Widely linear least mean kurtosis-based frequency estimation of three-phase power system

We propose a widely linear (augmented) least mean kurtosis (WL-LMK) algorithm for robust frequency estimation of three-phase power system. The negated kurtosis-based algorithms are most celebrated for their computational efficiency and strong robustness against wide range of noise signals which can...

Full description

Saved in:
Bibliographic Details
Published inIET generation, transmission & distribution Vol. 14; no. 6; pp. 1159 - 1167
Main Authors Nefabas, Gebeyehu L, Zhao, Haiquan, Xia, Yili
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 27.03.2020
Subjects
Online AccessGet full text
ISSN1751-8687
1751-8695
DOI10.1049/iet-gtd.2018.6498

Cover

Abstract We propose a widely linear (augmented) least mean kurtosis (WL-LMK) algorithm for robust frequency estimation of three-phase power system. The negated kurtosis-based algorithms are most celebrated for their computational efficiency and strong robustness against wide range of noise signals which can overcome the inherent performance degradation faced by the well-known minimum mean square error-based algorithms in noisy environments. The proposed widely linear LMK estimation technique utilises all second-order statistical information in the complex domain ${\opf C}$C for processing of non-circular complex-valued signals. The three-phase power system signal, modelled through Clarke's αβ transformation, is circular for balanced and non-circular for unbalanced systems, based on which, the proposed WL-LMK algorithm is able to achieve improved frequency estimation under unbalanced and other abnormal system conditions. Its estimation performance is evaluated for several cases that encounter in the day-to-day operation of power system. It is observed from simulation studies of synthetic and real-world power system data that the proposed WL-LMK algorithm exhibits superior estimation performance as compared to the standard linear complex LMK (CLMK) and the widely linear least mean square (WL-LMS) algorithms.
AbstractList We propose a widely linear (augmented) least mean kurtosis (WL-LMK) algorithm for robust frequency estimation of three-phase power system. The negated kurtosis-based algorithms are most celebrated for their computational efficiency and strong robustness against wide range of noise signals which can overcome the inherent performance degradation faced by the well-known minimum mean square error-based algorithms in noisy environments. The proposed widely linear LMK estimation technique utilises all second-order statistical information in the complex domain ${\opf C}$C for processing of non-circular complex-valued signals. The three-phase power system signal, modelled through Clarke's αβ transformation, is circular for balanced and non-circular for unbalanced systems, based on which, the proposed WL-LMK algorithm is able to achieve improved frequency estimation under unbalanced and other abnormal system conditions. Its estimation performance is evaluated for several cases that encounter in the day-to-day operation of power system. It is observed from simulation studies of synthetic and real-world power system data that the proposed WL-LMK algorithm exhibits superior estimation performance as compared to the standard linear complex LMK (CLMK) and the widely linear least mean square (WL-LMS) algorithms.
We propose a widely linear (augmented) least mean kurtosis (WL‐LMK) algorithm for robust frequency estimation of three‐phase power system. The negated kurtosis‐based algorithms are most celebrated for their computational efficiency and strong robustness against wide range of noise signals which can overcome the inherent performance degradation faced by the well‐known minimum mean square error‐based algorithms in noisy environments. The proposed widely linear LMK estimation technique utilises all second‐order statistical information in the complex domain for processing of non‐circular complex‐valued signals. The three‐phase power system signal, modelled through Clarke's αβ transformation, is circular for balanced and non‐circular for unbalanced systems, based on which, the proposed WL‐LMK algorithm is able to achieve improved frequency estimation under unbalanced and other abnormal system conditions. Its estimation performance is evaluated for several cases that encounter in the day‐to‐day operation of power system. It is observed from simulation studies of synthetic and real‐world power system data that the proposed WL‐LMK algorithm exhibits superior estimation performance as compared to the standard linear complex LMK (CLMK) and the widely linear least mean square (WL‐LMS) algorithms.
We propose a widely linear (augmented) least mean kurtosis (WL‐LMK) algorithm for robust frequency estimation of three‐phase power system. The negated kurtosis‐based algorithms are most celebrated for their computational efficiency and strong robustness against wide range of noise signals which can overcome the inherent performance degradation faced by the well‐known minimum mean square error‐based algorithms in noisy environments. The proposed widely linear LMK estimation technique utilises all second‐order statistical information in the complex domain C for processing of non‐circular complex‐valued signals. The three‐phase power system signal, modelled through Clarke's αβ transformation, is circular for balanced and non‐circular for unbalanced systems, based on which, the proposed WL‐LMK algorithm is able to achieve improved frequency estimation under unbalanced and other abnormal system conditions. Its estimation performance is evaluated for several cases that encounter in the day‐to‐day operation of power system. It is observed from simulation studies of synthetic and real‐world power system data that the proposed WL‐LMK algorithm exhibits superior estimation performance as compared to the standard linear complex LMK (CLMK) and the widely linear least mean square (WL‐LMS) algorithms.
Author Xia, Yili
Zhao, Haiquan
Nefabas, Gebeyehu L
Author_xml – sequence: 1
  givenname: Gebeyehu L
  orcidid: 0000-0002-0749-0706
  surname: Nefabas
  fullname: Nefabas, Gebeyehu L
  organization: 1School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
– sequence: 2
  givenname: Haiquan
  surname: Zhao
  fullname: Zhao, Haiquan
  email: hqzhao@swjtu.edu.cn
  organization: 1School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
– sequence: 3
  givenname: Yili
  surname: Xia
  fullname: Xia, Yili
  organization: 2School of Information Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
BookMark eNqFkLFOwzAQhi1UJNrCA7D5BVzsxE4cNii0IFViKYLNcpwzdUmTYruq8vakFDEwwHQ33Hf_3TdCg6ZtAKFLRieM8uLKQSRvsZoklMlJxgt5goYsF4zIrBCDn17mZ2gUwppSITKeD9Hri6ug7nDtGtAe16BDxBvQDX7f-dgGF0ipA1TYevjYQWM6DCG6jY6ubXBrcVx5ALJd9UN42-7B49CFCJtzdGp1HeDiu47R8-x-OX0gi6f54_RmQUyackqAldwwKi23GWNc5oVhIkuY5WVZaJOWQhQiqUyZS6lzrqvEVtxaK6UQWpYsHSN23Gt8G4IHq7a-P893ilF1UKN6NapXow5q1EFNz-S_GOPi10fRa1f_SV4fyb2rofs_Ss2Xd8ntjCZS0B4mR_gwtm53vunF_BH2CZAMkEs
CitedBy_id crossref_primary_10_1109_TSP_2020_3029959
crossref_primary_10_1109_TSP_2021_3119777
crossref_primary_10_1016_j_sigpro_2022_108792
crossref_primary_10_3389_fenrg_2024_1467637
crossref_primary_10_1109_TPWRD_2022_3197814
Cites_doi 10.1109/19.650792
10.1049/el:19940129
10.1109/TPWRD.2003.822544
10.1109/MSP.2012.2183689
10.1002/9780470742624
10.1109/ENERGYCON.2014.6850513
10.1109/TIM.2003.817152
10.1049/el:19990243
10.1007/s00034-016-0379-3
10.1109/TSP.2017.2768024
10.1109/PROC.1975.9807
10.1109/61.634188
10.1109/TBME.2011.2173936
10.1109/TIM.2011.2159409
10.1109/19.863918
10.1016/j.ijepes.2013.07.030
10.1109/TSP.2009.2022353
10.1109/TIM.2002.1017717
10.1016/j.dsp.2016.03.012
10.1109/LSP.2010.2040929
10.1016/j.sigpro.2014.11.018
10.1016/S0378-7796(00)00080-8
10.1109/78.286978
10.1109/61.736681
10.1109/61.216849
10.1109/TPWRD.2003.822957
10.1049/iet-smt.2015.0018
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-gtd.2018.6498
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 1167
ExternalDocumentID 10_1049_iet_gtd_2018_6498
GTD2BF02850
Genre caseStudy
GrantInformation_xml – fundername: Sichuan Province Science and Technology Support Program
  grantid: 19YYJC0681
– fundername: National Natural Science Foundation of China
  grantid: 61871461, 61571374, 61433011, 61771124
– fundername: National Natural Science Foundation of China
  funderid: 61871461; 61571374; 61433011; 61771124
– fundername: Sichuan Province Science and Technology Support Program
  funderid: 19YYJC0681
GroupedDBID 0R
24P
29I
4IJ
6IK
8VB
AAJGR
ABPTK
ACIWK
ALMA_UNASSIGNED_HOLDINGS
BFFAM
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IGS
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3340-e1b4c108f4f6114879c15621f4bb9ac3b55952dcb788a74ad2fd4fff8855a8b13
IEDL.DBID 24P
ISSN 1751-8687
IngestDate Thu Apr 24 23:01:59 EDT 2025
Wed Oct 29 21:12:24 EDT 2025
Wed Jan 22 16:32:43 EST 2025
Tue Jan 05 21:51:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords WL-LMK algorithm exhibits superior estimation performance
least mean squares methods
power system simulation
real-world power system data
widely linear complex least mean kurtosis
unbalanced systems
standard linear complex LMK
three-phase power system signal
kurtosis-based algorithms
frequency estimation
abnormal system conditions
second-order statistical information
widely linear least mean square
linear least mean kurtosis-based frequency estimation
robust frequency estimation
widely linear LMK estimation technique
noise signals
minimum mean square error-based algorithms
unbalanced system conditions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3340-e1b4c108f4f6114879c15621f4bb9ac3b55952dcb788a74ad2fd4fff8855a8b13
ORCID 0000-0002-0749-0706
PageCount 9
ParticipantIDs iet_journals_10_1049_iet_gtd_2018_6498
crossref_primary_10_1049_iet_gtd_2018_6498
crossref_citationtrail_10_1049_iet_gtd_2018_6498
wiley_primary_10_1049_iet_gtd_2018_6498_GTD2BF02850
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-03-27
PublicationDateYYYYMMDD 2020-03-27
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-27
  day: 27
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Dash, P.K.; Jena, R.K.; Panda, G. (C6) 2000; 49
Arablouei, R.; Dogançay, K.; Werner, S. (C10) 2015; 109
Widrow, B.; McCool, J.; Ball, M. (C27) 1975; 63
Mengüç, E.C.; Acır, N. (C22) 2018; 66
Routray, A.; Pradhan, A.K.; Rao, K.P. (C7) 2002; 51
Karimi, H.; Karimi-Ghartemani, M.; Iravani, M.R. (C30) 2004; 19
El-Naggar, K.M.; Youssed, H.K.M. (C12) 2000; 55
Sanei, S.; Lee, T.; Abolghasemi, V. (C9) 2012; 59
Friedman, V. (C3) 1994; 42
Lai, L.L.; Tse, W.L.; Chan, C.T. (C11) 1999; 14
Lu, L.; Zhao, H. (C19) 2017; 36
Xia, Y.; Douglas, S.C.; Mandic, D.P. (C1) 2012; 29
Rastegarnia, A.; Khalili, A.; Vahidpour, V. (C14) 2015; 5
Took, C.C.; Mandic, D.P. (C28) 2009; 57
Terzija, V. (C8) 2003; 52
Xia, Y.; Mandic, D.P. (C13) 2012; 61
Hwang, J.-K.; Li, Y.-P. (C20) 2010; 17
Khalili, A.; Rastegarnia, A.; Sanei, S. (C25) 2015; 9
Begovic, M.M.; Djuric, P.M.; Dunlap, S. (C2) 1993; 8
Wang, M.; Sun, Y. (C5) 2004; 19
Bollen, M. (C29) 1997; 12
Xia, Y.; Mandic, D.P. (C15) 2014; 54
Lobos, T.; Rezmer, J. (C4) 1997; 46
Tang, Z.; Yan, Z.; Yao, Y. (C21) 1999; 35
Bershad, N.J.; Bermudez, J.C.M. (C24) 2016; 54
Tanrikulu, O.; Constantinides, A.G. (C23) 1994; 30
2012; 61
1993; 8
2015; 5
2000; 49
2002; 51
2010; 17
1997; 46
2016; 54
2009
2015; 109
2012; 59
2018; 66
2015; 9
2003; 52
1994; 42
2009; 57
2004; 19
2017; 36
2000; 55
1999; 14
1997; 12
1943
1999; 35
2012; 29
1975; 63
2014
2013
1994; 30
2014; 54
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_17_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
Clarke E. (e_1_2_9_18_2) 1943
e_1_2_9_9_2
e_1_2_9_8_2
Rastegarnia A. (e_1_2_9_15_2) 2015; 5
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
Chen B. (e_1_2_9_19_2) 2013
e_1_2_9_28_2
References_xml – volume: 36
  start-page: 1586
  year: 2017
  end-page: 1603
  ident: C19
  article-title: Improved filtered-x least mean kurtosis algorithm for active noise control
  publication-title: Circuits Syst. Signal Process.
– volume: 66
  start-page: 438
  issue: 2
  year: 2018
  end-page: 448
  ident: C22
  article-title: An augmented complex-valued least-mean kurtosis algorithm for the filtering of noncircular signals
  publication-title: IEEE Trans. Signal Process.
– volume: 30
  start-page: 189
  issue: 3
  year: 1994
  end-page: 190
  ident: C23
  article-title: Least-mean kurtosis: a novel higher-order statistics based adaptive filtering algorithm
  publication-title: Electron. Lett.
– volume: 17
  start-page: 331
  issue: 4
  year: 2010
  end-page: 334
  ident: C20
  article-title: A gradient-based variable step-size scheme for kurtosis of estimated error
  publication-title: IEEE Signal Process. Lett.
– volume: 9
  start-page: 1
  issue: 8
  year: 2015
  end-page: 8
  ident: C25
  article-title: Robust frequency estimation in three-phase power systems using correntropy-based adaptive filter
  publication-title: IET Sci. Meas. Technol.
– volume: 54
  start-page: 35
  issue: C
  year: 2016
  end-page: 45
  ident: C24
  article-title: Stochastic analysis of the least mean kurtosis algorithm for Gaussian inputs
  publication-title: Digit. Signal Process.
– volume: 5
  start-page: 16
  issue: 2A
  year: 2015
  end-page: 25
  ident: C14
  article-title: Frequency estimation of unbalanced three-phase power systems using the modified adaptive filtering
  publication-title: Am. J. Signal Process.
– volume: 8
  start-page: 480
  issue: 2
  year: 1993
  end-page: 486
  ident: C2
  article-title: Frequency tracking in power networks in the presence of harmonics
  publication-title: IEEE Trans. Power Deliv.
– volume: 52
  start-page: 1654
  issue: 5
  year: 2003
  end-page: 1659
  ident: C8
  article-title: Improved recursive Newton-type algorithm for frequency and spectra estimation in power systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 49
  start-page: 746
  issue: 4
  year: 2000
  end-page: 753
  ident: C6
  article-title: An extended complex Kalman filter for frequency measurement of distorted signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 29
  start-page: 44
  issue: 5
  year: 2012
  end-page: 54
  ident: C1
  article-title: Adaptive frequency estimation in smart grid applications: exploiting noncircularity and widely linear adaptive estimators
  publication-title: IEEE Signal Process. Mag.
– volume: 42
  start-page: 1565
  issue: 6
  year: 1994
  end-page: 1569
  ident: C3
  article-title: A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 472
  issue: 2
  year: 2004
  end-page: 480
  ident: C30
  article-title: Estimation of frequency and its rate of change for applications in power systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 54
  start-page: 367
  year: 2014
  end-page: 375
  ident: C15
  article-title: A widely linear least mean phase algorithm for adaptive frequency estimation of unbalanced power systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 14
  start-page: 52
  issue: 1
  year: 1999
  end-page: 59
  ident: C11
  article-title: Real-time frequency and harmonic evaluation using artificial neural networks
  publication-title: IEEE Trans. Power Deliv.
– volume: 46
  start-page: 877
  issue: 4
  year: 1997
  end-page: 881
  ident: C4
  article-title: Real-time determination of power system frequency
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 63
  start-page: 719
  issue: 4
  year: 1975
  end-page: 720
  ident: C27
  article-title: The complex LMS algorithm
  publication-title: Proc. IEEE
– volume: 59
  start-page: 428
  issue: 2
  year: 2012
  end-page: 434
  ident: C9
  article-title: A new adaptive line enhancer based on singular spectrum analyses
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 35
  start-page: 267
  issue: 4
  year: 1999
  end-page: 268
  ident: C21
  article-title: Blind multiuser detector based on LMK criterion
  publication-title: Electron. Lett.
– volume: 19
  start-page: 1547
  issue: 4
  year: 2004
  end-page: 1552
  ident: C5
  article-title: A practical, precise method for frequency tracking and phasor estimation
  publication-title: IEEE Trans. Power Deliv.
– volume: 61
  start-page: 74
  issue: 1
  year: 2012
  end-page: 83
  ident: C13
  article-title: Widely linear adaptive frequency estimation of unbalanced three-phase power systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 12
  start-page: 1666
  issue: 4
  year: 1997
  end-page: 1671
  ident: C29
  article-title: Characterisation of voltage sags experienced by three-phase adjustable-speed drives
  publication-title: IEEE Trans. Power Deliv.
– volume: 51
  start-page: 469
  issue: 3
  year: 2002
  end-page: 479
  ident: C7
  article-title: A novel Kalman filter for frequency estimation of distorted signals in power systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 55
  start-page: 173
  year: 2000
  end-page: 178
  ident: C12
  article-title: A genetic based algorithm for frequency-relaying applications
  publication-title: Electr. Power Syst. Res.
– volume: 109
  start-page: 290
  year: 2015
  end-page: 300
  ident: C10
  article-title: Adaptive frequency estimation of three-phase power systems
  publication-title: Signal Process.
– volume: 57
  start-page: 4111
  issue: 10
  year: 2009
  end-page: 4118
  ident: C28
  article-title: Adaptive IIR filtering of noncircular complex signals
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 480
  issue: 2
  year: 1993
  end-page: 486
  article-title: Frequency tracking in power networks in the presence of harmonics
  publication-title: IEEE Trans. Power Deliv.
– year: 2009
– volume: 42
  start-page: 1565
  issue: 6
  year: 1994
  end-page: 1569
  article-title: A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise
  publication-title: IEEE Trans. Signal Process.
– volume: 52
  start-page: 1654
  issue: 5
  year: 2003
  end-page: 1659
  article-title: Improved recursive Newton‐type algorithm for frequency and spectra estimation in power systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 49
  start-page: 746
  issue: 4
  year: 2000
  end-page: 753
  article-title: An extended complex Kalman filter for frequency measurement of distorted signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: 52
  issue: 1
  year: 1999
  end-page: 59
  article-title: Real‐time frequency and harmonic evaluation using artificial neural networks
  publication-title: IEEE Trans. Power Deliv.
– volume: 63
  start-page: 719
  issue: 4
  year: 1975
  end-page: 720
  article-title: The complex LMS algorithm
  publication-title: Proc. IEEE
– volume: 17
  start-page: 331
  issue: 4
  year: 2010
  end-page: 334
  article-title: A gradient‐based variable step‐size scheme for kurtosis of estimated error
  publication-title: IEEE Signal Process. Lett.
– volume: 54
  start-page: 367
  year: 2014
  end-page: 375
  article-title: A widely linear least mean phase algorithm for adaptive frequency estimation of unbalanced power systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 66
  start-page: 438
  issue: 2
  year: 2018
  end-page: 448
  article-title: An augmented complex‐valued least‐mean kurtosis algorithm for the filtering of noncircular signals
  publication-title: IEEE Trans. Signal Process.
– volume: 30
  start-page: 189
  issue: 3
  year: 1994
  end-page: 190
  article-title: Least‐mean kurtosis: a novel higher‐order statistics based adaptive filtering algorithm
  publication-title: Electron. Lett.
– volume: 109
  start-page: 290
  year: 2015
  end-page: 300
  article-title: Adaptive frequency estimation of three‐phase power systems
  publication-title: Signal Process.
– volume: 19
  start-page: 472
  issue: 2
  year: 2004
  end-page: 480
  article-title: Estimation of frequency and its rate of change for applications in power systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 55
  start-page: 173
  year: 2000
  end-page: 178
  article-title: A genetic based algorithm for frequency‐relaying applications
  publication-title: Electr. Power Syst. Res.
– volume: 9
  start-page: 1
  issue: 8
  year: 2015
  end-page: 8
  article-title: Robust frequency estimation in three‐phase power systems using correntropy‐based adaptive filter
  publication-title: IET Sci. Meas. Technol.
– volume: 46
  start-page: 877
  issue: 4
  year: 1997
  end-page: 881
  article-title: Real‐time determination of power system frequency
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 59
  start-page: 428
  issue: 2
  year: 2012
  end-page: 434
  article-title: A new adaptive line enhancer based on singular spectrum analyses
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2014
  article-title: Diffusion widely linear adaptive estimation of system frequency in distributed power grids
– volume: 12
  start-page: 1666
  issue: 4
  year: 1997
  end-page: 1671
  article-title: Characterisation of voltage sags experienced by three‐phase adjustable‐speed drives
  publication-title: IEEE Trans. Power Deliv.
– volume: 29
  start-page: 44
  issue: 5
  year: 2012
  end-page: 54
  article-title: Adaptive frequency estimation in smart grid applications: exploiting noncircularity and widely linear adaptive estimators
  publication-title: IEEE Signal Process. Mag.
– volume: 5
  start-page: 16
  issue: 2A
  year: 2015
  end-page: 25
  article-title: Frequency estimation of unbalanced three‐phase power systems using the modified adaptive filtering
  publication-title: Am. J. Signal Process.
– volume: 57
  start-page: 4111
  issue: 10
  year: 2009
  end-page: 4118
  article-title: Adaptive IIR filtering of noncircular complex signals
  publication-title: IEEE Trans. Signal Process.
– volume: 51
  start-page: 469
  issue: 3
  year: 2002
  end-page: 479
  article-title: A novel Kalman filter for frequency estimation of distorted signals in power systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 36
  start-page: 1586
  year: 2017
  end-page: 1603
  article-title: Improved filtered‐x least mean kurtosis algorithm for active noise control
  publication-title: Circuits Syst. Signal Process.
– year: 1943
– volume: 35
  start-page: 267
  issue: 4
  year: 1999
  end-page: 268
  article-title: Blind multiuser detector based on LMK criterion
  publication-title: Electron. Lett.
– volume: 54
  start-page: 35
  issue: C
  year: 2016
  end-page: 45
  article-title: Stochastic analysis of the least mean kurtosis algorithm for Gaussian inputs
  publication-title: Digit. Signal Process.
– volume: 19
  start-page: 1547
  issue: 4
  year: 2004
  end-page: 1552
  article-title: A practical, precise method for frequency tracking and phasor estimation
  publication-title: IEEE Trans. Power Deliv.
– volume: 61
  start-page: 74
  issue: 1
  year: 2012
  end-page: 83
  article-title: Widely linear adaptive frequency estimation of unbalanced three‐phase power systems
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2013
– ident: e_1_2_9_5_2
  doi: 10.1109/19.650792
– ident: e_1_2_9_24_2
  doi: 10.1049/el:19940129
– ident: e_1_2_9_6_2
  doi: 10.1109/TPWRD.2003.822544
– ident: e_1_2_9_2_2
  doi: 10.1109/MSP.2012.2183689
– ident: e_1_2_9_27_2
  doi: 10.1002/9780470742624
– ident: e_1_2_9_17_2
  doi: 10.1109/ENERGYCON.2014.6850513
– volume-title: Circuit analysis of AC power systems
  year: 1943
  ident: e_1_2_9_18_2
– volume-title: System parameter identification: information criteria and algorithms
  year: 2013
  ident: e_1_2_9_19_2
– ident: e_1_2_9_9_2
  doi: 10.1109/TIM.2003.817152
– ident: e_1_2_9_22_2
  doi: 10.1049/el:19990243
– ident: e_1_2_9_20_2
  doi: 10.1007/s00034-016-0379-3
– ident: e_1_2_9_23_2
  doi: 10.1109/TSP.2017.2768024
– ident: e_1_2_9_28_2
  doi: 10.1109/PROC.1975.9807
– ident: e_1_2_9_30_2
  doi: 10.1109/61.634188
– ident: e_1_2_9_10_2
  doi: 10.1109/TBME.2011.2173936
– ident: e_1_2_9_14_2
  doi: 10.1109/TIM.2011.2159409
– ident: e_1_2_9_7_2
  doi: 10.1109/19.863918
– ident: e_1_2_9_16_2
  doi: 10.1016/j.ijepes.2013.07.030
– ident: e_1_2_9_29_2
  doi: 10.1109/TSP.2009.2022353
– ident: e_1_2_9_8_2
  doi: 10.1109/TIM.2002.1017717
– ident: e_1_2_9_25_2
  doi: 10.1016/j.dsp.2016.03.012
– ident: e_1_2_9_21_2
  doi: 10.1109/LSP.2010.2040929
– ident: e_1_2_9_11_2
  doi: 10.1016/j.sigpro.2014.11.018
– ident: e_1_2_9_13_2
  doi: 10.1016/S0378-7796(00)00080-8
– ident: e_1_2_9_4_2
  doi: 10.1109/78.286978
– ident: e_1_2_9_12_2
  doi: 10.1109/61.736681
– ident: e_1_2_9_3_2
  doi: 10.1109/61.216849
– ident: e_1_2_9_31_2
  doi: 10.1109/TPWRD.2003.822957
– ident: e_1_2_9_26_2
  doi: 10.1049/iet-smt.2015.0018
– volume: 5
  start-page: 16
  issue: 2
  year: 2015
  ident: e_1_2_9_15_2
  article-title: Frequency estimation of unbalanced three‐phase power systems using the modified adaptive filtering
  publication-title: Am. J. Signal Process.
SSID ssj0055647
Score 2.2920785
Snippet We propose a widely linear (augmented) least mean kurtosis (WL-LMK) algorithm for robust frequency estimation of three-phase power system. The negated...
We propose a widely linear (augmented) least mean kurtosis (WL‐LMK) algorithm for robust frequency estimation of three‐phase power system. The negated...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1159
SubjectTerms abnormal system conditions
Case Study
frequency estimation
kurtosis‐based algorithms
least mean squares methods
linear least mean kurtosis‐based frequency estimation
minimum mean square error‐based algorithms
noise signals
power system simulation
real‐world power system data
robust frequency estimation
second‐order statistical information
standard linear complex LMK
three‐phase power system signal
unbalanced system conditions
unbalanced systems
widely linear complex least mean kurtosis
widely linear least mean square
widely linear LMK estimation technique
WL‐LMK algorithm exhibits superior estimation performance
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4IXPRgfEZ8ZQ_Gg8lKu93t46giojGeIHJrdttdJCIQKAf-vTNtUUkMem2ne_im2e-bfXxDyIUNDNC6sMwAmTDhGc204pqZyKZAoBoUcn7a4sVvd8VTT_a-r0engz72ymDLFTdcLTfFzQM8ug3zcKPEuGhIAvq2AQGsn6Hrpxte-yIKK6TGoTrnVVJ7bD5jiVXMzFL6ecMxYEyXhX4YfO1y_jLICk9V4PWqes3pp7VDtkvdSG-KRO-SDTPaI1s_3AT3Se8VLasWFIWjmtIhduWhH0aN6Pt8mo1ngxlDzkqpnRbnpxcULTaKu4t0bGkGeTVs8gZBdILd02jh83xAuq37zl2blY0TWOJ5wgHctUhcJ7TC-ljvBFECZRp3rdA6UomnoYyQPE001L8qECrlNhXW2jCUUoXa9Q5JdTQemSNCQZ7IQFvPtRGa0UfKUY6jQKaBTtFCyzpxljDFSekqjs0thnG-uy2iGKCLAdkYkY0R2Tq5-vpkUlhqrAu-xGfLpK8L9PL0_D1k_NBp8tsWCCvpHP93-BOyybHSdjzGg1NSzaZzcwZyJNPn5V_2Caih25A
  priority: 102
  providerName: Institution of Engineering and Technology
Title Widely linear least mean kurtosis-based frequency estimation of three-phase power system
URI http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2018.6498
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2018.6498
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVaeoEDYhVlqXxAHJAMWewsR2gpBSHg0IoekCI7saGipFUbDtz4BL6RL2EmaSsqpCJxTcaWMmP7vYntN4QcGl8DrHPDNIAJ465WTElHMR2aBABUAUPOT1vceq0Ov-6KbonUp3dhCn2I2Q83nBn5eo0TXKqiCgmQWghiT2fsKUOxTzs48XgYlEnFBj6Dw9zh99PlWAgvrzIGMGmzwAv82dZmePqrizlwKsPrecqaY05zjaxOyCI9K6K7Tko63SArPyQEN8njA-pUvVP8HjmifSzFQ1-1TOnL2ygbjHvjr49PhKqEmlFxbPqdorJGcWWRDgzNIJwarIbPYEaHWDaNFgLPW6TTvGjXW2xSMYHFrsstcLjisW0FhhsPEx0_jCE_c2zDlQpl7CrIH4STxAoSX-lzmTgm4caYIBBCBsp2t8lSOkj1DqHAS4SvjGubEFXoQ2lJy5LAz4CgKK5ElVhTV0XxRE4cq1r0o3xbm4cRuC8C70bo3Qi9WyXHsybDQktjkfERPpvMqPEiQzcP0d9dRpfthnPeBEYlrN1_tdojyw7m25bLHH-fLGWjN30ApCRTtXzQ1UjlqnFzd_YNRJbevQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXacgAOiFXs-IA4IBmy2FmOQCkFSsWhFT0gRXZiA6K0VZseeuMT-Ea-hJmkraiQQOKajC1lJva85-UNIYfG15DWuWEakgnjrlZMSUcxHZoEEqgChJydtqh71Sa_aYlWgZQnd2FyfYjpghuOjGy-xgGOC9I54eQokvmiU_aUotqnHZx4PAyKZI57tocUzOH3k_lYCC8rMwZ50maBF_jTvc3w9EcXM9mpCK9nMWuWdCrLZGmMFulZHt4VUtCdVbL4TUNwjTw-oFDViOIHyT5tYy0e-qZlh74O-2l38DL4fP_AXJVQ08_PTY8oSmvkdxZp19AU4qnBqvcMZrSHddNorvC8TpqVy8ZFlY1LJrDYdbkFHlc8tq3AcOMh0_HDGAiaYxuuVChjVwGBEE4SK2C-0ucycUzCjTFBIIQMlO1ukFKn29GbhAIwEb4yrm1ClKEPpSUtSwJAA4SiuBJbxJq4KorHeuJY1qIdZfvaPIzAfRF4N0LvRujdLXI8bdLLxTR-Mz7CZ-MhNfjN0M1C9HeX0VWj7JxXAFIJa_tfrQ7IfLVxV4tq1_XbHbLgIPm2XOb4u6SU9od6DxBKqvazH_ALTejgnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDZTmENq0Je_oEHooqJVtyY_jJttN-mDpIduGUjCSLSUhm93F6z3sLT8hvzG_JDO2d8lSSKFXeyTwjKTvG0v6BuDIRRZhXTpuEUy4DKzhRvuG28TlCKAGGXJ12qIXnvXl1wt1sQKd-V2YWh9i8cONZka1XtMEt-Pc1QmnJJHMa1vyy5LUPr34YyiTeBXWEM-FbMFa-2f_d3--IisVVoXGECk9HodxtNjdTD791ckSPq3i62XWWsFO9xVsNHyRtesAv4YVO9yE9Scqgm_gzy-Sqpox-iRdsAFV42G3Vg_ZzbQoR5PrycPdPaFVzlxRn5yeMRLXqG8tspFjJUbUotX4Cs3YmCqnsVrj-S30u5_PT854UzSBZ0EgBfrcyMwTsZMupFwnSjJM0XzPSWMSnQUGUwjl55nB3FdHUue-y6VzLo6V0rHxgnfQGo6GdgsYUhMVGRd4LiEh-kQLLYRGioYcxUijtkHMXZVmjaI4FbYYpNXOtkxSdF-K3k3Juyl5dxs-LJqMazmN54zf07NmUk2eMwyqEP27y_T0vOMfd5FUKbHzX60O4cWPTjf9_qX3bRde-pR9i4D70R60ymJq95GilOagGYGPaizh8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Widely+linear+least+mean+kurtosis%E2%80%90based+frequency+estimation+of+three%E2%80%90phase+power+system&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Nefabas%2C+Gebeyehu+L.&rft.au=Zhao%2C+Haiquan&rft.au=Xia%2C+Yili&rft.date=2020-03-27&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=14&rft.issue=6&rft.spage=1159&rft.epage=1167&rft_id=info:doi/10.1049%2Fiet-gtd.2018.6498&rft.externalDBID=10.1049%252Fiet-gtd.2018.6498&rft.externalDocID=GTD2BF02850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon