: 1 year: 2017 end-page: 56 article-title: Automated x‐ray image analysis for cargo security: Critical review and future promise publication-title: J. X‐Ray Sci. Technol. – start-page: 8514 year: 2021 end-page: 8523 article-title: Varifocalnet: An iou‐aware dense object detector – volume: 59 start-page: 92 year: 2017 article-title: Object recognition in X‐ray testing using an efficient search algorithm in multiple views publication-title: Insight: Non‐Destr. Test. Condition Monitor – start-page: 2119 year: 2019 end-page: 2128 article-title: Sixray: A large‐scale security inspection x‐ray benchmark for prohibited item discovery in overlapping images – volume: 17 start-page: 3999 year: 2024 end-page: 4014 article-title: A detection method with antiinterference for infrared maritime small target publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 80 start-page: 3047 issue: 2 year: 2024 end-page: 3065 article-title: Source camera identification algorithm based on multi‐scale feature fusion publication-title: Comput. Mater. Contin. – start-page: 1140 year: 2013 end-page: 1145 article-title: Improving feature‐based object recognition for X‐ray baggage security screening using primed visualwords – volume: 30 start-page: 1607 year: 2023 end-page: 1611 article-title: A new few‐shot learning‐based model for prohibited objects detection in cluttered baggage X‐ray images through edge detection and reverse validation publication-title: IEEE Signal Process Lett. IEEE – year: 2015 – ident: e_1_2_9_20_1 doi: 10.1109/CVPR.2019.00059 – ident: e_1_2_9_31_1 doi: 10.1109/CVPR46437.2021.01008 – ident: e_1_2_9_34_1 doi: 10.1016/j.compeleceng.2022.108283 – ident: e_1_2_9_21_1 doi: 10.1080/09540091.2023.2257399 – ident: e_1_2_9_6_1 doi: 10.1016/j.neucom.2022.11.034 – ident: e_1_2_9_7_1 doi: 10.1109/ICIT.2013.6505833 – ident: e_1_2_9_11_1 doi: 10.1145/3394171.3413828 – ident: e_1_2_9_17_1 doi: 10.1109/CVPR52733.2024.01605 – ident: e_1_2_9_4_1 doi: 10.3233/XST-160606 – ident: e_1_2_9_15_1 doi: 10.1109/JSTARS.2024.3357496 – ident: e_1_2_9_33_1 doi: 10.1049/ipr2.12514 – ident: e_1_2_9_24_1 doi: 10.1016/j.ijar.2024.109181 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR46437.2021.01352 – ident: e_1_2_9_5_1 doi: 10.3233/XST-221210 – volume: 59 start-page: 92 year: 2017 ident: e_1_2_9_9_1 article-title: Object recognition in X‐ray testing using an efficient search algorithm in multiple views publication-title: Insight: Non‐Destr. Test. Condition Monitor – ident: e_1_2_9_8_1 doi: 10.5244/C.27.130 – ident: e_1_2_9_13_1 doi: 10.1109/LSP.2023.3326088 – ident: e_1_2_9_3_1 doi: 10.1364/AO.461627 – ident: e_1_2_9_22_1 doi: 10.1007/978-3-031-19790-1_39 – ident: e_1_2_9_32_1 – ident: e_1_2_9_2_1 doi: 10.3390/mi13040565 – ident: e_1_2_9_27_1 – volume: 72 start-page: 1 year: 2023 ident: e_1_2_9_10_1 article-title: PIXDet: Prohibited item detection in X‐ray image based on whole‐process feature fusion and local‐global semantic dependency interaction publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3330184 – ident: e_1_2_9_14_1 doi: 10.3390/electronics12051179 – ident: e_1_2_9_26_1 doi: 10.1609/aaai.v34i07.6999 – ident: e_1_2_9_30_1 – ident: e_1_2_9_29_1 doi: 10.1109/ICCV48922.2021.00536 – volume: 35 start-page: 377 year: 2021 ident: e_1_2_9_18_1 article-title: EATN: An efficient adaptive transfer network for aspect‐level sentiment analysis publication-title: IEEE Trans. Knowl. Data Eng. – volume: 80 start-page: 3047 issue: 2 year: 2024 ident: e_1_2_9_16_1 article-title: Source camera identification algorithm based on multi‐scale feature fusion publication-title: Comput. Mater. Contin. – ident: e_1_2_9_19_1 doi: 10.1071/WF23044 – ident: e_1_2_9_25_1 doi: 10.1109/CVPR46437.2021.00841 – ident: e_1_2_9_28_1 doi: 10.1109/CVPR.2019.00222 – ident: e_1_2_9_12_1 doi: 10.1109/ICME55011.2023.00214 |
| SSID | ssj0059085 |
| Score | 2.3336663 |
| Snippet | Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray security... Abstract Aiming at the problem of low detection accuracy caused by overlapping occlusion and noise disturbance, a contraband detection algorithm for X‐ray... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 4356 |
| SubjectTerms | image processing image recognition |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3rwLdYXC3oSYpPNJmaPKooKioiF3sI-NdKmpQ_Emz_B3-gvcWaTFr3Ui7ckDGSZ2ex8k5n5hpAjkSnDxKkLIqVwhFkkAum0DQx4O6mN5jbFRuG7-_S6xW_bSfvHqC-sCavogSvFNW2WOAMgJIp5yB3gWWlc5DKtAWhoqXzrXpiJSTBVncE4yDvxrZA4RD5NxISYlItm0R-wE4jBcGT1D1fkGfuXyMK47Mv3N9np_Ear3t1crZLlGifSs2p9a2TOlutkpcaMtP4ihxvkFemlMC9fGmrsyBdWlVR2nnsQ9b90KWBS2v76-BzIdzqsZ9XRoqwaLEGy6MKBMqTozAyF-4ogBES7oPJCU1u-4L7Af4ibpHV1-XRxHdTzEwIdxzwNMmkjZgz4dGGcDmNtU8W04oZHRmQOIplUh5lynGnsJ2WCOxdGOuUSq_qUjbfIfNkr7TahQlkXKqyfkQmPZJol3BqDad7QslMjGuRwosq8X9Fk5D69zUWOCs-9whvkHLU8lUBqa_8ADJ7XBs__MniDHE1tNPNdx958M0Tym4dH5q92_mNhu2SRAeKpGhX3yPxoMLb7gFhG6sBvzm8p3en2 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-Cctg4jH0KNjZZjBNSusRx3PgICMQmgdC0SuUU-XMNtKFqU03sxJ_A37i_hGcnReoOFTcnerEtv-e8n_2-APZFrgwVPRclSvkSZomIpNM2MqjtpDaaWe4Dhc8v-Fmf_RhkgzXYW8TCLNnvmfhWTqa0iyemjK_DBs8Qb3dgo39xeXgVIh19jXgeKqK1bd5b5CBd-nhJ64Tk_JvwYl5N5N0fORotA9OgWU634Hgxp8ah5KY7r1VX__0vXePqSb-GVy2wJIeNJLyBNVu9ha0WZJJ2C8_ewbXPR-UN-ZUhxtbBE6sicvT7dlrWwzFBEEsG_-4fpvKOzNridqSsmohMpCzH-AeaEa_9DMHnJqMIko6RR6Umthp6QfKXju-hf3ry6_gsagsuRDpNGY9yaRNqDIIAYZyOU225oloxwxIjcodHH67jXDlGtQ9ApYI5FyeaM-ndAJVNP0Cnuq3sNhChrIuVd7iRGUskzzNmjfF24djSnhE78HXBkGLS5NUogj2cicIvXxGWbweOPK-eKHwu7PACV7tot1Zh88wZhKlJymLmsANpXOJyrRGKaqlwqP0nTq8c6yAIwQqS4vvlTxpaH5_X5yd4SREENbGLu9Cpp3P7GUFMrb60UvwIvjrueA priority: 102 providerName: Unpaywall |
| Title | Contraband detection algorithm for X‐ray security inspection images based on global semantic enhancement |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13256 https://doi.org/10.1049/ipr2.13256 https://doaj.org/article/e85fd23113404f049adf1f8cc057cab9 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEB7S5ND20KY_oWkbs9CcCmq1q9VGC7mkJSEpNJhSg3sS-5u42LKxHUpufYQ-Y56kMyvZIZdAbpIYSTCzs_PN7s43APu6sl7og5hxa6mFGdeZiS5kHqOdcd7JoKhQ-Pu5Oh3Ib8NyuAGHq1qYlh9iveBGnpHma3JwY9suJAhq0Yij2Vx8wlyqVI9giyOQofEtZH81D1Mz7zKVQ1IjeVXqFTmp1J9v370TjhJr_1N4fNXMzPUfMx7fRawp5Jxsw7MOK7Kj1rgvYCM0L-F5hxtZ55WLV_CbKKZob77xzIdlOlzVMDO-mGLmfzlhiEvZ8Obvv7m5ZouuXx0bNW2RJUqOJjipLBgFNM_wviUJQdEJqn3kWGguaWzQOuJrGJwc__x6mnU9FDJXFFJllQlceI9xXfvo8sIFZYWz0kvudRUxm1Eur2yUwlFNqdAyxpw7JQ2d7LOh2IHNZtqEN8C0DTG3dIbGlJIbVZUyeE9bvXkQB17vwoeVKutZS5VRpy1uqWtSeJ0UvgtfSMtrCaK3Tg-m84u685Y6VGX0iDx5IXMZ8QPGRx4r5xBdOmPxV_trG937r4_JfPeI1Gf9HyJdvX2I8Dt4IhDdtEWJ72FzOb8Ke4hOlraXBmEv5fY92Bqc949-_QdLz-SG |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoHGgPLf1BpbRgqZwqpY2diYmPbVW0UECoAmlvkX9hq93sandRxY1H4Bl5ks442a24IPWWRJNEGns839gz3zC2pyvrpd6PmbCWWpgJnZnoQubR2xnnHQRFhcInp6p3AUf9st_l5lAtTMsPsdxwI8tI6zUZOG1ItwEnEEnmYDKVnzGYKtUTtgZKKIq9JJwtFmLq5l2mekjqJK9KvWAnBf3l37sP_FGi7X_G1q-bibn5Y4bDh5A1-ZyDDfa8A4v8azu6L9lKaF6xFx1w5J1Zzl6z38QxRYfzjec-zFN2VcPN8HKMof_ViCMw5f3727upueGzrmEdHzRtlSVKDka4qsw4eTTP8b5lCUHREep94Hhormhy0EbiG3Zx8OP8ey_rmihkrihAZZUJQnqPjl376PLCBWWls-BBeF1FDGeUyysbQToqKpUaYsyFU2Aotc-GYpOtNuMmvGVc2xBzS0k0pgRhVFVC8J7OevMg973eYh8XqqwnLVdGnc64Qdek8DopfIt9Iy0vJYjfOj0YTy_rzlzqUJXRI_QUBeQQ8QPGRxEr5xBeOmPxV3vLMXr0X5_S8D0iUh-e_ZLp6t3_CO-y9d75yXF9fHj6c5s9lQh12grF92x1Pr0OHxCqzO1OmpB_ARdc5U0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2FNjjsHYvrFu7ClhPA7zasqxax76Cdu2KYliGYBdDEqU2Q-IESYqht_2E_sb9kpGyk6GXArvZBm0DlCh-lMiPjG3r0oLQuyHJrKUWZplOTHA-AfR2xoGTXlGh8JdzddyTn_tFv83NoVqYhh9iueFGlhHXazJwP4HQBJySSDIHk6n4hMFUoR6yFXTkqeywlb3vvR-9xVJM_byLWBFJveRVoRf8pFLv_Hv7jkeKxP1P2ePremJufpnh8C5ojV6nu8aetXCR7zXj-5w98PULttpCR94a5uwl-0ksU3Q8XwMHP4_5VTU3w8sxBv9XI47QlPf__L6dmhs-a1vW8UHd1Fmi5GCE68qMk08DjvcNTwiKjlDzA8d9fUXTg7YSX7Fe9-jbwXHStlFIXJ5LlZTGZwIAXbuG4NLceWWFsxJkBroMGNAol5Y2SOGorFRoGUKaOSUNJfdZn79mnXpc-zeMa-tDaimNxhQyM6ospAeg097Ui13Q6-zDQpXVpGHLqOIpt9QVKbyKCl9n-6TlpQQxXMcH4-ll1RpM5csiAILPLJepDPgBAyELpXMIMJ2x-Kvt5Rjd-6-PcfjuEalOLr6KePX2f4S32KOLw251dnJ--o49EYh1mhLFDdaZT6_9JmKVuX3fzsi_QqHmoQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-Cctg4jH0KNjZZjBNSusRx3PgICMQmgdC0SuUU-XMNtKFqU03sxJ_A37i_hGcnReoOFTcnerEtv-e8n_2-APZFrgwVPRclSvkSZomIpNM2MqjtpDaaWe4Dhc8v-Fmf_RhkgzXYW8TCLNnvmfhWTqa0iyemjK_DBs8Qb3dgo39xeXgVIh19jXgeKqK1bd5b5CBd-nhJ64Tk_JvwYl5N5N0fORotA9OgWU634Hgxp8ah5KY7r1VX__0vXePqSb-GVy2wJIeNJLyBNVu9ha0WZJJ2C8_ewbXPR-UN-ZUhxtbBE6sicvT7dlrWwzFBEEsG_-4fpvKOzNridqSsmohMpCzH-AeaEa_9DMHnJqMIko6RR6Umthp6QfKXju-hf3ry6_gsagsuRDpNGY9yaRNqDIIAYZyOU225oloxwxIjcodHH67jXDlGtQ9ApYI5FyeaM-ndAJVNP0Cnuq3sNhChrIuVd7iRGUskzzNmjfF24djSnhE78HXBkGLS5NUogj2cicIvXxGWbweOPK-eKHwu7PACV7tot1Zh88wZhKlJymLmsANpXOJyrRGKaqlwqP0nTq8c6yAIwQqS4vvlTxpaH5_X5yd4SREENbGLu9Cpp3P7GUFMrb60UvwIvjrueA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contraband+detection+algorithm+for+X%E2%80%90ray+security+inspection+images+based+on+global+semantic+enhancement&rft.jtitle=IET+image+processing&rft.au=Pei%2C+Xiaofang&rft.au=Ma%2C+Changsong&rft.au=Zhou%2C+Jin&rft.au=Yang%2C+Jihai&rft.date=2024-11-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=13&rft.spage=4356&rft.epage=4367&rft_id=info:doi/10.1049%2Fipr2.13256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |