Boundary-Value Problem for the Aller–Lykov Nonlocal Moisture Transfer Equation
In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is examined. The equation considered is a generalization of the Aller–Lykov equation obtained by introducing the fractal rate of change of humidity...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 260; no. 3; pp. 300 - 306 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-022-05694-2 |
Cover
Abstract | In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is examined. The equation considered is a generalization of the Aller–Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann–Liouville derivative, which implies the uniqueness of the solution. |
---|---|
AbstractList | In this paper, a boundary-value problem for the inhomogeneous Aller--Lykov moisture transfer equation with a fractional Riemann--Liouville time derivative is examined. The equation considered is a generalization of the Aller--Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann--Liouville derivative, which implies the uniqueness of the solution. In this paper, a boundary-value problem for the inhomogeneous Aller--Lykov moisture transfer equation with a fractional Riemann--Liouville time derivative is examined. The equation considered is a generalization of the Aller--Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann--Liouville derivative, which implies the uniqueness of the solution. Keywords and phrases: Aller--Lykov moisture transfer equation, Riemann--Liouville fractional derivative, Fourier method, a priori estimate, method of energy inequalities. AMS Subject Classification: 35L99 |
Audience | Academic |
Author | Gekkieva, S. Kh Kerefov, M. A. |
Author_xml | – sequence: 1 givenname: S. Kh surname: Gekkieva fullname: Gekkieva, S. Kh email: gekkieva_s@mail.ru organization: Institute of Applied Mathematics and Automation of the Kabardino-Balkar Scientific Center of the Russian Academy of Sciences – sequence: 2 givenname: M. A. surname: Kerefov fullname: Kerefov, M. A. organization: Kabardino-Balkarian State University named after H. M. Berbekov |
BookMark | eNp9kc9KAzEQh4MoqNUX8LTgOTpJdje7xyr-g6o9VK8hzSZ1a5posiv05jv4hj6J0QpFKJLDhPB9M2R--2jbeacROiJwQgD4aSRQFxUGSjEUZZ1juoX2SMEZrnhdbKc7cIoZ4_ku2o9xDkkqK7aHxme-d40MS_woba-zcfBTqxeZ8SHrnnQ2tFaHz_eP0fLZv2V33lmvpM1ufRu7PuhsEqSLRofs4rWXXevdAdox0kZ9-FsH6OHyYnJ-jUf3VzfnwxFWjOUUS0o0kUo1agoSWMPA1KzkrCm5kpywqmCloVUDxNAcuKlLZWRjSGmKQjYVYQN0vOr7Evxrr2Mn5r4PLo0UtKQ5JRUj-ZqaSatF64zvglSLNiox5EBIRQGKROEN1Ew7HaRNizZtev7Dn2zg02n0olUbBboSVPAxBm3ES2gXaeuCgPgOUKwCFClA8ROgoEliKykm2M10WP_wH-sLTTSeQQ |
Cites_doi | 10.1023/A:1016539022492 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10958-022-05694-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 306 |
ExternalDocumentID | A701182005 10_1007_s10958_022_05694_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3342-a21e1accdcb0a03d30f93673d67ca7138536f28d01f2407f96cfadf16f55ad813 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Thu Sep 18 00:00:23 EDT 2025 Tue Jun 17 21:38:34 EDT 2025 Thu Jun 12 23:47:34 EDT 2025 Tue Jun 10 20:34:59 EDT 2025 Tue Jul 01 01:42:20 EDT 2025 Fri Feb 21 02:46:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Aller–Lykov moisture transfer equation method of energy inequalities Riemann–Liouville fractional derivative 35L99 Fourier method a priori estimate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3342-a21e1accdcb0a03d30f93673d67ca7138536f28d01f2407f96cfadf16f55ad813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-022-05694-2.pdf |
PQID | 2624218314 |
PQPubID | 2043545 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2624218314 gale_infotracmisc_A701182005 gale_infotracgeneralonefile_A701182005 gale_infotracacademiconefile_A701182005 crossref_primary_10_1007_s10958_022_05694_2 springer_journals_10_1007_s10958_022_05694_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | CR2 CR3 CR6 CR5 CR8 CR7 Lafisheva, Kerefov, Dyshekova (CR9) 2017; 19 CR17 CR16 CR15 CR14 Agrawal (CR1) 2002; 29 CR13 CR12 CR11 CR10 Gekkieva (CR4) 1994; 1 OP Agrawal (5694_CR1) 2002; 29 5694_CR13 5694_CR14 MM Lafisheva (5694_CR9) 2017; 19 5694_CR15 SK Gekkieva (5694_CR4) 1994; 1 5694_CR16 5694_CR10 5694_CR11 5694_CR12 5694_CR6 5694_CR7 5694_CR8 5694_CR2 5694_CR17 5694_CR3 5694_CR5 |
References_xml | – volume: 19 start-page: 50 issue: 1 year: 2017 end-page: 58 ident: CR9 article-title: Finite-difference schemes for the Aller–Lykov moisture transfer equation with a nonlocal condition publication-title: Vladikavkaz Mat. Zh. – ident: CR3 – ident: CR14 – ident: CR15 – ident: CR2 – ident: CR16 – volume: 1 start-page: 16 issue: 1 year: 1994 end-page: 19 ident: CR4 article-title: Boundary-value problem for a generalized transfer equation with a fractional derivative by time publication-title: Dokl. Adyg. (Cherkes.) Mezhdunar. Akad. Nauk. – ident: CR12 – ident: CR17 – ident: CR13 – ident: CR10 – ident: CR11 – ident: CR6 – ident: CR5 – ident: CR7 – ident: CR8 – volume: 29 start-page: 145 year: 2002 end-page: 155 ident: CR1 article-title: Solution for a fractional diffusion-wave equation defined in a bounded domain publication-title: Nonlin. Dynam. doi: 10.1023/A:1016539022492 – ident: 5694_CR17 – volume: 29 start-page: 145 year: 2002 ident: 5694_CR1 publication-title: Nonlin. Dynam. doi: 10.1023/A:1016539022492 – ident: 5694_CR16 – ident: 5694_CR15 – ident: 5694_CR11 – ident: 5694_CR12 – ident: 5694_CR13 – volume: 19 start-page: 50 issue: 1 year: 2017 ident: 5694_CR9 publication-title: Vladikavkaz Mat. Zh. – ident: 5694_CR14 – ident: 5694_CR7 – ident: 5694_CR6 – ident: 5694_CR5 – ident: 5694_CR10 – ident: 5694_CR2 – ident: 5694_CR3 – volume: 1 start-page: 16 issue: 1 year: 1994 ident: 5694_CR4 publication-title: Dokl. Adyg. (Cherkes.) Mezhdunar. Akad. Nauk. – ident: 5694_CR8 |
SSID | ssj0007683 |
Score | 2.2343078 |
Snippet | In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is... In this paper, a boundary-value problem for the inhomogeneous Aller--Lykov moisture transfer equation with a fractional Riemann--Liouville time derivative is... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 300 |
SubjectTerms | Boundary value problems Humidity Mathematical analysis Mathematics Mathematics and Statistics Moisture |
Title | Boundary-Value Problem for the Aller–Lykov Nonlocal Moisture Transfer Equation |
URI | https://link.springer.com/article/10.1007/s10958-022-05694-2 https://www.proquest.com/docview/2624218314 |
Volume | 260 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDAgnqJQKg8IBrAU20mcjCm0IKCIgSKYLNexGUAtpC0SG_-Bf8gv4ZxHoTwGpgy5PHRn33e2775DaEdDCM1jw0kUW0F8ITRRVEck0kyEsYqEb90-ZOciPOn6pzfBTVkUNqyy3asjydxTfyl2i4OIuOxzAO3YJ-B45wLHJwWjuMuSif-FALpIqxeMcC78slTm93dMwdF3p_zjdDQHnfYSWiyjRZwU5l1GM6a_ghY6E6rV4Sq6bOaNkbIXcq0exgZfFh1iMASjGMRw4mr93l_fzl_uB8_4YtDP0Qt3BmDfcWZwDlbWZLj1VLB-r6Fuu3V1eELKNglEc-4zohg1VGmd6p6nPJ5yz8Y8FDwNhVawBgVADi2LUo9at3yzcaitSi0NbRCoNKJ8Hc32B32zgTA8AvCkjKKp8WPFehBsRK49sYFVn6doDe1X2pKPBRuG_OQ9drqVoFuZ61ayGtpzCpVuqowypVWZ8Q_fcqRTMhGu7NVta9XQ7pTkXUG5_ZtgfUoQ5oKevl3ZTpZzcSiZK4EBz0X9Gjqo7Pl5--__3_yf-BaaZ_nIcvszdTQ7ysZmGyKWUa-B5pLmUbPtrse3Z61GPmA_AKNM40k |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHtSD8Rnx2YPRgzbZtst294hGggrEgxhuTem2HjSgC5hw8z_4D_0lTvcBonjw3NlHZtr5ZjovhI41mNA8MpyEkRXEF0ITRXVIQs1EEKlQ-NbdQzZbQb3t33QqnbwobFBkuxchyVRTfyt2iyohcdnnANqRT0DxLrowo3O52qw60b9gQGdp9YIRzoWfl8rMf8cMHP1Uyr-ioyno1NbQam4t4mom3nW0YHobaKU5abU62ER3F-lgpGRMHtTzyOC7bEIMBmMUAxmuulq_z_ePxvip_4Zb_V6KXrjZB_mOEoNTsLImwVevWdfvLdSuXd1f1kk-JoFozn1GFKOGKq1j3fWUx2Pu2YgHgseB0Ap8UADkwLIw9qh17puNAm1VbGlgKxUVh5Rvo1Kv3zM7CMMjAE_KKBobP1KsC8ZG6MYTG_D6PEXL6KzglnzJumHIad9jx1sJvJUpbyUro1PHUOmOyjBRWuUZ__At13RKVoUre3XXWmV0MkP5mLXcnke4P0MIZ0HPLheyk_lZHEjmSmBAc1G_jM4LeU6X__7_3f-RH6Gl-n2zIRvXrds9tMzSXebuavZRaZiMzAFYL8PuYbpZvwAXzuMm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NUhQxEO6ylipLD4qoxQpCDpYeNDD52cnMcYFdEditPYiFp1Q2k3jAmoVh1io8-Q6-oU9iZ36ARTxYntMzk0m6052kv68BXlkMoUXqBE1Sr6hUylLDbEITy1WcmkRJH84hR-N4_1genPRObqD4q2z39kqyxjQElqa83D7L_PYN4FvaS2jIREcHnkqKi_CSDDUkOrDUf__5cHC1GmM4XSfZK06FULIBztz9lgXndHuJ_uOutHJBw8dg2s7XmSenW_NyumW_3-J1_J-_W4ZHTXxK-rVCPYF7Ll-Bh6MrcteLpzDZqUoxFZf0k_k6d2RS16QhGP4SFCP9gC789ePn0eXp7BsZz_LKX5LRDDVqXjhSuUfvCjI4r3nGn8HxcPBxd582hRmoFUJyajhzzFib2WlkIpGJyKciViKLlTW468UQIPY8ySLmw4bRp7H1JvMs9r2eyRImnkMnn-VuFQg-gg7ROMMyJ1PDpxjeJKEgssN9ZmRYF962M6LPav4Nfc20HMZJ4zjpapw078KbMGk6GGdZGGsajAF-K9Bc6b4KQNtwkNaF1wuSX2qS77sE1xcE0frsYnOrH7qx_gvNA-gG10omu_Cune7r5r_3_8W_iW_C_cneUB99GB-uwQNeKUw4HFqHTlnM3UsMl8rpRmMRvwHM3QkW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary-Value+Problem+for+the+Aller%E2%80%93Lykov+Nonlocal+Moisture+Transfer+Equation&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kh%2C+Gekkieva+S&rft.au=Kerefov%2C+M+A&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=260&rft.issue=3&rft.spage=300&rft.epage=306&rft_id=info:doi/10.1007%2Fs10958-022-05694-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |