Boundary-Value Problem for the Aller–Lykov Nonlocal Moisture Transfer Equation

In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is examined. The equation considered is a generalization of the Aller–Lykov equation obtained by introducing the fractal rate of change of humidity...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 260; no. 3; pp. 300 - 306
Main Authors Gekkieva, S. Kh, Kerefov, M. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-022-05694-2

Cover

Abstract In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is examined. The equation considered is a generalization of the Aller–Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann–Liouville derivative, which implies the uniqueness of the solution.
AbstractList In this paper, a boundary-value problem for the inhomogeneous Aller--Lykov moisture transfer equation with a fractional Riemann--Liouville time derivative is examined. The equation considered is a generalization of the Aller--Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann--Liouville derivative, which implies the uniqueness of the solution.
In this paper, a boundary-value problem for the inhomogeneous Aller--Lykov moisture transfer equation with a fractional Riemann--Liouville time derivative is examined. The equation considered is a generalization of the Aller--Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann--Liouville derivative, which implies the uniqueness of the solution. Keywords and phrases: Aller--Lykov moisture transfer equation, Riemann--Liouville fractional derivative, Fourier method, a priori estimate, method of energy inequalities. AMS Subject Classification: 35L99
Audience Academic
Author Gekkieva, S. Kh
Kerefov, M. A.
Author_xml – sequence: 1
  givenname: S. Kh
  surname: Gekkieva
  fullname: Gekkieva, S. Kh
  email: gekkieva_s@mail.ru
  organization: Institute of Applied Mathematics and Automation of the Kabardino-Balkar Scientific Center of the Russian Academy of Sciences
– sequence: 2
  givenname: M. A.
  surname: Kerefov
  fullname: Kerefov, M. A.
  organization: Kabardino-Balkarian State University named after H. M. Berbekov
BookMark eNp9kc9KAzEQh4MoqNUX8LTgOTpJdje7xyr-g6o9VK8hzSZ1a5posiv05jv4hj6J0QpFKJLDhPB9M2R--2jbeacROiJwQgD4aSRQFxUGSjEUZZ1juoX2SMEZrnhdbKc7cIoZ4_ku2o9xDkkqK7aHxme-d40MS_woba-zcfBTqxeZ8SHrnnQ2tFaHz_eP0fLZv2V33lmvpM1ufRu7PuhsEqSLRofs4rWXXevdAdox0kZ9-FsH6OHyYnJ-jUf3VzfnwxFWjOUUS0o0kUo1agoSWMPA1KzkrCm5kpywqmCloVUDxNAcuKlLZWRjSGmKQjYVYQN0vOr7Evxrr2Mn5r4PLo0UtKQ5JRUj-ZqaSatF64zvglSLNiox5EBIRQGKROEN1Ew7HaRNizZtev7Dn2zg02n0olUbBboSVPAxBm3ES2gXaeuCgPgOUKwCFClA8ROgoEliKykm2M10WP_wH-sLTTSeQQ
Cites_doi 10.1023/A:1016539022492
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10958-022-05694-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 306
ExternalDocumentID A701182005
10_1007_s10958_022_05694_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3342-a21e1accdcb0a03d30f93673d67ca7138536f28d01f2407f96cfadf16f55ad813
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Thu Sep 18 00:00:23 EDT 2025
Tue Jun 17 21:38:34 EDT 2025
Thu Jun 12 23:47:34 EDT 2025
Tue Jun 10 20:34:59 EDT 2025
Tue Jul 01 01:42:20 EDT 2025
Fri Feb 21 02:46:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Aller–Lykov moisture transfer equation
method of energy inequalities
Riemann–Liouville fractional derivative
35L99
Fourier method
a priori estimate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3342-a21e1accdcb0a03d30f93673d67ca7138536f28d01f2407f96cfadf16f55ad813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-022-05694-2.pdf
PQID 2624218314
PQPubID 2043545
PageCount 7
ParticipantIDs proquest_journals_2624218314
gale_infotracmisc_A701182005
gale_infotracgeneralonefile_A701182005
gale_infotracacademiconefile_A701182005
crossref_primary_10_1007_s10958_022_05694_2
springer_journals_10_1007_s10958_022_05694_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CR2
CR3
CR6
CR5
CR8
CR7
Lafisheva, Kerefov, Dyshekova (CR9) 2017; 19
CR17
CR16
CR15
CR14
Agrawal (CR1) 2002; 29
CR13
CR12
CR11
CR10
Gekkieva (CR4) 1994; 1
OP Agrawal (5694_CR1) 2002; 29
5694_CR13
5694_CR14
MM Lafisheva (5694_CR9) 2017; 19
5694_CR15
SK Gekkieva (5694_CR4) 1994; 1
5694_CR16
5694_CR10
5694_CR11
5694_CR12
5694_CR6
5694_CR7
5694_CR8
5694_CR2
5694_CR17
5694_CR3
5694_CR5
References_xml – volume: 19
  start-page: 50
  issue: 1
  year: 2017
  end-page: 58
  ident: CR9
  article-title: Finite-difference schemes for the Aller–Lykov moisture transfer equation with a nonlocal condition
  publication-title: Vladikavkaz Mat. Zh.
– ident: CR3
– ident: CR14
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 1
  start-page: 16
  issue: 1
  year: 1994
  end-page: 19
  ident: CR4
  article-title: Boundary-value problem for a generalized transfer equation with a fractional derivative by time
  publication-title: Dokl. Adyg. (Cherkes.) Mezhdunar. Akad. Nauk.
– ident: CR12
– ident: CR17
– ident: CR13
– ident: CR10
– ident: CR11
– ident: CR6
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 29
  start-page: 145
  year: 2002
  end-page: 155
  ident: CR1
  article-title: Solution for a fractional diffusion-wave equation defined in a bounded domain
  publication-title: Nonlin. Dynam.
  doi: 10.1023/A:1016539022492
– ident: 5694_CR17
– volume: 29
  start-page: 145
  year: 2002
  ident: 5694_CR1
  publication-title: Nonlin. Dynam.
  doi: 10.1023/A:1016539022492
– ident: 5694_CR16
– ident: 5694_CR15
– ident: 5694_CR11
– ident: 5694_CR12
– ident: 5694_CR13
– volume: 19
  start-page: 50
  issue: 1
  year: 2017
  ident: 5694_CR9
  publication-title: Vladikavkaz Mat. Zh.
– ident: 5694_CR14
– ident: 5694_CR7
– ident: 5694_CR6
– ident: 5694_CR5
– ident: 5694_CR10
– ident: 5694_CR2
– ident: 5694_CR3
– volume: 1
  start-page: 16
  issue: 1
  year: 1994
  ident: 5694_CR4
  publication-title: Dokl. Adyg. (Cherkes.) Mezhdunar. Akad. Nauk.
– ident: 5694_CR8
SSID ssj0007683
Score 2.2343078
Snippet In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is...
In this paper, a boundary-value problem for the inhomogeneous Aller--Lykov moisture transfer equation with a fractional Riemann--Liouville time derivative is...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 300
SubjectTerms Boundary value problems
Humidity
Mathematical analysis
Mathematics
Mathematics and Statistics
Moisture
Title Boundary-Value Problem for the Aller–Lykov Nonlocal Moisture Transfer Equation
URI https://link.springer.com/article/10.1007/s10958-022-05694-2
https://www.proquest.com/docview/2624218314
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDAgnqJQKg8IBrAU20mcjCm0IKCIgSKYLNexGUAtpC0SG_-Bf8gv4ZxHoTwGpgy5PHRn33e2775DaEdDCM1jw0kUW0F8ITRRVEck0kyEsYqEb90-ZOciPOn6pzfBTVkUNqyy3asjydxTfyl2i4OIuOxzAO3YJ-B45wLHJwWjuMuSif-FALpIqxeMcC78slTm93dMwdF3p_zjdDQHnfYSWiyjRZwU5l1GM6a_ghY6E6rV4Sq6bOaNkbIXcq0exgZfFh1iMASjGMRw4mr93l_fzl_uB8_4YtDP0Qt3BmDfcWZwDlbWZLj1VLB-r6Fuu3V1eELKNglEc-4zohg1VGmd6p6nPJ5yz8Y8FDwNhVawBgVADi2LUo9at3yzcaitSi0NbRCoNKJ8Hc32B32zgTA8AvCkjKKp8WPFehBsRK49sYFVn6doDe1X2pKPBRuG_OQ9drqVoFuZ61ayGtpzCpVuqowypVWZ8Q_fcqRTMhGu7NVta9XQ7pTkXUG5_ZtgfUoQ5oKevl3ZTpZzcSiZK4EBz0X9Gjqo7Pl5--__3_yf-BaaZ_nIcvszdTQ7ysZmGyKWUa-B5pLmUbPtrse3Z61GPmA_AKNM40k
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHtSD8Rnx2YPRgzbZtst294hGggrEgxhuTem2HjSgC5hw8z_4D_0lTvcBonjw3NlHZtr5ZjovhI41mNA8MpyEkRXEF0ITRXVIQs1EEKlQ-NbdQzZbQb3t33QqnbwobFBkuxchyVRTfyt2iyohcdnnANqRT0DxLrowo3O52qw60b9gQGdp9YIRzoWfl8rMf8cMHP1Uyr-ioyno1NbQam4t4mom3nW0YHobaKU5abU62ER3F-lgpGRMHtTzyOC7bEIMBmMUAxmuulq_z_ePxvip_4Zb_V6KXrjZB_mOEoNTsLImwVevWdfvLdSuXd1f1kk-JoFozn1GFKOGKq1j3fWUx2Pu2YgHgseB0Ap8UADkwLIw9qh17puNAm1VbGlgKxUVh5Rvo1Kv3zM7CMMjAE_KKBobP1KsC8ZG6MYTG_D6PEXL6KzglnzJumHIad9jx1sJvJUpbyUro1PHUOmOyjBRWuUZ__At13RKVoUre3XXWmV0MkP5mLXcnke4P0MIZ0HPLheyk_lZHEjmSmBAc1G_jM4LeU6X__7_3f-RH6Gl-n2zIRvXrds9tMzSXebuavZRaZiMzAFYL8PuYbpZvwAXzuMm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NUhQxEO6ylipLD4qoxQpCDpYeNDD52cnMcYFdEditPYiFp1Q2k3jAmoVh1io8-Q6-oU9iZ36ARTxYntMzk0m6052kv68BXlkMoUXqBE1Sr6hUylLDbEITy1WcmkRJH84hR-N4_1genPRObqD4q2z39kqyxjQElqa83D7L_PYN4FvaS2jIREcHnkqKi_CSDDUkOrDUf__5cHC1GmM4XSfZK06FULIBztz9lgXndHuJ_uOutHJBw8dg2s7XmSenW_NyumW_3-J1_J-_W4ZHTXxK-rVCPYF7Ll-Bh6MrcteLpzDZqUoxFZf0k_k6d2RS16QhGP4SFCP9gC789ePn0eXp7BsZz_LKX5LRDDVqXjhSuUfvCjI4r3nGn8HxcPBxd582hRmoFUJyajhzzFib2WlkIpGJyKciViKLlTW468UQIPY8ySLmw4bRp7H1JvMs9r2eyRImnkMnn-VuFQg-gg7ROMMyJ1PDpxjeJKEgssN9ZmRYF962M6LPav4Nfc20HMZJ4zjpapw078KbMGk6GGdZGGsajAF-K9Bc6b4KQNtwkNaF1wuSX2qS77sE1xcE0frsYnOrH7qx_gvNA-gG10omu_Cune7r5r_3_8W_iW_C_cneUB99GB-uwQNeKUw4HFqHTlnM3UsMl8rpRmMRvwHM3QkW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary-Value+Problem+for+the+Aller%E2%80%93Lykov+Nonlocal+Moisture+Transfer+Equation&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kh%2C+Gekkieva+S&rft.au=Kerefov%2C+M+A&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=260&rft.issue=3&rft.spage=300&rft.epage=306&rft_id=info:doi/10.1007%2Fs10958-022-05694-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon