General generative model-based image compression method using an optimisation encoder

Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a popular new direction for this subject. In this study, the authors propose a new compression method based on a generative model and focus on its...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 14; no. 9; pp. 1750 - 1758
Main Authors Wu, Mengtian, He, Zaixing, Zhao, Xinyue, Zhang, Shuyou
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 20.07.2020
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/iet-ipr.2019.0715

Cover

Abstract Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a popular new direction for this subject. In this study, the authors propose a new compression method based on a generative model and focus on its application by GANs. The decoder in the proposed method is modified from the GAN generator model, which can produce visually real-like synthetic images. It is one of the two models in GANs, which is trained through a two-players' contest game. The encoder is an optimisation algorithm called backpropagation-to-the-input, which derives from an image inpainting algorithm based on generative models. In the proposed method, the authors turn the encoding process into an optimisation task to search for optimal encoded representations. Compared with traditional methods, the proposed method can compress images from certain domains into extremely small and shape-fixed encoded space but still retain better visual representations. It is easy and convenient to apply without any retraining or additional modification to the generative models.
AbstractList Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a popular new direction for this subject. In this study, the authors propose a new compression method based on a generative model and focus on its application by GANs. The decoder in the proposed method is modified from the GAN generator model, which can produce visually real‐like synthetic images. It is one of the two models in GANs, which is trained through a two‐players' contest game. The encoder is an optimisation algorithm called backpropagation‐to‐the‐input, which derives from an image inpainting algorithm based on generative models. In the proposed method, the authors turn the encoding process into an optimisation task to search for optimal encoded representations. Compared with traditional methods, the proposed method can compress images from certain domains into extremely small and shape‐fixed encoded space but still retain better visual representations. It is easy and convenient to apply without any retraining or additional modification to the generative models.
Author He, Zaixing
Zhao, Xinyue
Wu, Mengtian
Zhang, Shuyou
Author_xml – sequence: 1
  givenname: Mengtian
  surname: Wu
  fullname: Wu, Mengtian
  organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China
– sequence: 2
  givenname: Zaixing
  orcidid: 0000-0003-0577-8009
  surname: He
  fullname: He, Zaixing
  email: zaixinghe@zju.edu.cn
  organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China
– sequence: 3
  givenname: Xinyue
  surname: Zhao
  fullname: Zhao, Xinyue
  organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China
– sequence: 4
  givenname: Shuyou
  orcidid: 0000-0001-9023-5361
  surname: Zhang
  fullname: Zhang, Shuyou
  organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China
BookMark eNqFkM1OAjEQgBuDiYA-gLe-wGK7S3e33pQIkpBojJybbneKJbstaRcNb28XjAcPeJpJZr75-UZoYJ0FhG4pmVAy5XcGusTs_CQllE9IQdkFGtKC0YTneTH4zRm_QqMQtoQwTko2ROsFWPCywZtj7Mwn4NbV0CSVDFBj08oNYOXanYcQjLO4he7D1XgfjN1gabHbdaY1IaKxCFZF2F-jSy2bADc_cYzW86f32XOyelksZw-rRGXZlCScgc5VSnSWEyihrAtKKNOgSp7SkivNNYt30gKqqeZKSV7nwLKs0lSzKpXZGBWnucq7EDxooUx3vKTz0jSCEtHbEdGOiHZEb0f0diJJ_5A7H3_1h7PM_Yn5Mg0c_gfE8vUtfZyTNOMkwskJ7tu2bu9tFHNm2TfaT49g
CitedBy_id crossref_primary_10_1155_2022_7088137
crossref_primary_10_1155_2022_8008460
Cites_doi 10.1109/CVPR.2017.632
10.1109/CVPR.2019.00248
10.1109/CVPR.2018.00339
10.1109/CVPR.2017.624
10.1109/PCS.2018.8456298
10.1109/CVPR.2018.00577
10.1109/ICCV.2017.244
10.1109/CVPR.2017.19
10.1007/978-3-319-46475-6_43
10.1109/TIP.2012.2221729
10.1109/TIP.2004.833105
10.1109/30.125072
10.1109/79.952804
10.1109/TMI.2019.2922960
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2019.0715
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1758
ExternalDocumentID 10_1049_iet_ipr_2019_0715
IPR2BF02390
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province (China)
  grantid: LY17F030011
– fundername: The National Key Research and Development Program of China
  grantid: 2018YFB1700504
– fundername: National Natural Science Foundation of China
  grantid: 51775497,51775498
GroupedDBID 0R
24P
29I
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS
O9-
OCL
P2P
QWB
RIE
RNS
RUI
UNR
ZL0
.DC
0R~
1OC
4.4
8FE
8FG
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3340-95ef6c20f360e8e8d71015fec892189cf9f559017eb4f9cca9d6e533bf1f5b2a3
IEDL.DBID 24P
ISSN 1751-9659
IngestDate Thu Apr 24 23:14:12 EDT 2025
Wed Oct 29 21:05:27 EDT 2025
Wed Jan 22 16:32:18 EST 2025
Tue Jan 05 21:48:47 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords generative adversarial networks
data compression
intensively studied subject
extremely small shape-fixed encoded space
optimisation task
image inpainting algorithm
encoding process
optimal encoded representations
generative models
GAN generator model
general generative model-based image compression method
encoding
deep generative model
synthetic images
optimisation encoder
optimisation
image restoration
backpropagation
computer vision
optimisation algorithm
image coding
GANs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3340-95ef6c20f360e8e8d71015fec892189cf9f559017eb4f9cca9d6e533bf1f5b2a3
ORCID 0000-0003-0577-8009
0000-0001-9023-5361
PageCount 9
ParticipantIDs iet_journals_10_1049_iet_ipr_2019_0715
crossref_citationtrail_10_1049_iet_ipr_2019_0715
crossref_primary_10_1049_iet_ipr_2019_0715
wiley_primary_10_1049_iet_ipr_2019_0715_IPR2BF02390
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-07-20
PublicationDateYYYYMMDD 2020-07-20
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-20
  day: 20
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Wallace, G.K. (C1) 1992; 38
You, C.; Li, G.; Zhang, Y. (C15) 2020; 39
Skodras, A.; Christopoulos, C.; Ebrahimi, T. (C2) 2001; 18
Dong, W.; Shi, G.; Li, X. (C26) 2013; 22
Criminisi, A.; Pérez, P.; Toyama, K. (C27) 2004; 13
1995; 3361
2013; 22
2010
2004; 13
2020; 39
2019
2018
2017
2016
2015
2014
1992; 38
2001; 18
2013
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
LeCun Y. (e_1_2_5_23_1) 1995
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
References_xml – volume: 13
  start-page: 1200
  issue: 9
  year: 2004
  end-page: 1212
  ident: C27
  article-title: Region filling and object removal by exemplar-based image inpainting
  publication-title: IEEE Trans. Image Process.
– volume: 39
  start-page: 188
  issue: 1
  year: 2020
  end-page: 203
  ident: C15
  article-title: CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE)
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 700
  issue: 2
  year: 2013
  end-page: 711
  ident: C26
  article-title: Nonlocal image restoration with bilateral variance estimation: a low-rank approach
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: xviii
  issue: 1
  year: 1992
  end-page: xxxiv
  ident: C1
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
– volume: 18
  start-page: 36
  issue: 5
  year: 2001
  end-page: 58
  ident: C2
  article-title: The JPEG 2000 still image compression standard
  publication-title: IEEE Signal Process. Mag.
– volume: 18
  start-page: 36
  issue: 5
  year: 2001
  end-page: 58
  article-title: The JPEG 2000 still image compression standard
  publication-title: IEEE Signal Process. Mag.
– volume: 13
  start-page: 1200
  issue: 9
  year: 2004
  end-page: 1212
  article-title: Region filling and object removal by exemplar‐based image inpainting
  publication-title: IEEE Trans. Image Process.
– volume: 39
  start-page: 188
  issue: 1
  year: 2020
  end-page: 203
  article-title: CT super‐resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN‐CIRCLE)
  publication-title: IEEE Trans. Med. Imaging
– year: 2017
– year: 2016
– year: 2018
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
– volume: 38
  start-page: xviii
  issue: 1
  year: 1992
  end-page: xxxiv
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
– year: 2019
– year: 2014
– year: 2015
– volume: 22
  start-page: 700
  issue: 2
  year: 2013
  end-page: 711
  article-title: Nonlocal image restoration with bilateral variance estimation: a low‐rank approach
  publication-title: IEEE Trans. Image Process.
– year: 2010
– year: 2013
– issue: 1
  year: 2013
– ident: e_1_2_5_29_1
– ident: e_1_2_5_11_1
  doi: 10.1109/CVPR.2017.632
– start-page: 1995
  volume-title: The handbook of brain theory and neural networks
  year: 1995
  ident: e_1_2_5_23_1
– ident: e_1_2_5_13_1
  doi: 10.1109/CVPR.2019.00248
– ident: e_1_2_5_4_1
  doi: 10.1109/CVPR.2018.00339
– ident: e_1_2_5_19_1
  doi: 10.1109/CVPR.2017.624
– ident: e_1_2_5_20_1
  doi: 10.1109/PCS.2018.8456298
– ident: e_1_2_5_18_1
  doi: 10.1109/CVPR.2018.00577
– ident: e_1_2_5_26_1
– ident: e_1_2_5_17_1
– ident: e_1_2_5_12_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_5_14_1
  doi: 10.1109/CVPR.2017.19
– ident: e_1_2_5_22_1
– ident: e_1_2_5_15_1
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_5_7_1
– ident: e_1_2_5_25_1
– ident: e_1_2_5_30_1
– ident: e_1_2_5_27_1
  doi: 10.1109/TIP.2012.2221729
– ident: e_1_2_5_10_1
– ident: e_1_2_5_5_1
– ident: e_1_2_5_8_1
– ident: e_1_2_5_6_1
– ident: e_1_2_5_28_1
  doi: 10.1109/TIP.2004.833105
– ident: e_1_2_5_9_1
– ident: e_1_2_5_21_1
– ident: e_1_2_5_2_1
  doi: 10.1109/30.125072
– ident: e_1_2_5_3_1
  doi: 10.1109/79.952804
– ident: e_1_2_5_24_1
– ident: e_1_2_5_16_1
  doi: 10.1109/TMI.2019.2922960
SSID ssj0059085
Score 2.2009676
Snippet Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1750
SubjectTerms backpropagation
computer vision
data compression
deep generative model
encoding
encoding process
extremely small shape‐fixed encoded space
GAN generator model
GANs
general generative model‐based image compression method
generative adversarial networks
generative models
image coding
image inpainting algorithm
image restoration
intensively studied subject
optimal encoded representations
optimisation
optimisation algorithm
optimisation encoder
optimisation task
Research Article
synthetic images
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZre9ll77HuhQ9jh4FpEj8SH_cq7RhjjBV6C4ljl8Kalq77_5MSt6Mwup0CieODZEufbEkfIVe5CgoLYQJTIosZrJCcJSbmzDgdWS50nGVVt88X1RuIp6Ec_pRHF-MRcmWw5YkbnpbbuvIAU7fBDne8jGtCEsC3HRjAxjPs7Rlq7LcnG6QVQXQeNUmr__CMIVZtmZHeW1YFkkgtr6Re3XL-Msman2rA53X0Wrmf7h7Z8biR3taK3idbtjwgux5DUr9DPw_JwPeRpqPqicaMVmw3DP1VQccTMCAUE8nrBNiS1hzSFBPgRzQr6RSMyMQn-VBsc1nY-REZdB_f73vMUycww7kImJbWKRMFjqvAJjYpAEiE0lmTaPDpGjThJFadxjYXToMWdaEsIL_chU7mUcaPSbOclvaEUPDgiGKE0UkirAuznAsTchUmtgBsI9okWAoqNb6vONJbfKTV_bbQKQgvBdmmKNsUZdsmN6tfZnVTjU2Dr_HdUu2bBvJKQX9PmfZf36K7Ltb1Bqf_nf6MbEcYawcxWJZz0lzMv-wFAJJFfunX2TeloNwS
  priority: 102
  providerName: Institution of Engineering and Technology
Title General generative model-based image compression method using an optimisation encoder
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.0715
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.0715
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access Collection
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_HiW6yPsgfxIAST7GaTPdZqaUW0iNHiJeSxWwo2LW29-xP8jf4SZzZpoQgVPAWS3T3M7Mx8m535hpDzRNiZgmOCJXjsW7BDEitIfWalWrqKcenHsWH7fBCdkN_1vX6FtBa1MAU_xPKHG1qG8ddo4HFSdCEBUAtKHKq5NZwgpacjkWbP2yA1B_AMbnOX9xbuGHt6e6YqEvvJC08urzbl1a8lVoLTBnxehawm5rR3yFYJFmmz0O4uqah8j2yXwJGWZjnbJ68leTQdmCd6MGpa3Hx_fmGYyuhwBH6DYv54kfea06J1NMW89wGNczoG3zEqc3sosltmanpAwvbtc6tjlR0TrJQxblvSU1qkrq2ZsFWgggzwg-NplQYSQrkEBWgPi019lXAtQXkyEwoAX6Id7SVuzA5JNR_n6ohQCNwIXngqg4Ar7cQJ46nDhBOoDCANrxN7IaooLenEsavFe2SutbmMQHwRSDdC6UYo3Tq5XE6ZFFwa6wZf4LvSombrBjKjor-XjLq9J_e6jeW89vG_Zp2QTRfP27YP3uWUVOfTD3UGoGSeNMyma5Ba8yV8C-HZvbl_bP4AfNDfQQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4gBySKJHSceeVUtlKpCregWJY6NKkFatWXnJ_Ab-SX4HLdShVQkpkiJ7eHOd_c5vvsOofOMe7kyxwTCWRoRs0MyEsuIEqlFoCgTUZpats82b_TYQz_sV9DdrBam5IeY_3ADy7D-GgwcfkiXB04GJJkDNSWDEXB6-gJ49sIVtMq4z-EIFrDOzB9DU-_QlkVCQ3keivndprj6tcRCdFoxnxcxqw069S204dAivi7Vu40qqthBmw45YmeXk1304tij8at9ggvDtsfN9-cXxKkcD96N48CQQF4mvha47B2NIfH9FacFHhrn8e6SezDQW-ZqvId69fvubYO4lglEUso8IkKluQw8TbmnYhXnBkD4oVYyFiaWC6MBHUK1aaQypoXRnsi5Mogv074OsyCl-6haDAt1gLCJ3IBemBRxzJT204wy6VPuxyo3mIbVkDcTVSIdnzi0tXhL7L02E4kRX2Kkm4B0E5BuDV3Op4xKMo1lgy_gnTOpybKB1Kro7yWTZuc5uKlDPa93-K9ZZ2it0X1qJa1m-_EIrQdw-PYi42qOUXU6_lAnBqFMs1O7AX8AjU7fYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qC-LFt1ifexAPQjDJbh57rNZiVYqI1eIl5LFbCjYtbb37E_yN_hJnkm1BBAVPgWR3DzM7M99mZ74BOEl8O1N4TLB8EQcW7pDECtOAW6mWruJCBnFcsH12_OuuuOl5vQo057UwJT_E4ocbWUbhr8nA1TjT5YFTEEnmQM2swZg4PR1JPHveEtQwntuiCrXGU_elO_fI1NbbKwojqaW878nF7aY8_7HIt_i0hJ-_o9Yi7LTWYdXgRdYoFbwBFZVvwprBjsxY5nQLng1_NOsXT3JirOhy8_n-QZEqY4Mhug5GKeRl6mvOyu7RjFLf-yzO2Qjdx9Ck9zAiuMzUZBu6ravHy2vLNE2wUs6FbUlPaT91bc19W4UqzBBCOJ5WaSgxmkvUgfao3jRQidAS9SczXyHmS7SjvcSN-Q5U81GudoFh7Cb8IlIZhkJpJ064SB3uO6HKENWIOthzUUWpYRSnxhavUXGzLWSE4otQuhFJNyLp1uFsMWVc0mn8NviU3hmjmv42kBcq-nvJqH3_4F60qKLX3vvXrGNYvm-2ort253YfVlw6fdsB-poDqM4mb-oQIcosOTI78Aunu-C3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+generative+model%E2%80%90based+image+compression+method+using+an+optimisation+encoder&rft.jtitle=IET+image+processing&rft.au=Wu%2C+Mengtian&rft.au=He%2C+Zaixing&rft.au=Zhao%2C+Xinyue&rft.au=Zhang%2C+Shuyou&rft.date=2020-07-20&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=14&rft.issue=9&rft.spage=1750&rft.epage=1758&rft_id=info:doi/10.1049%2Fiet-ipr.2019.0715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ipr_2019_0715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon