Centralised model-predictive decoupled active–reactive power control for three-level neutral point clamped photovoltaic inverter with preference selective index-based objective prioritisation
This study presents a single-stage grid-tied three-level neutral point clamped photovoltaic inverter with a centralised model-predictive decoupled active–reactive power control. The proposed centralised model predictive control (CMPC) incorporates the constraints of maximum power extraction, dc-link...
Saved in:
| Published in | IET power electronics Vol. 12; no. 4; pp. 840 - 851 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
10.04.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1755-4535 1755-4543 |
| DOI | 10.1049/iet-pel.2018.5825 |
Cover
| Abstract | This study presents a single-stage grid-tied three-level neutral point clamped photovoltaic inverter with a centralised model-predictive decoupled active–reactive power control. The proposed centralised model predictive control (CMPC) incorporates the constraints of maximum power extraction, dc-link capacitor voltage balancing and active–reactive power tracking in a single objective function. The dc-link voltage of the inverter is regulated to its reference for extracting the maximum power. In order to eliminate the impact of reactive power exchange on floating dc-link voltage regulation, a decoupled active–reactive power control is used in the CMPC. Furthermore, a preference selective index-based dynamic weighting factor selection approach is introduced to maintain the relative importance between the power tracking and dc-link capacitor voltage balancing. The proposed control approach eliminates the outer dc-link voltage control loop and also, the empirical approach required for the selection of weighting factors. As a result, it ensures an optimal control action in each sampling period to improve the steady-state and dynamic tracking performance of the control objectives. The proposed control approach is experimentally verified by using a 1.2 kW laboratory-scale prototype and the results are presented to demonstrate its effectiveness compared to the classical proportional–integral-based model predictive control. |
|---|---|
| AbstractList | This study presents a single‐stage grid‐tied three‐level neutral point clamped photovoltaic inverter with a centralised model‐predictive decoupled active–reactive power control. The proposed centralised model predictive control (CMPC) incorporates the constraints of maximum power extraction, dc‐link capacitor voltage balancing and active–reactive power tracking in a single objective function. The dc‐link voltage of the inverter is regulated to its reference for extracting the maximum power. In order to eliminate the impact of reactive power exchange on floating dc‐link voltage regulation, a decoupled active–reactive power control is used in the CMPC. Furthermore, a preference selective index‐based dynamic weighting factor selection approach is introduced to maintain the relative importance between the power tracking and dc‐link capacitor voltage balancing. The proposed control approach eliminates the outer dc‐link voltage control loop and also, the empirical approach required for the selection of weighting factors. As a result, it ensures an optimal control action in each sampling period to improve the steady‐state and dynamic tracking performance of the control objectives. The proposed control approach is experimentally verified by using a 1.2 kW laboratory‐scale prototype and the results are presented to demonstrate its effectiveness compared to the classical proportional–integral‐based model predictive control. This study presents a single-stage grid-tied three-level neutral point clamped photovoltaic inverter with a centralised model-predictive decoupled active–reactive power control. The proposed centralised model predictive control (CMPC) incorporates the constraints of maximum power extraction, dc-link capacitor voltage balancing and active–reactive power tracking in a single objective function. The dc-link voltage of the inverter is regulated to its reference for extracting the maximum power. In order to eliminate the impact of reactive power exchange on floating dc-link voltage regulation, a decoupled active–reactive power control is used in the CMPC. Furthermore, a preference selective index-based dynamic weighting factor selection approach is introduced to maintain the relative importance between the power tracking and dc-link capacitor voltage balancing. The proposed control approach eliminates the outer dc-link voltage control loop and also, the empirical approach required for the selection of weighting factors. As a result, it ensures an optimal control action in each sampling period to improve the steady-state and dynamic tracking performance of the control objectives. The proposed control approach is experimentally verified by using a 1.2 kW laboratory-scale prototype and the results are presented to demonstrate its effectiveness compared to the classical proportional–integral-based model predictive control. |
| Author | Bonala, Anil Kumar Sandepudi, Srinivasa Rao |
| Author_xml | – sequence: 1 givenname: Anil Kumar orcidid: 0000-0002-5472-6400 surname: Bonala fullname: Bonala, Anil Kumar email: bonalaanilkumar@gmail.com organization: Department of Electrical Engineering, National Institute of Technology Warangal (NITW), Telangana – 506004, India – sequence: 2 givenname: Srinivasa Rao orcidid: 0000-0003-2777-7429 surname: Sandepudi fullname: Sandepudi, Srinivasa Rao organization: Department of Electrical Engineering, National Institute of Technology Warangal (NITW), Telangana – 506004, India |
| BookMark | eNqFUUtOwzAQtVCR-B6AnS_gYid2mrCDqgWkSrCAdeQ4E9WVa0eO29Idd-BEXIWT4BDEggWsZjye99G8EzSyzgJCF4yOGeXFpYZAWjDjhLJ8LPJEHKBjNhGCcMHT0U-fiiN00nUrSjPGRX6M3qdgg5dGd1DjtavBkNZDrVXQW8A1KLdpTfySX4OP1zcPQ4tbtwOPlYtwZ3DjPA5LD0AMbMFgC5ueNm5pG7Ayct1Glnbpgts6E6RWWNst-BA5djoscVRtwINVgDswMGhoW8MLqWRvzlWr72nrtfM66E4G7ewZOmyk6eD8u56i5_nsaXpHFg-399PrBVFpygWpJ1TmCQc5qSoOaZIx0aSyiEVBHU-RqyovWJLxjElaiCLjoASktCloVigq01PEBl7lXddFt2X0sZZ-XzJa9hmUMYMyZlD2GZR9BhEz-YVROny5jsfR5k_k1YDcaQP7_6XKx9kiuZnHJ-3BZAD3ayu38TYe5g-xT3W3ubQ |
| CitedBy_id | crossref_primary_10_48130_wpt_0024_0005 crossref_primary_10_1049_iet_rpg_2019_0970 crossref_primary_10_1049_iet_pel_2019_0984 crossref_primary_10_3390_en13164185 crossref_primary_10_1016_j_renene_2021_06_035 crossref_primary_10_1109_TEC_2022_3225149 crossref_primary_10_3390_en13133483 |
| Cites_doi | 10.1109/TPEL.2011.2179672 10.1109/TPEL.2016.2619378 10.1049/iet-rpg.2016.0520 10.1109/MIE.2013.2264540 10.1109/TIE.2015.2393556 10.1109/63.554176 10.1109/TEC.2015.2423692 10.1109/TIE.2010.2043039 10.1109/ICIT.2009.4939742 10.1109/TIE.2014.2364459 10.1109/MIE.2014.2376976 10.1109/TIE.2018.2829689 10.1109/TIE.2016.2618339 10.1109/TIE.2016.2573768 10.1109/MIE.2015.2478920 10.1109/TIE.2016.2599478 10.1016/j.rser.2014.10.030 10.1016/j.matdes.2009.11.020 10.1109/TIA.2017.2680409 10.1109/TII.2017.2691461 10.1109/TIE.2012.2206343 10.1080/15325008.2017.1347215 10.1109/TIA.2016.2606364 10.1109/TIE.2016.2519321 10.1049/iet-epa.2016.0503 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Power Electronics published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Power Electronics published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-pel.2018.5825 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1755-4543 |
| EndPage | 851 |
| ExternalDocumentID | 10_1049_iet_pel_2018_5825 PEL2BF01805 |
| Genre | article |
| GroupedDBID | 0R 24P 29I 5GY 6IK AAJGR ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 HZ IFIPE IPLJI JAVBF LOTEE LXI LXU M43 NADUK NXXTH O9- OCL P2P RIE RNS RUI UNMZH ZZ 0R~ 0ZK 1OC 4.4 8FE 8FG AAHHS AAHJG ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFKRA AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IGS ITC L6V M7S MCNEO OK1 P62 PTHSS ROL ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3345-d70a824ea7bb4e32615f3a9615ced4588cb89126461a095964ec5e30f9069c0a3 |
| IEDL.DBID | IDLOA |
| ISSN | 1755-4535 |
| IngestDate | Thu Apr 24 23:13:15 EDT 2025 Wed Oct 29 21:19:39 EDT 2025 Wed Jan 22 16:31:35 EST 2025 Tue Jan 05 21:50:07 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | CMPC optimal control action electric current control classical proportional–integral-based model predictive control DC-link capacitor voltage balancing invertors reactive power exchange dynamic tracking performance single objective function active–reactive power tracking control objectives power grids DC-link voltage control loop maximum power extraction control approach PI control steady-state photovoltaic power systems decoupled active-reactive power control centralised model-predictive optimal control photovoltaic inverter DC-link voltage regulation preference selective index-based objective prioritisation reactive power control centralised model predictive control predictive control single-stage grid-tied three-level three-level neutral point preference selective index-based dynamic weighting factor selection approach voltage control |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3345-d70a824ea7bb4e32615f3a9615ced4588cb89126461a095964ec5e30f9069c0a3 |
| ORCID | 0000-0002-5472-6400 0000-0003-2777-7429 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1049_iet_pel_2018_5825 wiley_primary_10_1049_iet_pel_2018_5825_PEL2BF01805 iet_journals_10_1049_iet_pel_2018_5825 crossref_citationtrail_10_1049_iet_pel_2018_5825 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-10 |
| PublicationDateYYYYMMDD | 2019-04-10 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | IET power electronics |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Machado, O.; Rodriguez, F.J.; Bueno, E.J. (C17) 2017; 13 Wu, Y.-K.; Lin, J.-H.; Lin, H.-J. (C1) 2017; 53 Camacho, E.F.; Bordons, C. (C8) 2015; 9 Caseiro, L.M.A.; Mendes, A.M.S.; Cruz, S.M.A. (C16) 2018; 66 Guazzelli, P.R.U.; Pereira, W.C.A.; Oliveira, C.M.R. (C15) 2018 Calle-Prado, A.; Alepuz, S.; Bordonau, J. (C27) 2015; 62 Rojas, C.A.; Rodriguez, J.; Kouro, S. (C11) 2017; 32 Villarroel, F.; Espinoza, J.R.; Rojas, C.A. (C10) 2013; 60 Romero-Cadaval, E.; Spagnuolo, G.; Franquelo, L.G. (C3) 2013; 7 Zhang, J.Z.; Sun, T.; Wang, F. (C26) 2016; 63 Errouissi, R.; Al-durra, A.; Muyeen, S.M. (C22) 2017; 64 Kouro, S.; Leon, J.I.; Vinnikov, D. (C2) 2015; 9 Barghi Latran, M.; Teke, A. (C6) 2015; 42 Zhang, Y.; Yang, H. (C20) 2015; 30 Quevedo, D.E.; Aguilera, R.P.; Marcelo, A.P. (C23) 2012; 27 Acuna, P.; Aguilera, R.P.; Ghias, A.M.Y.M. (C25) 2017; 64 Abu-rub, H.; Member, S.; Holtz, J. (C4) 2010; 57 Liu, X.; Wang, D.; Peng, Z. (C14) 2018 Leon, J.; Kouro, S.; Franquelo, L. (C5) 2016; 63 Acuña, P.; Morán, L.; Rivera, M. (C19) 2015; 62 Muddineni, V.P.; Sandepudi, S.R.; Bonala, A.K. (C13) 2017; 45 Yang, Y.; Wen, H.; Fan, M. (C21) 2018; 3203 Maniya, K.; Bhatt, M.G. (C30) 2010; 31 Tarisciotti, L.; Formentini, A.; Gaeta, A. (C24) 2017; 53 Blasko, V.; Kaura, V. (C28) 1997; 12 Shadmand, M.B.; Li, X.; Balog, R.S. (C29) 2017; 11 Norambuena GAE, M.; Rodriguez, J.; Zhang, Z. (C18) 2018; 8993 Vazquez, S.; Rodriguez, J.; Rivera, M. (C7) 2016; 0046 Muddineni, V.P.; Sandepudi, S.R.; Bonala, A.K. (C12) 2017; 11 2018; 3203 2017; 53 2017; 64 2010; 31 2010; 57 2015; 62 2018; 8993 2015; 42 2017; 11 2017; 32 2015; 30 2017; 13 2017; 45 1997; 12 2009 2016; 63 2013; 60 2018 2016; 0046 2012; 27 2013; 7 2015; 9 2018; 66 Guazzelli P.R.U. (e_1_2_6_16_1) 2018 Yang Y. (e_1_2_6_22_1) 2018; 3203 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Norambuena GAE M. (e_1_2_6_19_1) 2018; 8993 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_21_1 e_1_2_6_20_1 Vazquez S. (e_1_2_6_8_1) 2016; 0046 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 Liu X. (e_1_2_6_15_1) 2018 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 3203 issue: c year: 2018 ident: C21 article-title: A fast finite-switching-state model predictive control method without weighting factors for T-type three-level three-phase inverters publication-title: IEEE Trans. Ind. Inf. – volume: 27 start-page: 3128 issue: 7 year: 2012 end-page: 3136 ident: C23 article-title: Model predictive control of an AFE rectifier with dynamic references publication-title: IEEE Trans. Power Electron. – volume: 62 start-page: 1503 issue: 3 year: 2015 end-page: 1514 ident: C27 article-title: Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements publication-title: IEEE Trans. Ind. Electron. – volume: 9 start-page: 47 year: 2015 end-page: 61 ident: C2 article-title: Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology publication-title: IEEE Ind. Electron. Mag. – volume: 0046 start-page: 1 issue: c year: 2016 ident: C7 article-title: Model predictive control for power converters and drives: advances and trends publication-title: IEEE Trans. Ind. Electron. – volume: 53 start-page: 3205 issue: 4 year: 2017 end-page: 3216 ident: C1 article-title: Standards and guidelines for grid-connected photovoltaic generation systems: a review and comparison publication-title: IEEE Trans. Ind. Appl. – volume: 11 start-page: 659 issue: 5 year: 2017 end-page: 668 ident: C29 article-title: Constrained decoupled power predictive controller for a single-phase grid-tied inverter publication-title: IET Renew. Power Gener. – volume: 63 start-page: 2688 issue: 5 year: 2016 end-page: 2701 ident: C5 article-title: The essential role and the continuous evolution of modulation techniques for voltage source inverters in past, present and future power electronics publication-title: IEEE Trans. Ind. Electron. – volume: 66 start-page: 1235 year: 2018 end-page: 1245 ident: C16 article-title: Dynamically weighted optimal switching vector model predictive control of power converters publication-title: IEEE Trans. Ind. Electron. – volume: 8993 start-page: 794 issue: c year: 2018 end-page: 800 ident: C18 article-title: A very simple strategy for high quality performance of AC machines using model predictive control publication-title: IEEE Trans. Power Electron. – volume: 12 start-page: 116 issue: 1 year: 1997 end-page: 123 ident: C28 article-title: A new mathematical model and control of a three-phase AC-DC voltage source converter publication-title: IEEE Trans. Power Electron. – volume: 7 start-page: 6 issue: 3 year: 2013 end-page: 20 ident: C3 article-title: Grid-connected photovoltaic generation plants: components and operation publication-title: IEEE Ind. Electron. Mag. – volume: 62 start-page: 4598 issue: 7 year: 2015 end-page: 4607 ident: C19 article-title: A single-objective predictive control method for a multivariable single-phase three-level NPC converter-based active power filter publication-title: IEEE Trans. Ind. Electron. – volume: 9 start-page: 8 year: 2015 end-page: 21 ident: C8 article-title: Model predictive control MPC's role in the evolution of power electronics publication-title: IEEE Ind. Electron. Mag. – volume: 57 start-page: 2581 issue: 8 year: 2010 end-page: 2596 ident: C4 article-title: Medium-voltage multilevel converters – state of the industrial applications in industrial applications publication-title: IEEE Trans. Ind. Electron. – volume: 32 start-page: 6245 issue: 8 year: 2017 end-page: 6260 ident: C11 article-title: Multiobjective fuzzy-decision-making predictive torque control for an induction motor drive publication-title: IEEE Trans. Power Electron. – start-page: 1 year: 2018 end-page: 8 ident: C14 article-title: Cascade-free fuzzy finite-control-set model predictive control for nested neutral point-clamped converters with low switching frequency publication-title: IEEE Trans. Control Syst. Technol. – volume: 64 start-page: 285 issue: 1 year: 2017 end-page: 294 ident: C25 article-title: Cascade-free model predictive control for single-phase grid-connected power converters publication-title: IEEE Trans. Ind. Electron. – volume: 63 start-page: 6160 issue: 10 year: 2016 end-page: 6171 ident: C26 article-title: A computationally efficient quasi-centralized DMPC for back-to-back converter PMSG wind turbine systems without DC-link tracking errors publication-title: IEEE Trans. Ind. Electron. – volume: 31 start-page: 1785 issue: 4 year: 2010 end-page: 1789 ident: C30 article-title: A selection of material using a novel type decision-making method: preference selection index method publication-title: Mater. Des. – volume: 45 start-page: 1450 issue: 13 year: 2017 end-page: 1462 ident: C13 article-title: Improved weighting factor selection for predictive torque control of induction motor drive based on a simple additive weighting method publication-title: Electr. Power Compon. Syst. – volume: 60 start-page: 589 issue: 2 year: 2013 end-page: 599 ident: C10 article-title: Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter publication-title: IEEE Trans. Ind. Electron. – volume: 11 start-page: 749 issue: 5 year: 2017 end-page: 760 ident: C12 article-title: Finite control set predictive torque control for induction motor drive with simplified weighting factor selection using TOPSIS method publication-title: IET Electr. Power Appl. – volume: 53 start-page: 296 issue: 1 year: 2017 end-page: 304 ident: C24 article-title: Model predictive control for shunt active filters with fixed switching frequency publication-title: IEEE Trans. Ind. Appl. – volume: 13 start-page: 2946 issue: 6 year: 2017 end-page: 2955 ident: C17 article-title: A neural network-based dynamic cost function for the implementation of a predictive current controller publication-title: IEEE Trans. Ind. Inf. – volume: 42 start-page: 361 year: 2015 end-page: 376 ident: C6 article-title: Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems publication-title: Renew. Sustain. Energy Rev. – year: 2018 ident: C15 article-title: Weighting factors optimization of predictive torque control of induction motor by multi-objective genetic algorithm publication-title: IEEE Trans. Power Electron. – volume: 30 start-page: 1113 issue: 3 year: 2015 end-page: 1122 ident: C20 article-title: Model-predictive flux control of induction motor drives with switching instant optimization publication-title: IEEE Trans. Energy Convers. – volume: 64 start-page: 1241 issue: 2 year: 2017 end-page: 1250 ident: C22 article-title: Design and implementation of a nonlinear PI predictive controller for a grid-tied photovoltaic inverter publication-title: IEEE Trans. Ind. Electron. – volume: 42 start-page: 361 year: 2015 end-page: 376 article-title: Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems publication-title: Renew. Sustain. Energy Rev. – volume: 11 start-page: 749 issue: 5 year: 2017 end-page: 760 article-title: Finite control set predictive torque control for induction motor drive with simplified weighting factor selection using TOPSIS method publication-title: IET Electr. Power Appl. – volume: 30 start-page: 1113 issue: 3 year: 2015 end-page: 1122 article-title: Model‐predictive flux control of induction motor drives with switching instant optimization publication-title: IEEE Trans. Energy Convers. – volume: 63 start-page: 2688 issue: 5 year: 2016 end-page: 2701 article-title: The essential role and the continuous evolution of modulation techniques for voltage source inverters in past, present and future power electronics publication-title: IEEE Trans. Ind. Electron. – start-page: 1 year: 2009 end-page: 7 – volume: 57 start-page: 2581 issue: 8 year: 2010 end-page: 2596 article-title: Medium‐voltage multilevel converters – state of the industrial applications in industrial applications publication-title: IEEE Trans. Ind. Electron. – year: 2018 article-title: Weighting factors optimization of predictive torque control of induction motor by multi‐objective genetic algorithm publication-title: IEEE Trans. Power Electron. – volume: 53 start-page: 3205 issue: 4 year: 2017 end-page: 3216 article-title: Standards and guidelines for grid‐connected photovoltaic generation systems: a review and comparison publication-title: IEEE Trans. Ind. Appl. – volume: 9 start-page: 47 year: 2015 end-page: 61 article-title: Grid‐connected photovoltaic systems: an overview of recent research and emerging PV converter technology publication-title: IEEE Ind. Electron. Mag. – volume: 9 start-page: 8 year: 2015 end-page: 21 article-title: Model predictive control MPC's role in the evolution of power electronics publication-title: IEEE Ind. Electron. Mag. – volume: 64 start-page: 285 issue: 1 year: 2017 end-page: 294 article-title: Cascade‐free model predictive control for single‐phase grid‐connected power converters publication-title: IEEE Trans. Ind. Electron. – volume: 7 start-page: 6 issue: 3 year: 2013 end-page: 20 article-title: Grid‐connected photovoltaic generation plants: components and operation publication-title: IEEE Ind. Electron. Mag. – volume: 27 start-page: 3128 issue: 7 year: 2012 end-page: 3136 article-title: Model predictive control of an AFE rectifier with dynamic references publication-title: IEEE Trans. Power Electron. – volume: 66 start-page: 1235 year: 2018 end-page: 1245 article-title: Dynamically weighted optimal switching vector model predictive control of power converters publication-title: IEEE Trans. Ind. Electron. – volume: 13 start-page: 2946 issue: 6 year: 2017 end-page: 2955 article-title: A neural network‐based dynamic cost function for the implementation of a predictive current controller publication-title: IEEE Trans. Ind. Inf. – volume: 63 start-page: 6160 issue: 10 year: 2016 end-page: 6171 article-title: A computationally efficient quasi‐centralized DMPC for back‐to‐back converter PMSG wind turbine systems without DC‐link tracking errors publication-title: IEEE Trans. Ind. Electron. – volume: 11 start-page: 659 issue: 5 year: 2017 end-page: 668 article-title: Constrained decoupled power predictive controller for a single‐phase grid‐tied inverter publication-title: IET Renew. Power Gener. – volume: 32 start-page: 6245 issue: 8 year: 2017 end-page: 6260 article-title: Multiobjective fuzzy‐decision‐making predictive torque control for an induction motor drive publication-title: IEEE Trans. Power Electron. – volume: 62 start-page: 1503 issue: 3 year: 2015 end-page: 1514 article-title: Model predictive current control of grid‐connected neutral‐point‐clamped converters to meet low‐voltage ride‐through requirements publication-title: IEEE Trans. Ind. Electron. – volume: 64 start-page: 1241 issue: 2 year: 2017 end-page: 1250 article-title: Design and implementation of a nonlinear PI predictive controller for a grid‐tied photovoltaic inverter publication-title: IEEE Trans. Ind. Electron. – volume: 60 start-page: 589 issue: 2 year: 2013 end-page: 599 article-title: Multiobjective switching state selector for finite‐states model predictive control based on fuzzy decision making in a matrix converter publication-title: IEEE Trans. Ind. Electron. – volume: 62 start-page: 4598 issue: 7 year: 2015 end-page: 4607 article-title: A single‐objective predictive control method for a multivariable single‐phase three‐level NPC converter‐based active power filter publication-title: IEEE Trans. Ind. Electron. – volume: 53 start-page: 296 issue: 1 year: 2017 end-page: 304 article-title: Model predictive control for shunt active filters with fixed switching frequency publication-title: IEEE Trans. Ind. Appl. – volume: 45 start-page: 1450 issue: 13 year: 2017 end-page: 1462 article-title: Improved weighting factor selection for predictive torque control of induction motor drive based on a simple additive weighting method publication-title: Electr. Power Compon. Syst. – volume: 3203 issue: c year: 2018 article-title: A fast finite‐switching‐state model predictive control method without weighting factors for T‐type three‐level three‐phase inverters publication-title: IEEE Trans. Ind. Inf. – volume: 0046 start-page: 1 issue: c year: 2016 article-title: Model predictive control for power converters and drives: advances and trends publication-title: IEEE Trans. Ind. Electron. – volume: 8993 start-page: 794 issue: c year: 2018 end-page: 800 article-title: A very simple strategy for high quality performance of AC machines using model predictive control publication-title: IEEE Trans. Power Electron. – start-page: 1 year: 2018 end-page: 8 article-title: Cascade‐free fuzzy finite‐control‐set model predictive control for nested neutral point‐clamped converters with low switching frequency publication-title: IEEE Trans. Control Syst. Technol. – volume: 12 start-page: 116 issue: 1 year: 1997 end-page: 123 article-title: A new mathematical model and control of a three‐phase AC‐DC voltage source converter publication-title: IEEE Trans. Power Electron. – volume: 31 start-page: 1785 issue: 4 year: 2010 end-page: 1789 article-title: A selection of material using a novel type decision‐making method: preference selection index method publication-title: Mater. Des. – ident: e_1_2_6_24_1 doi: 10.1109/TPEL.2011.2179672 – ident: e_1_2_6_12_1 doi: 10.1109/TPEL.2016.2619378 – volume: 3203 year: 2018 ident: e_1_2_6_22_1 article-title: A fast finite‐switching‐state model predictive control method without weighting factors for T‐type three‐level three‐phase inverters publication-title: IEEE Trans. Ind. Inf. – ident: e_1_2_6_30_1 doi: 10.1049/iet-rpg.2016.0520 – ident: e_1_2_6_4_1 doi: 10.1109/MIE.2013.2264540 – ident: e_1_2_6_20_1 doi: 10.1109/TIE.2015.2393556 – ident: e_1_2_6_29_1 doi: 10.1109/63.554176 – ident: e_1_2_6_21_1 doi: 10.1109/TEC.2015.2423692 – ident: e_1_2_6_5_1 doi: 10.1109/TIE.2010.2043039 – ident: e_1_2_6_10_1 doi: 10.1109/ICIT.2009.4939742 – ident: e_1_2_6_28_1 doi: 10.1109/TIE.2014.2364459 – ident: e_1_2_6_3_1 doi: 10.1109/MIE.2014.2376976 – volume: 8993 start-page: 794 year: 2018 ident: e_1_2_6_19_1 article-title: A very simple strategy for high quality performance of AC machines using model predictive control publication-title: IEEE Trans. Power Electron. – ident: e_1_2_6_17_1 doi: 10.1109/TIE.2018.2829689 – ident: e_1_2_6_23_1 doi: 10.1109/TIE.2016.2618339 – volume: 0046 start-page: 1 year: 2016 ident: e_1_2_6_8_1 article-title: Model predictive control for power converters and drives: advances and trends publication-title: IEEE Trans. Ind. Electron. – ident: e_1_2_6_27_1 doi: 10.1109/TIE.2016.2573768 – ident: e_1_2_6_9_1 doi: 10.1109/MIE.2015.2478920 – ident: e_1_2_6_26_1 doi: 10.1109/TIE.2016.2599478 – ident: e_1_2_6_7_1 doi: 10.1016/j.rser.2014.10.030 – ident: e_1_2_6_31_1 doi: 10.1016/j.matdes.2009.11.020 – ident: e_1_2_6_2_1 doi: 10.1109/TIA.2017.2680409 – ident: e_1_2_6_18_1 doi: 10.1109/TII.2017.2691461 – start-page: 1 year: 2018 ident: e_1_2_6_15_1 article-title: Cascade‐free fuzzy finite‐control‐set model predictive control for nested neutral point‐clamped converters with low switching frequency publication-title: IEEE Trans. Control Syst. Technol. – ident: e_1_2_6_11_1 doi: 10.1109/TIE.2012.2206343 – ident: e_1_2_6_14_1 doi: 10.1080/15325008.2017.1347215 – ident: e_1_2_6_25_1 doi: 10.1109/TIA.2016.2606364 – ident: e_1_2_6_6_1 doi: 10.1109/TIE.2016.2519321 – year: 2018 ident: e_1_2_6_16_1 article-title: Weighting factors optimization of predictive torque control of induction motor by multi‐objective genetic algorithm publication-title: IEEE Trans. Power Electron. – ident: e_1_2_6_13_1 doi: 10.1049/iet-epa.2016.0503 |
| SSID | ssj0061458 |
| Score | 2.2205815 |
| Snippet | This study presents a single-stage grid-tied three-level neutral point clamped photovoltaic inverter with a centralised model-predictive decoupled... This study presents a single‐stage grid‐tied three‐level neutral point clamped photovoltaic inverter with a centralised model‐predictive decoupled... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 840 |
| SubjectTerms | active–reactive power tracking centralised model predictive control centralised model‐predictive classical proportional–integral‐based model predictive control CMPC control approach control objectives DC‐link capacitor voltage balancing DC‐link voltage control loop DC‐link voltage regulation decoupled active‐reactive power control dynamic tracking performance electric current control invertors maximum power extraction optimal control optimal control action photovoltaic inverter photovoltaic power systems PI control power grids predictive control preference selective index‐based dynamic weighting factor selection approach preference selective index‐based objective prioritisation reactive power control reactive power exchange Research Article single objective function single‐stage grid‐tied three‐level steady‐state three‐level neutral point voltage control |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LnoQn_gmB_EgVNsm6bZHFRcRFQ8K3kqaB1aWNux27_4EwR_l__CXOJN2F0VQ8FTIY3qYycyXTDIfIQcAAVIDUD6QaWgDiBAM_KCwgY7BT1obaeMr3tzcJpcP_OpRPM6Q88lbmLY-xPTADVeG99e4wGXRspAAqAUllqYJnMHsQZQeC9jozJL5CPAMmnnM7ybuGMKPJ-mEMCkCLpiYpjazkx8ivgWnWej-Dll9zOkvk6UOLNLTVrsrZMZUq2TxSwnBNfLeHc-WI6Opp7X5eHl1Q0y_oCOjGraXYzeATukbPl7eACa2fQ4Z0mh3WZ0CeqUNaBaGvA7wKhGtzBhFw7iyaqgC23Egxz3VTQ1OrZGlomWFfM4gBc9zqZuSltCR59fBv_h6jCAT46WmdfHctbthWfuKSt421slD_-L-_DLoyBkCxRgXge6FMo25kb2i4AZAYCQskxl8lNH4_FUVaRYB3EoiiWeNCTdKGBbaLEwyFUq2QeaqujKbhKZSWNzpcJv0uJRWKpgRh7FkBddJordIONFKrrrK5UigMch9Bp1nOWgqB0XmqMgcFblFjqZTXFu247fBh9jWLd7RbwOZt4a_ReZ3F9fxWR-ro4ntf83aIQvQ7hNXUbhL5prh2OwB_mmKfW_fnxd8CIk priority: 102 providerName: Wiley-Blackwell |
| Title | Centralised model-predictive decoupled active–reactive power control for three-level neutral point clamped photovoltaic inverter with preference selective index-based objective prioritisation |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2018.5825 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-pel.2018.5825 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1755-4543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061458 issn: 1755-4535 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1755-4543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061458 issn: 1755-4535 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1755-4543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061458 issn: 1755-4535 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELbY5dIeKqBFUH7kA-qhkksS29nkCJQVIKg4FIlb5PgHglaJtWTvvANPxKvwJMw42S1IFe0pke3MSjujmc8z9nyE7AEEyCxAeaayyDGIEBz8oHTMJOAnnYuNDR1vLn6lJ1fi7Fpe_7kebaob5Mpg84wbZsttd_MAj26DH97v_-OOkATw7T4sYN5iGSHOfkjY8QzIcgK782RIlk9_nuMWq_PMEIkCXydETMmE5HJR5fyLkDdxagDTb9FrCD_jFfKpx430oFP0Klmy9Rr5-Kqb4Gfy1Gdqq3traGC4YX6KdRj0aNTAPnPmJzClwsDzwyPgxW7OI1Ua7U-tU4CxtAUVWzbBE0W0tjMUC6uquqUaTMiDFH_btA34tlZVmlY10jqDDEzrUr_gLqH3gWYHfyO0ZWQYNA1tyrt-1E-rJrRVCgbyhVyNj38fnbCeoYFpzoVkZhSpLBFWjcpSWECCsXRc5fDQ1uAdWF1meQyYK40VJhxTYbW0PHJ5lOY6UnydDOumthuEZko63O4Il46EUk5p-CKJEsVLYdLUbJJoro9C9-3LkUVjUoQyusgL0FEBKixQhQWqcJN8X3ziu94d7y3-hmNz63pvIQ928G-RxeXxeXI4xhZp8uv_it8iH-A9FKziaJsM2-nM7gDuactdMkjE5W5v1C8TiQX3 |
| linkProvider | Institution of Engineering and Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba7rD1MOyJpXvpMOwwwJttPWIf92iQtWnQQwv0Zsh6oB4CW0ice35CgP6o_o_-kpGyE6wYkAE7GZAo-kCJ_EhKJCEfAAJkFqB8pLLYRWAhGOhB4SKTgp50LjE2VLw5m8rxJT-5Eld75MfmLUxXH2IbcMOTEfQ1HnAMSHcOJ8cimZVtI28xfZBknwV4OvvkAZeJRBcs5ecbfQz2J3TpBDspIi6Y2OY28y9_sbhnnfZh-j5mDUZn9IQ87tEi_dqJ9ynZs_UzcvhHDcHn5LaPz1YLa2joa3O3Wvs55l9Qk1ED_uXSz2BShYG71Q3gxG7OY4s02t9WpwBfaQuiBZL1DO8S0doukTXQVXVLNWweD3z8ddM2oNVaVWla1djQGbhgQJf6bdcSuggNdvAvoSAj8ESDaWhT_urH_bxqQkmlsDlekMvR8cX3cdR3Z4g0Y1xEZhirLOVWDcuSW0CBiXBM5fDR1uD7V11meQJ4SyYKg42SWy0si10ey1zHir0kB3VT21eEZko4dHW4k0OulFMaVqRxqljJjZRmQOKNVArdly7HDhqzIqTQeV6ApAoQZIGCLFCQA_Jpu8R3dTt2EX_Esf70LnYRsrAb_s2yOD-epN9GWB5NHP3Xqvfk4fjibFJMfk5PX5NHQBOyWEn8hhy086V9C2CoLd-Fvf4bTRsL9Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELZgkapyQNAfFWipD1UPldI6sZ1NjrSwgpYiDt0K9RI5_lGDVom1m73zCEg8FO_BkzDjZFcgJCr1FMkeTw5jz3z22N8Q8gEgQGYBykcqYy6CCMHBD0oXmQT8pHOxsYHx5udpejQW38_l-Qo5WLyF6fghlgduuDKCv8YFbr1x3YZTIElmZdvIW0wfxNlnCTudVbIG8ZyJAVnb_z3-M154ZIhAoU4nREoZCcnlMruZf3mk5EF8WoXuh6g1hJ3RJtno8SLd7wy8RVZs_YKs32MRfElu-hPaamYNDZVtbi-v_BQzMOjLqIEd5txPoFOFhtvLa0CKXZ_HImm0v69OAcDSFowLIlcTvE1EaztH1SBX1S3VMH086PF_m7YBv9aqStOqxpLOoAWPdKlf1i2hs1BiB_8SKBlBJ4ZMQ5vyom_306oJpEpherwi49Hhr29HUV-fIdKcCxmZIVNZIqwalqWwgANj6bjK4aOtwRewuszyGBBXGis8bkyF1dJy5nKW5pop_poM6qa2bwjNlHS42REuHQqlnNIwImGJ4qUwaWq2CVtYpdA9eTnW0JgUIYku8gIsVYAhCzRkgYbcJp-WQ3zH3PGU8Eds69fv7ClBHmbDv1UWZ4cnydcREqTJnf8a9Z48OzsYFSfHpz92yXMQCWmsmL0lg3Y6t-8ADbXlXj_Z7wDnFg1J |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centralised+model-predictive+decoupled+active%E2%80%93reactive+power+control+for+three-level+neutral+point+clamped+photovoltaic+inverter+with+preference+selective+index-based+objective+prioritisation&rft.jtitle=IET+power+electronics&rft.au=Bonala%2C+Anil+Kumar&rft.au=Sandepudi%2C+Srinivasa+Rao&rft.date=2019-04-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=12&rft.issue=4&rft.spage=840&rft.epage=851&rft_id=info:doi/10.1049%2Fiet-pel.2018.5825&rft.externalDocID=10_1049_iet_pel_2018_5825 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon |