A genetic algorithm‐based stacking algorithm for predicting soil organic matter from vis–NIR spectral data

It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary know...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of soil science Vol. 70; no. 3; pp. 578 - 590
Main Authors Tsakiridis, Nikolaos L., Tziolas, Nikolaos V., Theocharis, John B., Zalidis, George C.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1351-0754
1365-2389
DOI10.1111/ejss.12760

Cover

Abstract It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method ( R2 = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model ( R2 = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike. Highlights A novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms. Use of a genetic algorithm is examined, accounting for the large number of possible model permutations. The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library. Results indicate that model stacking creates more accurate and robust models.
AbstractList It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method ( R2 = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model ( R2 = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike. Highlights A novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms. Use of a genetic algorithm is examined, accounting for the large number of possible model permutations. The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library. Results indicate that model stacking creates more accurate and robust models.
It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method (R² = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model (R² = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike. HIGHLIGHTS: A novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms. Use of a genetic algorithm is examined, accounting for the large number of possible model permutations. The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library. Results indicate that model stacking creates more accurate and robust models.
It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method (R2 = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model (R2 = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike.HighlightsA novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms.Use of a genetic algorithm is examined, accounting for the large number of possible model permutations.The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library.Results indicate that model stacking creates more accurate and robust models.
Author Tsakiridis, Nikolaos L.
Theocharis, John B.
Tziolas, Nikolaos V.
Zalidis, George C.
Author_xml – sequence: 1
  givenname: Nikolaos L.
  orcidid: 0000-0002-1904-9029
  surname: Tsakiridis
  fullname: Tsakiridis, Nikolaos L.
  email: tsakirin@auth.gr
  organization: Interbalkan Environment Center
– sequence: 2
  givenname: Nikolaos V.
  surname: Tziolas
  fullname: Tziolas, Nikolaos V.
  organization: Aristotle University of Thessaloniki
– sequence: 3
  givenname: John B.
  surname: Theocharis
  fullname: Theocharis, John B.
  organization: Aristotle University of Thessaloniki
– sequence: 4
  givenname: George C.
  surname: Zalidis
  fullname: Zalidis, George C.
  organization: Aristotle University of Thessaloniki
BookMark eNp9kc9qGzEQxkVxIHGaS55AkEsIbKo_q13tMRg3TQktJOl5mcgjV86u5Ehyg295hELf0E_SdR0ohJC5zMD3-4YZvjEZ-eCRkGPOzvlQn3CR0jkXdcU-kAMuK1UIqZvRdla8YLUq98k4pQVjXPKmOSD-gs7RY3aGQjcP0eWf_eb59z0knNGUwTw4P_8vURsiXUacOZO3QgquoyHOwQ8LesgZI7Ux9PSXS5vnP9-ubmhaoskROjqDDB_JnoUu4dFLPyQ_Pk_vJl-K6--XV5OL68JIWbICS2RGGwVai4prppRlWJmykQZNY2BWV1CpGhkIg9ZqIRu411ZYBYIJqeQhOd3tXcbwuMKU294lg10HHsMqtULUXKum5nJAT16hi7CKfrhuoIRSUmlZDhTbUSaGlCLa1rgM2QU__Oa6lrN2G0C7DaD9F8BgOXtlWUbXQ1y_DfMd_OQ6XL9DttOvt7c7z1_wdZud
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_168010
crossref_primary_10_1016_j_jenvman_2024_120503
crossref_primary_10_1016_j_compag_2020_105410
crossref_primary_10_3390_s22093187
crossref_primary_10_3390_foods10040785
crossref_primary_10_3390_rs12030469
crossref_primary_10_1007_s10661_024_12817_6
crossref_primary_10_1016_j_saa_2024_124492
crossref_primary_10_1109_JSTARS_2023_3281732
crossref_primary_10_1134_S1064229323603505
crossref_primary_10_1016_j_geoderma_2020_114830
crossref_primary_10_1016_j_heliyon_2024_e30228
crossref_primary_10_1016_j_catena_2022_106485
crossref_primary_10_3390_s21010148
crossref_primary_10_1016_j_jhazmat_2024_136689
crossref_primary_10_1002_agj2_20934
crossref_primary_10_1016_j_compag_2023_108100
crossref_primary_10_1016_j_fcr_2023_109042
crossref_primary_10_1016_j_catena_2021_105611
crossref_primary_10_3390_rs14020397
crossref_primary_10_3390_rs11060676
crossref_primary_10_3390_land9070229
crossref_primary_10_3390_rs13081535
crossref_primary_10_1007_s00521_024_10203_4
crossref_primary_10_1016_j_geoderma_2022_116102
crossref_primary_10_1515_comp_2024_0006
crossref_primary_10_1016_j_still_2023_105684
crossref_primary_10_17221_133_2022_SWR
crossref_primary_10_1016_j_geoderma_2021_114967
crossref_primary_10_1016_j_geoderma_2020_114208
crossref_primary_10_3390_rs15061624
crossref_primary_10_1111_srt_13166
crossref_primary_10_1016_j_scitotenv_2020_141282
crossref_primary_10_3390_molecules25061442
crossref_primary_10_1016_j_chemolab_2020_104231
crossref_primary_10_1016_j_talanta_2024_126242
crossref_primary_10_1007_s00170_024_14225_z
Cites_doi 10.1201/9781420005271-7
10.1016/j.trac.2010.05.006
10.1080/01431161.2016.1148291
10.1007/978-1-4614-6849-3
10.1016/j.geoderma.2009.12.025
10.1016/j.eswa.2017.04.026
10.1111/ejss.12272
10.1093/bioinformatics/btl355
10.1016/bs.agron.2015.02.002
10.1111/j.1467-9868.2005.00503.x
10.2307/2344614
10.1007/BFb0062108
10.1016/j.geoderma.2014.02.002
10.1016/j.cageo.2004.11.013
10.1016/j.soilbio.2013.10.022
10.1016/j.aca.2015.06.056
10.1016/S0065-2113(10)07005-7
10.1016/j.geoderma.2015.01.002
10.18637/jss.v028.i05
10.1007/BF00117832
10.1080/00401706.1969.10490666
10.1016/j.earscirev.2016.01.012
10.1016/j.geoderma.2012.12.014
10.1109/FUZZ-IEEE.2017.8015563
10.1111/ejss.12499
10.1111/j.1365-2389.2012.01495.x
10.1111/ejss.12511
10.1016/j.trac.2009.07.007
10.2136/sssaj2016.02.0052
10.1016/S0893-6080(05)80023-1
10.1371/journal.pone.0066409
ContentType Journal Article
Copyright 2018 British Society of Soil Science
2019 British Society of Soil Science
Copyright_xml – notice: 2018 British Society of Soil Science
– notice: 2019 British Society of Soil Science
DBID AAYXX
CITATION
7QL
7SN
7ST
7T7
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
SOI
7S9
L.6
DOI 10.1111/ejss.12760
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage 590
ExternalDocumentID 10_1111_ejss_12760
EJSS12760
Genre article
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme
– fundername: GEO‐CRADLE H2020 EU project
  funderid: 690133
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7QL
7SN
7ST
7T7
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c3340-e4e0c8c5a882618055f0e6c493cec9cad76a657e0a2ceff8239ab8f2f5a202353
IEDL.DBID DR2
ISSN 1351-0754
IngestDate Fri Jul 11 18:27:49 EDT 2025
Fri Jul 25 20:51:58 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Wed Oct 01 04:56:14 EDT 2025
Wed Jan 22 16:21:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3340-e4e0c8c5a882618055f0e6c493cec9cad76a657e0a2ceff8239ab8f2f5a202353
Notes Funding information
GEO‐CRADLE H2020 EU project, Grant/Award Number: 690133; European Union's Horizon 2020 research and innovation programme
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1904-9029
PQID 2225535834
PQPubID 2045158
PageCount 13
ParticipantIDs proquest_miscellaneous_2271859713
proquest_journals_2225535834
crossref_citationtrail_10_1111_ejss_12760
crossref_primary_10_1111_ejss_12760
wiley_primary_10_1111_ejss_12760_EJSS12760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2010; 107
2017a; 83
2014; 226–227
1975
1969; 11
2015; 245–246
2007
2014; 68
1972; 135
2013; 8
2016; 37
1997; 9
2005; 67
2018; 69
2009; 28
1992; 92
2017b
2010; 29
2006; 22
2010; 158
2015; 893
1993; 76
2013; 195–196
2015; 66
2008; 28
2015; 132
2005; 31
2016; 155
2017
1983
2014
2013
2016; 80
1996; 24
2012; 63
1992; 5
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Zou H. (e_1_2_8_38_1) 2005; 67
Quinlan J.R. (e_1_2_8_20_1) 1993; 76
Drucker H. (e_1_2_8_6_1) 1997; 9
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_8_1
e_1_2_8_22_1
e_1_2_8_23_1
Quinlan J.R. (e_1_2_8_19_1) 1992; 92
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
R Core Team (e_1_2_8_21_1) 2017
Holland J.H. (e_1_2_8_9_1) 1975
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
IUSS Working Group WRB (e_1_2_8_10_1) 2014
Carter M.R. (e_1_2_8_5_1) 2007
e_1_2_8_30_1
References_xml – volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends in Analytical Chemistry
– volume: 92
  start-page: 343
  year: 1992
  end-page: 348
  article-title: Learning with continuous classes
  publication-title: Machine Learning
– volume: 63
  start-page: 848
  year: 2012
  end-page: 860
  article-title: Predicting soil properties from the Australian soil visible‐near infrared spectroscopic database
  publication-title: European Journal of Soil Science
– volume: 226–227
  start-page: 140
  year: 2014
  end-page: 150
  article-title: Sampling optimal calibration sets in soil infrared spectroscopy
  publication-title: Geoderma
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  article-title: Stacked generalization
  publication-title: Neural Networks
– volume: 135
  start-page: 370
  year: 1972
  end-page: 384
  article-title: Generalized linear models
  publication-title: Journal of the Royal Statistical Society. Series A (General)
– volume: 8
  year: 2013
  article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy
  publication-title: PLoS One
– start-page: 286
  year: 1983
  end-page: 293
– volume: 66
  start-page: 679
  year: 2015
  end-page: 687
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis‐NIR spectral library
  publication-title: European Journal of Soil Science
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  article-title: Building predictive models in R using the caret package
  publication-title: Journal of Statistical Software, Articles
– start-page: 25
  year: 2007
  end-page: 38
– volume: 68
  start-page: 337
  year: 2014
  end-page: 347
  article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach
  publication-title: Soil Biology & Biochemistry
– year: 1975
– volume: 76
  start-page: 236
  year: 1993
  end-page: 243
  article-title: Combining instance‐based and model‐based learning
  publication-title: Machine Learning
– volume: 69
  start-page: 140
  year: 2018
  end-page: 153
  article-title: LUCAS soil, the largest expandable soil dataset for Europe: A review
  publication-title: European Journal of Soil Science
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 83
  start-page: 257
  year: 2017a
  end-page: 272
  article-title: DECO3RUM: A differential evolution learning approach for generating compact Mamdani fuzzy rule‐based models
  publication-title: Expert Systems with Applications
– volume: 245–246
  start-page: 112
  year: 2015
  end-page: 124
  article-title: Reflectance measurements of soils in the laboratory: Standards and protocols
  publication-title: Geoderma
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Advances in Agronomy
– volume: 37
  start-page: 1276
  year: 2016
  end-page: 1290
  article-title: Normalizing reflectance from different spectrometers and protocols with an internal soil standard
  publication-title: International Journal of Remote Sensing
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  article-title: Review of the most common pre‐processing techniques for near‐infrared spectra
  publication-title: TrAC Trends in Analytical Chemistry
– volume: 31
  start-page: 579
  year: 2005
  end-page: 587
  article-title: Multivariate outlier detection in exploration geochemistry
  publication-title: Computers & Geosciences
– volume: 132
  start-page: 139
  year: 2015
  end-page: 159
  article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring
  publication-title: Advances in Agronomy
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  article-title: A global spectral library to characterize the world's soil
  publication-title: Earth‐Science Reviews
– volume: 893
  start-page: 14
  year: 2015
  end-page: 24
  article-title: Validation of chemometric models – A tutorial
  publication-title: Analytica Chimica Acta
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  article-title: Stacked regressions
  publication-title: Machine Learning
– volume: 80
  start-page: 973
  year: 2016
  article-title: Prediction of soil carbon in the conterminous United States: Visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project
  publication-title: Soil Science Society of America Journal
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic‐net
  publication-title: Journal of the Royal Statistical Society
– start-page: 1
  year: 2017b
  end-page: 7
– volume: 69
  start-page: 126
  year: 2018
  end-page: 139
  article-title: Analysis of variance in soil research: Let the analysis fit the design
  publication-title: European Journal of Soil Science
– year: 2017
– volume: 22
  start-page: 2059
  year: 2006
  end-page: 2065
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform‐based pattern matching
  publication-title: Bioinformatics
– volume: 195–196
  start-page: 268
  year: 2013
  end-page: 279
  article-title: The spectrum‐based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets
  publication-title: Geoderma
– year: 2013
– start-page: 25
  volume-title: Soil sampling and methods of analysis
  year: 2007
  ident: e_1_2_8_5_1
  doi: 10.1201/9781420005271-7
– ident: e_1_2_8_2_1
  doi: 10.1016/j.trac.2010.05.006
– ident: e_1_2_8_12_1
  doi: 10.1080/01431161.2016.1148291
– ident: e_1_2_8_14_1
  doi: 10.1007/978-1-4614-6849-3
– ident: e_1_2_8_25_1
  doi: 10.1016/j.geoderma.2009.12.025
– ident: e_1_2_8_30_1
  doi: 10.1016/j.eswa.2017.04.026
– ident: e_1_2_8_27_1
  doi: 10.1111/ejss.12272
– ident: e_1_2_8_7_1
  doi: 10.1093/bioinformatics/btl355
– ident: e_1_2_8_17_1
  doi: 10.1016/bs.agron.2015.02.002
– volume: 67
  start-page: 301
  year: 2005
  ident: e_1_2_8_38_1
  article-title: Regularization and variable selection via the elastic‐net
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_2_8_15_1
  doi: 10.2307/2344614
– ident: e_1_2_8_36_1
  doi: 10.1007/BFb0062108
– ident: e_1_2_8_23_1
  doi: 10.1016/j.geoderma.2014.02.002
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cageo.2004.11.013
– ident: e_1_2_8_16_1
  doi: 10.1016/j.soilbio.2013.10.022
– ident: e_1_2_8_34_1
  doi: 10.1016/j.aca.2015.06.056
– volume: 9
  start-page: 155
  year: 1997
  ident: e_1_2_8_6_1
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_28_1
  doi: 10.1016/S0065-2113(10)07005-7
– ident: e_1_2_8_3_1
  doi: 10.1016/j.geoderma.2015.01.002
– volume: 92
  start-page: 343
  year: 1992
  ident: e_1_2_8_19_1
  article-title: Learning with continuous classes
  publication-title: Machine Learning
– ident: e_1_2_8_13_1
  doi: 10.18637/jss.v028.i05
– ident: e_1_2_8_4_1
  doi: 10.1007/BF00117832
– ident: e_1_2_8_11_1
  doi: 10.1080/00401706.1969.10490666
– ident: e_1_2_8_32_1
  doi: 10.1016/j.earscirev.2016.01.012
– ident: e_1_2_8_22_1
  doi: 10.1016/j.geoderma.2012.12.014
– ident: e_1_2_8_31_1
  doi: 10.1109/FUZZ-IEEE.2017.8015563
– volume: 76
  start-page: 236
  year: 1993
  ident: e_1_2_8_20_1
  article-title: Combining instance‐based and model‐based learning
  publication-title: Machine Learning
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: e_1_2_8_21_1
– volume-title: Adaptation in natural and artificial systems
  year: 1975
  ident: e_1_2_8_9_1
– ident: e_1_2_8_18_1
  doi: 10.1111/ejss.12499
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1365-2389.2012.01495.x
– ident: e_1_2_8_33_1
  doi: 10.1111/ejss.12511
– ident: e_1_2_8_24_1
  doi: 10.1016/j.trac.2009.07.007
– ident: e_1_2_8_35_1
  doi: 10.2136/sssaj2016.02.0052
– ident: e_1_2_8_37_1
  doi: 10.1016/S0893-6080(05)80023-1
– volume-title: International soil classification system for naming soils and creating legends for soil maps
  year: 2014
  ident: e_1_2_8_10_1
– ident: e_1_2_8_29_1
  doi: 10.1371/journal.pone.0066409
SSID ssj0013199
Score 2.4628632
Snippet It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 578
SubjectTerms Algorithms
Analytical methods
Balkans
Diffuse reflectance spectroscopy
Genetic algorithms
GEO‐CRADLE
Mathematical models
Middle East
model stacking
North Africa
Organic chemistry
Organic matter
Permutations
prediction
Predictions
Reflectance
reflectance spectroscopy
Soil chemistry
Soil organic matter
Soil properties
soil spectroscopy
Spectra
spectral analysis
Spectroscopy
Stacking
vis–NIR spectroscopy
Title A genetic algorithm‐based stacking algorithm for predicting soil organic matter from vis–NIR spectral data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.12760
https://www.proquest.com/docview/2225535834
https://www.proquest.com/docview/2271859713
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1351-0754
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013199
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hTnBoy0_VbSlyVS6tlFWy_kks9bJCIMqBAxSJC4oc75guXbIo2e2hJx6hUt-QJ8HjJLu0qiqVWyQ7suPxZL6xZ74B2LPpiGuhRMS9cYoEoo6yrMCIrBHXxngbFKItTtTRuTi-kBcr8KnLhWn4IRYHbqQZ4X9NCm6K-pGS43Vd95NBqshhT7gK_tTpYHmF0BSPpAp0fmQpWm5SCuNZvvq7NVpCzMdANViaw-dw2c2xCTD51p_Pir798Qd941M_4gU8ayEoGzZ7ZgNWsNyE9eFV1dJw4BaUQ-Y3FuU3MjO5mlbj2deb-7ufZPJGzONJSwfsyybmkS-7rejOh6KoWT0dT1hTL8qym8DgySiPhX0f1_d3v04-n7KQ4Vn5aVCI6jacHx582T-K2soMkeVcxBEKjG1mpfH4XCVZLKWLUVmhuUWrrRmlyiiZYmwGFp0LYi8yN3DSULl2yV_Cajkt8RUwXSg3cik3iSOuNKdtkqUWtRMKPXQyPfjQSSi3LW05Vc-Y5J37QmuYhzXswftF39uGrOOvvXY6QeetwtY5ub2Sy4yLHrxbNHtVo_sTU-J0Tn28IfcOWMJ78DFI9R-j5AfHZ2fh6fX_dH4Dax6S6SakcgdWZ9Uc33rYMyt2w_Z-ALYkAcQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5V9FB6oC9QQyls1V5AcmRnH_YeoxYUKM2Bh8TNWm9maSA4kZ30wCk_AYl_yC9hZ-0ktEJI9GbJa629M-P5ZnfmG0K-mbjHFJc8YM45BRxABUmSQYDeiCmtnQ_y2RZd2TnlB2firM7NwVqYih9ivuGGluH_12jguCH9wMrhoiybUSuWLmJ_6aYLUal_HLUWhwhV-0jsQefmFrxmJ8VEnsWzf_ujBch8CFW9r9l7UzVULT1FIaaYXDYn46xprv8hcPzvz3hLVmoUStuV2rwjLyB_T163z4uaiQM-kLxNnW5hiSPVg_Nh0R__vrqb3qDX61EHKQ3usS9uUQd-6ajAYx9MpKblsD-gVcsoQ688iSfFUhb6p1_eTW-7-0fUF3kW7jUwS3WVnO7tnnzvBHVzhsAwxsMAOIQmMUI7iC6jJBTChiANV8yAUUb3YqmliCHULQPWeslniW1ZobFju2BrZCkf5vCRUJVJ27Mx05FFujSrTJTEBpTlEhx60g2yPRNRamrmcmygMUhnEQyuYerXsEG-zseOKr6OR0dtzCSd1jZbphj5CiYSxhvky_y2szY8QtE5DCc4xvlyF4NFrEF2vFifmCXdPTg-9lfrzxm8RV51Tn4dpof73Z-fyLJDaKrKsNwgS-NiAp8dChpnm17X7wHJsgXl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5KCqU99JlQt2m7Jbk0ICN5H9IeTRPjpMWEpIHcxGo167h1ZCPZPfSUn1DoP8wv6c5KfqSEQHoT7AhJOzuab3ZnviFk18Q5U1zygDnnFHAAFSRJBgF6I6a0dj7IZ1sMZP-MH52L8yY3B2than6I5YYbWob_X6OBwzS3a1YO36uqHXVi6SL2h1yoBDP69k86q0OEun0k9qBzzxa8YSfFRJ7VvTf90QpkrkNV72t6z-qGqpWnKMQUkx_t-Sxrm1__EDj-92c8J08bFEq79bJ5QR5A8ZI86Q7LhokDXpGiS93awhJHqsfDSTmaXVxeX_1Gr5dTBykN7rGvhqgDv3Ra4rEPJlLTajIa07pllKGXnsSTYikL_Tmqrq_-DA5PqC_yLN1rYJbqJjnrHXz73A-a5gyBYYyHAXAITWKEdhBdRkkohA1BGq6YAaOMzmOppYgh1B0D1nrNZ4ntWKGxY7tgW2SjmBTwmlCVSZvbmOnIIl2aVSZKYgPKcgkOPekW-bRQUWoa5nJsoDFOFxEMzmHq57BFdpay05qv41ap7YWm08ZmqxQjX8FEwniLfFwOO2vDIxRdwGSOMs6XuxgsYi2y59V6x1PSg6PTU3_15j7CH8ij4_1e-vVw8OUteewAmqoTLLfJxqycwzsHgmbZe7_U_wJq6QVp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm%E2%80%90based+stacking+algorithm+for+predicting+soil+organic+matter+from+vis%E2%80%93NIR+spectral+data&rft.jtitle=European+journal+of+soil+science&rft.au=Tsakiridis%2C+Nikolaos+L.&rft.au=Tziolas%2C+Nikolaos+V.&rft.au=Theocharis%2C+John+B.&rft.au=Zalidis%2C+George+C.&rft.date=2019-05-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=70&rft.issue=3&rft.spage=578&rft.epage=590&rft_id=info:doi/10.1111%2Fejss.12760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejss_12760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon