A genetic algorithm‐based stacking algorithm for predicting soil organic matter from vis–NIR spectral data
It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary know...
        Saved in:
      
    
          | Published in | European journal of soil science Vol. 70; no. 3; pp. 578 - 590 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford, UK
          Blackwell Publishing Ltd
    
        01.05.2019
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1351-0754 1365-2389  | 
| DOI | 10.1111/ejss.12760 | 
Cover
| Abstract | It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method (
R2 = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model (
R2 = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike.
Highlights
A novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms.
Use of a genetic algorithm is examined, accounting for the large number of possible model permutations.
The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library.
Results indicate that model stacking creates more accurate and robust models. | 
    
|---|---|
| AbstractList | It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method (
R2 = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model (
R2 = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike.
Highlights
A novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms.
Use of a genetic algorithm is examined, accounting for the large number of possible model permutations.
The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library.
Results indicate that model stacking creates more accurate and robust models. It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method (R² = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model (R² = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike. HIGHLIGHTS: A novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms. Use of a genetic algorithm is examined, accounting for the large number of possible model permutations. The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library. Results indicate that model stacking creates more accurate and robust models. It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical soil properties. Immense soil spectral libraries (SSL) are being developed; therefore, more elaborate tools that capitalize on contemporary knowledge and techniques need to be established to provide accurate predictions. In this paper, we propose a novel genetic algorithm‐based stacking model that makes synergetic use of multiple models developed from different preprocessed spectral sources (termed L1 models). This is a form of ensemble learning where multiple hypotheses are combined to create a more robust and more accurate ensemble hypothesis. The genetic algorithm automatically defines the configuration of the stacked model, by selecting the best cooperating subset of the initial models. Our methodology was tested on the newly developed GEO‐CRADLE SSL to predict soil organic matter (SOM). Results showed that the accuracy of prediction of the proposed method (R2 = 0.76, and ratio of performance to interquartile range [RPIQ] = 2.22) was better than the one attained by the best L1 model (R2 = 0.65, RPIQ = 1.93). This approach can thus be effectively utilized to enhance the predictions of soil properties in small and large soil spectral libraries alike.HighlightsA novel model stacking algorithm is proposed, combining spectral models from different sources and algorithms.Use of a genetic algorithm is examined, accounting for the large number of possible model permutations.The methodology was applied to the GEO‐CRADLE vis–NIR soil spectral library.Results indicate that model stacking creates more accurate and robust models.  | 
    
| Author | Tsakiridis, Nikolaos L. Theocharis, John B. Tziolas, Nikolaos V. Zalidis, George C.  | 
    
| Author_xml | – sequence: 1 givenname: Nikolaos L. orcidid: 0000-0002-1904-9029 surname: Tsakiridis fullname: Tsakiridis, Nikolaos L. email: tsakirin@auth.gr organization: Interbalkan Environment Center – sequence: 2 givenname: Nikolaos V. surname: Tziolas fullname: Tziolas, Nikolaos V. organization: Aristotle University of Thessaloniki – sequence: 3 givenname: John B. surname: Theocharis fullname: Theocharis, John B. organization: Aristotle University of Thessaloniki – sequence: 4 givenname: George C. surname: Zalidis fullname: Zalidis, George C. organization: Aristotle University of Thessaloniki  | 
    
| BookMark | eNp9kc9qGzEQxkVxIHGaS55AkEsIbKo_q13tMRg3TQktJOl5mcgjV86u5Ehyg295hELf0E_SdR0ohJC5zMD3-4YZvjEZ-eCRkGPOzvlQn3CR0jkXdcU-kAMuK1UIqZvRdla8YLUq98k4pQVjXPKmOSD-gs7RY3aGQjcP0eWf_eb59z0knNGUwTw4P_8vURsiXUacOZO3QgquoyHOwQ8LesgZI7Ux9PSXS5vnP9-ubmhaoskROjqDDB_JnoUu4dFLPyQ_Pk_vJl-K6--XV5OL68JIWbICS2RGGwVai4prppRlWJmykQZNY2BWV1CpGhkIg9ZqIRu411ZYBYIJqeQhOd3tXcbwuMKU294lg10HHsMqtULUXKum5nJAT16hi7CKfrhuoIRSUmlZDhTbUSaGlCLa1rgM2QU__Oa6lrN2G0C7DaD9F8BgOXtlWUbXQ1y_DfMd_OQ6XL9DttOvt7c7z1_wdZud | 
    
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_168010 crossref_primary_10_1016_j_jenvman_2024_120503 crossref_primary_10_1016_j_compag_2020_105410 crossref_primary_10_3390_s22093187 crossref_primary_10_3390_foods10040785 crossref_primary_10_3390_rs12030469 crossref_primary_10_1007_s10661_024_12817_6 crossref_primary_10_1016_j_saa_2024_124492 crossref_primary_10_1109_JSTARS_2023_3281732 crossref_primary_10_1134_S1064229323603505 crossref_primary_10_1016_j_geoderma_2020_114830 crossref_primary_10_1016_j_heliyon_2024_e30228 crossref_primary_10_1016_j_catena_2022_106485 crossref_primary_10_3390_s21010148 crossref_primary_10_1016_j_jhazmat_2024_136689 crossref_primary_10_1002_agj2_20934 crossref_primary_10_1016_j_compag_2023_108100 crossref_primary_10_1016_j_fcr_2023_109042 crossref_primary_10_1016_j_catena_2021_105611 crossref_primary_10_3390_rs14020397 crossref_primary_10_3390_rs11060676 crossref_primary_10_3390_land9070229 crossref_primary_10_3390_rs13081535 crossref_primary_10_1007_s00521_024_10203_4 crossref_primary_10_1016_j_geoderma_2022_116102 crossref_primary_10_1515_comp_2024_0006 crossref_primary_10_1016_j_still_2023_105684 crossref_primary_10_17221_133_2022_SWR crossref_primary_10_1016_j_geoderma_2021_114967 crossref_primary_10_1016_j_geoderma_2020_114208 crossref_primary_10_3390_rs15061624 crossref_primary_10_1111_srt_13166 crossref_primary_10_1016_j_scitotenv_2020_141282 crossref_primary_10_3390_molecules25061442 crossref_primary_10_1016_j_chemolab_2020_104231 crossref_primary_10_1016_j_talanta_2024_126242 crossref_primary_10_1007_s00170_024_14225_z  | 
    
| Cites_doi | 10.1201/9781420005271-7 10.1016/j.trac.2010.05.006 10.1080/01431161.2016.1148291 10.1007/978-1-4614-6849-3 10.1016/j.geoderma.2009.12.025 10.1016/j.eswa.2017.04.026 10.1111/ejss.12272 10.1093/bioinformatics/btl355 10.1016/bs.agron.2015.02.002 10.1111/j.1467-9868.2005.00503.x 10.2307/2344614 10.1007/BFb0062108 10.1016/j.geoderma.2014.02.002 10.1016/j.cageo.2004.11.013 10.1016/j.soilbio.2013.10.022 10.1016/j.aca.2015.06.056 10.1016/S0065-2113(10)07005-7 10.1016/j.geoderma.2015.01.002 10.18637/jss.v028.i05 10.1007/BF00117832 10.1080/00401706.1969.10490666 10.1016/j.earscirev.2016.01.012 10.1016/j.geoderma.2012.12.014 10.1109/FUZZ-IEEE.2017.8015563 10.1111/ejss.12499 10.1111/j.1365-2389.2012.01495.x 10.1111/ejss.12511 10.1016/j.trac.2009.07.007 10.2136/sssaj2016.02.0052 10.1016/S0893-6080(05)80023-1 10.1371/journal.pone.0066409  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 British Society of Soil Science 2019 British Society of Soil Science  | 
    
| Copyright_xml | – notice: 2018 British Society of Soil Science – notice: 2019 British Society of Soil Science  | 
    
| DBID | AAYXX CITATION 7QL 7SN 7ST 7T7 7UA 8FD C1K F1W FR3 H96 L.G P64 SOI 7S9 L.6  | 
    
| DOI | 10.1111/ejss.12760 | 
    
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| EISSN | 1365-2389 | 
    
| EndPage | 590 | 
    
| ExternalDocumentID | 10_1111_ejss_12760 EJSS12760  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation programme – fundername: GEO‐CRADLE H2020 EU project funderid: 690133  | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XOL Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7QL 7SN 7ST 7T7 7UA 8FD C1K F1W FR3 H96 L.G P64 SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c3340-e4e0c8c5a882618055f0e6c493cec9cad76a657e0a2ceff8239ab8f2f5a202353 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1351-0754 | 
    
| IngestDate | Fri Jul 11 18:27:49 EDT 2025 Fri Jul 25 20:51:58 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Wed Oct 01 04:56:14 EDT 2025 Wed Jan 22 16:21:31 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3340-e4e0c8c5a882618055f0e6c493cec9cad76a657e0a2ceff8239ab8f2f5a202353 | 
    
| Notes | Funding information GEO‐CRADLE H2020 EU project, Grant/Award Number: 690133; European Union's Horizon 2020 research and innovation programme ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-1904-9029 | 
    
| PQID | 2225535834 | 
    
| PQPubID | 2045158 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_2271859713 proquest_journals_2225535834 crossref_citationtrail_10_1111_ejss_12760 crossref_primary_10_1111_ejss_12760 wiley_primary_10_1111_ejss_12760_EJSS12760  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2019 2019-05-00 20190501  | 
    
| PublicationDateYYYYMMDD | 2019-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford, UK | 
    
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford  | 
    
| PublicationTitle | European journal of soil science | 
    
| PublicationYear | 2019 | 
    
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc  | 
    
| References | 2010; 107 2017a; 83 2014; 226–227 1975 1969; 11 2015; 245–246 2007 2014; 68 1972; 135 2013; 8 2016; 37 1997; 9 2005; 67 2018; 69 2009; 28 1992; 92 2017b 2010; 29 2006; 22 2010; 158 2015; 893 1993; 76 2013; 195–196 2015; 66 2008; 28 2015; 132 2005; 31 2016; 155 2017 1983 2014 2013 2016; 80 1996; 24 2012; 63 1992; 5 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Zou H. (e_1_2_8_38_1) 2005; 67 Quinlan J.R. (e_1_2_8_20_1) 1993; 76 Drucker H. (e_1_2_8_6_1) 1997; 9 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_8_1 e_1_2_8_22_1 e_1_2_8_23_1 Quinlan J.R. (e_1_2_8_19_1) 1992; 92 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 R Core Team (e_1_2_8_21_1) 2017 Holland J.H. (e_1_2_8_9_1) 1975 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 IUSS Working Group WRB (e_1_2_8_10_1) 2014 Carter M.R. (e_1_2_8_5_1) 2007 e_1_2_8_30_1  | 
    
| References_xml | – volume: 29 start-page: 1073 year: 2010 end-page: 1081 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends in Analytical Chemistry – volume: 92 start-page: 343 year: 1992 end-page: 348 article-title: Learning with continuous classes publication-title: Machine Learning – volume: 63 start-page: 848 year: 2012 end-page: 860 article-title: Predicting soil properties from the Australian soil visible‐near infrared spectroscopic database publication-title: European Journal of Soil Science – volume: 226–227 start-page: 140 year: 2014 end-page: 150 article-title: Sampling optimal calibration sets in soil infrared spectroscopy publication-title: Geoderma – volume: 5 start-page: 241 year: 1992 end-page: 259 article-title: Stacked generalization publication-title: Neural Networks – volume: 135 start-page: 370 year: 1972 end-page: 384 article-title: Generalized linear models publication-title: Journal of the Royal Statistical Society. Series A (General) – volume: 8 year: 2013 article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy publication-title: PLoS One – start-page: 286 year: 1983 end-page: 293 – volume: 66 start-page: 679 year: 2015 end-page: 687 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis‐NIR spectral library publication-title: European Journal of Soil Science – volume: 28 start-page: 1 year: 2008 end-page: 26 article-title: Building predictive models in R using the caret package publication-title: Journal of Statistical Software, Articles – start-page: 25 year: 2007 end-page: 38 – volume: 68 start-page: 337 year: 2014 end-page: 347 article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach publication-title: Soil Biology & Biochemistry – year: 1975 – volume: 76 start-page: 236 year: 1993 end-page: 243 article-title: Combining instance‐based and model‐based learning publication-title: Machine Learning – volume: 69 start-page: 140 year: 2018 end-page: 153 article-title: LUCAS soil, the largest expandable soil dataset for Europe: A review publication-title: European Journal of Soil Science – volume: 158 start-page: 46 year: 2010 end-page: 54 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 83 start-page: 257 year: 2017a end-page: 272 article-title: DECO3RUM: A differential evolution learning approach for generating compact Mamdani fuzzy rule‐based models publication-title: Expert Systems with Applications – volume: 245–246 start-page: 112 year: 2015 end-page: 124 article-title: Reflectance measurements of soils in the laboratory: Standards and protocols publication-title: Geoderma – volume: 9 start-page: 155 year: 1997 end-page: 161 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – year: 2014 – volume: 107 start-page: 163 year: 2010 end-page: 215 article-title: Visible and near infrared spectroscopy in soil science publication-title: Advances in Agronomy – volume: 37 start-page: 1276 year: 2016 end-page: 1290 article-title: Normalizing reflectance from different spectrometers and protocols with an internal soil standard publication-title: International Journal of Remote Sensing – volume: 28 start-page: 1201 year: 2009 end-page: 1222 article-title: Review of the most common pre‐processing techniques for near‐infrared spectra publication-title: TrAC Trends in Analytical Chemistry – volume: 31 start-page: 579 year: 2005 end-page: 587 article-title: Multivariate outlier detection in exploration geochemistry publication-title: Computers & Geosciences – volume: 132 start-page: 139 year: 2015 end-page: 159 article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring publication-title: Advances in Agronomy – volume: 155 start-page: 198 year: 2016 end-page: 230 article-title: A global spectral library to characterize the world's soil publication-title: Earth‐Science Reviews – volume: 893 start-page: 14 year: 2015 end-page: 24 article-title: Validation of chemometric models – A tutorial publication-title: Analytica Chimica Acta – volume: 11 start-page: 137 year: 1969 end-page: 148 article-title: Computer aided design of experiments publication-title: Technometrics – volume: 24 start-page: 49 year: 1996 end-page: 64 article-title: Stacked regressions publication-title: Machine Learning – volume: 80 start-page: 973 year: 2016 article-title: Prediction of soil carbon in the conterminous United States: Visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project publication-title: Soil Science Society of America Journal – volume: 67 start-page: 301 year: 2005 end-page: 320 article-title: Regularization and variable selection via the elastic‐net publication-title: Journal of the Royal Statistical Society – start-page: 1 year: 2017b end-page: 7 – volume: 69 start-page: 126 year: 2018 end-page: 139 article-title: Analysis of variance in soil research: Let the analysis fit the design publication-title: European Journal of Soil Science – year: 2017 – volume: 22 start-page: 2059 year: 2006 end-page: 2065 article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform‐based pattern matching publication-title: Bioinformatics – volume: 195–196 start-page: 268 year: 2013 end-page: 279 article-title: The spectrum‐based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets publication-title: Geoderma – year: 2013 – start-page: 25 volume-title: Soil sampling and methods of analysis year: 2007 ident: e_1_2_8_5_1 doi: 10.1201/9781420005271-7 – ident: e_1_2_8_2_1 doi: 10.1016/j.trac.2010.05.006 – ident: e_1_2_8_12_1 doi: 10.1080/01431161.2016.1148291 – ident: e_1_2_8_14_1 doi: 10.1007/978-1-4614-6849-3 – ident: e_1_2_8_25_1 doi: 10.1016/j.geoderma.2009.12.025 – ident: e_1_2_8_30_1 doi: 10.1016/j.eswa.2017.04.026 – ident: e_1_2_8_27_1 doi: 10.1111/ejss.12272 – ident: e_1_2_8_7_1 doi: 10.1093/bioinformatics/btl355 – ident: e_1_2_8_17_1 doi: 10.1016/bs.agron.2015.02.002 – volume: 67 start-page: 301 year: 2005 ident: e_1_2_8_38_1 article-title: Regularization and variable selection via the elastic‐net publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.1467-9868.2005.00503.x – ident: e_1_2_8_15_1 doi: 10.2307/2344614 – ident: e_1_2_8_36_1 doi: 10.1007/BFb0062108 – ident: e_1_2_8_23_1 doi: 10.1016/j.geoderma.2014.02.002 – ident: e_1_2_8_8_1 doi: 10.1016/j.cageo.2004.11.013 – ident: e_1_2_8_16_1 doi: 10.1016/j.soilbio.2013.10.022 – ident: e_1_2_8_34_1 doi: 10.1016/j.aca.2015.06.056 – volume: 9 start-page: 155 year: 1997 ident: e_1_2_8_6_1 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_28_1 doi: 10.1016/S0065-2113(10)07005-7 – ident: e_1_2_8_3_1 doi: 10.1016/j.geoderma.2015.01.002 – volume: 92 start-page: 343 year: 1992 ident: e_1_2_8_19_1 article-title: Learning with continuous classes publication-title: Machine Learning – ident: e_1_2_8_13_1 doi: 10.18637/jss.v028.i05 – ident: e_1_2_8_4_1 doi: 10.1007/BF00117832 – ident: e_1_2_8_11_1 doi: 10.1080/00401706.1969.10490666 – ident: e_1_2_8_32_1 doi: 10.1016/j.earscirev.2016.01.012 – ident: e_1_2_8_22_1 doi: 10.1016/j.geoderma.2012.12.014 – ident: e_1_2_8_31_1 doi: 10.1109/FUZZ-IEEE.2017.8015563 – volume: 76 start-page: 236 year: 1993 ident: e_1_2_8_20_1 article-title: Combining instance‐based and model‐based learning publication-title: Machine Learning – volume-title: R: A Language and Environment for Statistical Computing year: 2017 ident: e_1_2_8_21_1 – volume-title: Adaptation in natural and artificial systems year: 1975 ident: e_1_2_8_9_1 – ident: e_1_2_8_18_1 doi: 10.1111/ejss.12499 – ident: e_1_2_8_26_1 doi: 10.1111/j.1365-2389.2012.01495.x – ident: e_1_2_8_33_1 doi: 10.1111/ejss.12511 – ident: e_1_2_8_24_1 doi: 10.1016/j.trac.2009.07.007 – ident: e_1_2_8_35_1 doi: 10.2136/sssaj2016.02.0052 – ident: e_1_2_8_37_1 doi: 10.1016/S0893-6080(05)80023-1 – volume-title: International soil classification system for naming soils and creating legends for soil maps year: 2014 ident: e_1_2_8_10_1 – ident: e_1_2_8_29_1 doi: 10.1371/journal.pone.0066409  | 
    
| SSID | ssj0013199 | 
    
| Score | 2.4628632 | 
    
| Snippet | It has been demonstrated that diffuse reflectance spectroscopy in the visible and near‐infrared (vis–NIR) can be exploited to predict chemical and physical... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 578 | 
    
| SubjectTerms | Algorithms Analytical methods Balkans Diffuse reflectance spectroscopy Genetic algorithms GEO‐CRADLE Mathematical models Middle East model stacking North Africa Organic chemistry Organic matter Permutations prediction Predictions Reflectance reflectance spectroscopy Soil chemistry Soil organic matter Soil properties soil spectroscopy Spectra spectral analysis Spectroscopy Stacking vis–NIR spectroscopy  | 
    
| Title | A genetic algorithm‐based stacking algorithm for predicting soil organic matter from vis–NIR spectral data | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.12760 https://www.proquest.com/docview/2225535834 https://www.proquest.com/docview/2271859713  | 
    
| Volume | 70 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1351-0754 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2389 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013199 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hTnBoy0_VbSlyVS6tlFWy_kks9bJCIMqBAxSJC4oc75guXbIo2e2hJx6hUt-QJ8HjJLu0qiqVWyQ7suPxZL6xZ74B2LPpiGuhRMS9cYoEoo6yrMCIrBHXxngbFKItTtTRuTi-kBcr8KnLhWn4IRYHbqQZ4X9NCm6K-pGS43Vd95NBqshhT7gK_tTpYHmF0BSPpAp0fmQpWm5SCuNZvvq7NVpCzMdANViaw-dw2c2xCTD51p_Pir798Qd941M_4gU8ayEoGzZ7ZgNWsNyE9eFV1dJw4BaUQ-Y3FuU3MjO5mlbj2deb-7ufZPJGzONJSwfsyybmkS-7rejOh6KoWT0dT1hTL8qym8DgySiPhX0f1_d3v04-n7KQ4Vn5aVCI6jacHx582T-K2soMkeVcxBEKjG1mpfH4XCVZLKWLUVmhuUWrrRmlyiiZYmwGFp0LYi8yN3DSULl2yV_Cajkt8RUwXSg3cik3iSOuNKdtkqUWtRMKPXQyPfjQSSi3LW05Vc-Y5J37QmuYhzXswftF39uGrOOvvXY6QeetwtY5ub2Sy4yLHrxbNHtVo_sTU-J0Tn28IfcOWMJ78DFI9R-j5AfHZ2fh6fX_dH4Dax6S6SakcgdWZ9Uc33rYMyt2w_Z-ALYkAcQ | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5V9FB6oC9QQyls1V5AcmRnH_YeoxYUKM2Bh8TNWm9maSA4kZ30wCk_AYl_yC9hZ-0ktEJI9GbJa629M-P5ZnfmG0K-mbjHFJc8YM45BRxABUmSQYDeiCmtnQ_y2RZd2TnlB2firM7NwVqYih9ivuGGluH_12jguCH9wMrhoiybUSuWLmJ_6aYLUal_HLUWhwhV-0jsQefmFrxmJ8VEnsWzf_ujBch8CFW9r9l7UzVULT1FIaaYXDYn46xprv8hcPzvz3hLVmoUStuV2rwjLyB_T163z4uaiQM-kLxNnW5hiSPVg_Nh0R__vrqb3qDX61EHKQ3usS9uUQd-6ajAYx9MpKblsD-gVcsoQ688iSfFUhb6p1_eTW-7-0fUF3kW7jUwS3WVnO7tnnzvBHVzhsAwxsMAOIQmMUI7iC6jJBTChiANV8yAUUb3YqmliCHULQPWeslniW1ZobFju2BrZCkf5vCRUJVJ27Mx05FFujSrTJTEBpTlEhx60g2yPRNRamrmcmygMUhnEQyuYerXsEG-zseOKr6OR0dtzCSd1jZbphj5CiYSxhvky_y2szY8QtE5DCc4xvlyF4NFrEF2vFifmCXdPTg-9lfrzxm8RV51Tn4dpof73Z-fyLJDaKrKsNwgS-NiAp8dChpnm17X7wHJsgXl | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5KCqU99JlQt2m7Jbk0ICN5H9IeTRPjpMWEpIHcxGo167h1ZCPZPfSUn1DoP8wv6c5KfqSEQHoT7AhJOzuab3ZnviFk18Q5U1zygDnnFHAAFSRJBgF6I6a0dj7IZ1sMZP-MH52L8yY3B2than6I5YYbWob_X6OBwzS3a1YO36uqHXVi6SL2h1yoBDP69k86q0OEun0k9qBzzxa8YSfFRJ7VvTf90QpkrkNV72t6z-qGqpWnKMQUkx_t-Sxrm1__EDj-92c8J08bFEq79bJ5QR5A8ZI86Q7LhokDXpGiS93awhJHqsfDSTmaXVxeX_1Gr5dTBykN7rGvhqgDv3Ra4rEPJlLTajIa07pllKGXnsSTYikL_Tmqrq_-DA5PqC_yLN1rYJbqJjnrHXz73A-a5gyBYYyHAXAITWKEdhBdRkkohA1BGq6YAaOMzmOppYgh1B0D1nrNZ4ntWKGxY7tgW2SjmBTwmlCVSZvbmOnIIl2aVSZKYgPKcgkOPekW-bRQUWoa5nJsoDFOFxEMzmHq57BFdpay05qv41ap7YWm08ZmqxQjX8FEwniLfFwOO2vDIxRdwGSOMs6XuxgsYi2y59V6x1PSg6PTU3_15j7CH8ij4_1e-vVw8OUteewAmqoTLLfJxqycwzsHgmbZe7_U_wJq6QVp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm%E2%80%90based+stacking+algorithm+for+predicting+soil+organic+matter+from+vis%E2%80%93NIR+spectral+data&rft.jtitle=European+journal+of+soil+science&rft.au=Tsakiridis%2C+Nikolaos+L.&rft.au=Tziolas%2C+Nikolaos+V.&rft.au=Theocharis%2C+John+B.&rft.au=Zalidis%2C+George+C.&rft.date=2019-05-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=70&rft.issue=3&rft.spage=578&rft.epage=590&rft_id=info:doi/10.1111%2Fejss.12760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejss_12760 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon |