General generative model-based image compression method using an optimisation encoder
Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a popular new direction for this subject. In this study, the authors propose a new compression method based on a generative model and focus on its...
Saved in:
| Published in | IET image processing Vol. 14; no. 9; pp. 1750 - 1758 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
20.07.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-9659 1751-9667 |
| DOI | 10.1049/iet-ipr.2019.0715 |
Cover
| Abstract | Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a popular new direction for this subject. In this study, the authors propose a new compression method based on a generative model and focus on its application by GANs. The decoder in the proposed method is modified from the GAN generator model, which can produce visually real-like synthetic images. It is one of the two models in GANs, which is trained through a two-players' contest game. The encoder is an optimisation algorithm called backpropagation-to-the-input, which derives from an image inpainting algorithm based on generative models. In the proposed method, the authors turn the encoding process into an optimisation task to search for optimal encoded representations. Compared with traditional methods, the proposed method can compress images from certain domains into extremely small and shape-fixed encoded space but still retain better visual representations. It is easy and convenient to apply without any retraining or additional modification to the generative models. |
|---|---|
| AbstractList | Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a popular new direction for this subject. In this study, the authors propose a new compression method based on a generative model and focus on its application by GANs. The decoder in the proposed method is modified from the GAN generator model, which can produce visually real‐like synthetic images. It is one of the two models in GANs, which is trained through a two‐players' contest game. The encoder is an optimisation algorithm called backpropagation‐to‐the‐input, which derives from an image inpainting algorithm based on generative models. In the proposed method, the authors turn the encoding process into an optimisation task to search for optimal encoded representations. Compared with traditional methods, the proposed method can compress images from certain domains into extremely small and shape‐fixed encoded space but still retain better visual representations. It is easy and convenient to apply without any retraining or additional modification to the generative models. |
| Author | He, Zaixing Zhao, Xinyue Wu, Mengtian Zhang, Shuyou |
| Author_xml | – sequence: 1 givenname: Mengtian surname: Wu fullname: Wu, Mengtian organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China – sequence: 2 givenname: Zaixing orcidid: 0000-0003-0577-8009 surname: He fullname: He, Zaixing email: zaixinghe@zju.edu.cn organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China – sequence: 3 givenname: Xinyue surname: Zhao fullname: Zhao, Xinyue organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China – sequence: 4 givenname: Shuyou orcidid: 0000-0001-9023-5361 surname: Zhang fullname: Zhang, Shuyou organization: The State Key Lab of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China |
| BookMark | eNqFkM1OAjEQgBuDiYA-gLe-wGK7S3e33pQIkpBojJybbneKJbstaRcNb28XjAcPeJpJZr75-UZoYJ0FhG4pmVAy5XcGusTs_CQllE9IQdkFGtKC0YTneTH4zRm_QqMQtoQwTko2ROsFWPCywZtj7Mwn4NbV0CSVDFBj08oNYOXanYcQjLO4he7D1XgfjN1gabHbdaY1IaKxCFZF2F-jSy2bADc_cYzW86f32XOyelksZw-rRGXZlCScgc5VSnSWEyihrAtKKNOgSp7SkivNNYt30gKqqeZKSV7nwLKs0lSzKpXZGBWnucq7EDxooUx3vKTz0jSCEtHbEdGOiHZEb0f0diJJ_5A7H3_1h7PM_Yn5Mg0c_gfE8vUtfZyTNOMkwskJ7tu2bu9tFHNm2TfaT49g |
| CitedBy_id | crossref_primary_10_1155_2022_7088137 crossref_primary_10_1155_2022_8008460 |
| Cites_doi | 10.1109/CVPR.2017.632 10.1109/CVPR.2019.00248 10.1109/CVPR.2018.00339 10.1109/CVPR.2017.624 10.1109/PCS.2018.8456298 10.1109/CVPR.2018.00577 10.1109/ICCV.2017.244 10.1109/CVPR.2017.19 10.1007/978-3-319-46475-6_43 10.1109/TIP.2012.2221729 10.1109/TIP.2004.833105 10.1109/30.125072 10.1109/79.952804 10.1109/TMI.2019.2922960 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-ipr.2019.0715 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 1758 |
| ExternalDocumentID | 10_1049_iet_ipr_2019_0715 IPR2BF02390 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province (China) grantid: LY17F030011 – fundername: The National Key Research and Development Program of China grantid: 2018YFB1700504 – fundername: National Natural Science Foundation of China grantid: 51775497,51775498 |
| GroupedDBID | 0R 24P 29I 5GY 6IK 8VB AAJGR ABPTK ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX HZ IFIPE IPLJI JAVBF LAI M43 MS O9- OCL P2P QWB RIE RNS RUI UNR ZL0 .DC 0R~ 1OC 4.4 8FE 8FG AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO ITC K1G L6V M7S MCNEO MS~ OK1 P62 PTHSS ROL S0W AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3340-95ef6c20f360e8e8d71015fec892189cf9f559017eb4f9cca9d6e533bf1f5b2a3 |
| IEDL.DBID | 24P |
| ISSN | 1751-9659 |
| IngestDate | Thu Apr 24 23:14:12 EDT 2025 Wed Oct 29 21:05:27 EDT 2025 Wed Jan 22 16:32:18 EST 2025 Tue Jan 05 21:48:47 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | generative adversarial networks data compression intensively studied subject extremely small shape-fixed encoded space optimisation task image inpainting algorithm encoding process optimal encoded representations generative models GAN generator model general generative model-based image compression method encoding deep generative model synthetic images optimisation encoder optimisation image restoration backpropagation computer vision optimisation algorithm image coding GANs |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3340-95ef6c20f360e8e8d71015fec892189cf9f559017eb4f9cca9d6e533bf1f5b2a3 |
| ORCID | 0000-0003-0577-8009 0000-0001-9023-5361 |
| PageCount | 9 |
| ParticipantIDs | iet_journals_10_1049_iet_ipr_2019_0715 crossref_citationtrail_10_1049_iet_ipr_2019_0715 crossref_primary_10_1049_iet_ipr_2019_0715 wiley_primary_10_1049_iet_ipr_2019_0715_IPR2BF02390 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-20 |
| PublicationDateYYYYMMDD | 2020-07-20 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Wallace, G.K. (C1) 1992; 38 You, C.; Li, G.; Zhang, Y. (C15) 2020; 39 Skodras, A.; Christopoulos, C.; Ebrahimi, T. (C2) 2001; 18 Dong, W.; Shi, G.; Li, X. (C26) 2013; 22 Criminisi, A.; Pérez, P.; Toyama, K. (C27) 2004; 13 1995; 3361 2013; 22 2010 2004; 13 2020; 39 2019 2018 2017 2016 2015 2014 1992; 38 2001; 18 2013 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 LeCun Y. (e_1_2_5_23_1) 1995 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 |
| References_xml | – volume: 13 start-page: 1200 issue: 9 year: 2004 end-page: 1212 ident: C27 article-title: Region filling and object removal by exemplar-based image inpainting publication-title: IEEE Trans. Image Process. – volume: 39 start-page: 188 issue: 1 year: 2020 end-page: 203 ident: C15 article-title: CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE) publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 700 issue: 2 year: 2013 end-page: 711 ident: C26 article-title: Nonlocal image restoration with bilateral variance estimation: a low-rank approach publication-title: IEEE Trans. Image Process. – volume: 38 start-page: xviii issue: 1 year: 1992 end-page: xxxiv ident: C1 article-title: The JPEG still picture compression standard publication-title: IEEE Trans. Consum. Electron. – volume: 18 start-page: 36 issue: 5 year: 2001 end-page: 58 ident: C2 article-title: The JPEG 2000 still image compression standard publication-title: IEEE Signal Process. Mag. – volume: 18 start-page: 36 issue: 5 year: 2001 end-page: 58 article-title: The JPEG 2000 still image compression standard publication-title: IEEE Signal Process. Mag. – volume: 13 start-page: 1200 issue: 9 year: 2004 end-page: 1212 article-title: Region filling and object removal by exemplar‐based image inpainting publication-title: IEEE Trans. Image Process. – volume: 39 start-page: 188 issue: 1 year: 2020 end-page: 203 article-title: CT super‐resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN‐CIRCLE) publication-title: IEEE Trans. Med. Imaging – year: 2017 – year: 2016 – year: 2018 – volume: 3361 start-page: 1995 issue: 10 year: 1995 – volume: 38 start-page: xviii issue: 1 year: 1992 end-page: xxxiv article-title: The JPEG still picture compression standard publication-title: IEEE Trans. Consum. Electron. – year: 2019 – year: 2014 – year: 2015 – volume: 22 start-page: 700 issue: 2 year: 2013 end-page: 711 article-title: Nonlocal image restoration with bilateral variance estimation: a low‐rank approach publication-title: IEEE Trans. Image Process. – year: 2010 – year: 2013 – issue: 1 year: 2013 – ident: e_1_2_5_29_1 – ident: e_1_2_5_11_1 doi: 10.1109/CVPR.2017.632 – start-page: 1995 volume-title: The handbook of brain theory and neural networks year: 1995 ident: e_1_2_5_23_1 – ident: e_1_2_5_13_1 doi: 10.1109/CVPR.2019.00248 – ident: e_1_2_5_4_1 doi: 10.1109/CVPR.2018.00339 – ident: e_1_2_5_19_1 doi: 10.1109/CVPR.2017.624 – ident: e_1_2_5_20_1 doi: 10.1109/PCS.2018.8456298 – ident: e_1_2_5_18_1 doi: 10.1109/CVPR.2018.00577 – ident: e_1_2_5_26_1 – ident: e_1_2_5_17_1 – ident: e_1_2_5_12_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_5_14_1 doi: 10.1109/CVPR.2017.19 – ident: e_1_2_5_22_1 – ident: e_1_2_5_15_1 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_5_7_1 – ident: e_1_2_5_25_1 – ident: e_1_2_5_30_1 – ident: e_1_2_5_27_1 doi: 10.1109/TIP.2012.2221729 – ident: e_1_2_5_10_1 – ident: e_1_2_5_5_1 – ident: e_1_2_5_8_1 – ident: e_1_2_5_6_1 – ident: e_1_2_5_28_1 doi: 10.1109/TIP.2004.833105 – ident: e_1_2_5_9_1 – ident: e_1_2_5_21_1 – ident: e_1_2_5_2_1 doi: 10.1109/30.125072 – ident: e_1_2_5_3_1 doi: 10.1109/79.952804 – ident: e_1_2_5_24_1 – ident: e_1_2_5_16_1 doi: 10.1109/TMI.2019.2922960 |
| SSID | ssj0059085 |
| Score | 2.2009676 |
| Snippet | Image compression is an intensively studied subject in computer vision. The deep generative model, especially generative adversarial networks (GANs), is a... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1750 |
| SubjectTerms | backpropagation computer vision data compression deep generative model encoding encoding process extremely small shape‐fixed encoded space GAN generator model GANs general generative model‐based image compression method generative adversarial networks generative models image coding image inpainting algorithm image restoration intensively studied subject optimal encoded representations optimisation optimisation algorithm optimisation encoder optimisation task Research Article synthetic images |
| SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZre9ll77HuhQ9jh4FpEj8SH_cq7RhjjBV6C4ljl8Kalq77_5MSt6Mwup0CieODZEufbEkfIVe5CgoLYQJTIosZrJCcJSbmzDgdWS50nGVVt88X1RuIp6Ec_pRHF-MRcmWw5YkbnpbbuvIAU7fBDne8jGtCEsC3HRjAxjPs7Rlq7LcnG6QVQXQeNUmr__CMIVZtmZHeW1YFkkgtr6Re3XL-Msman2rA53X0Wrmf7h7Z8biR3taK3idbtjwgux5DUr9DPw_JwPeRpqPqicaMVmw3DP1VQccTMCAUE8nrBNiS1hzSFBPgRzQr6RSMyMQn-VBsc1nY-REZdB_f73vMUycww7kImJbWKRMFjqvAJjYpAEiE0lmTaPDpGjThJFadxjYXToMWdaEsIL_chU7mUcaPSbOclvaEUPDgiGKE0UkirAuznAsTchUmtgBsI9okWAoqNb6vONJbfKTV_bbQKQgvBdmmKNsUZdsmN6tfZnVTjU2Dr_HdUu2bBvJKQX9PmfZf36K7Ltb1Bqf_nf6MbEcYawcxWJZz0lzMv-wFAJJFfunX2TeloNwS priority: 102 providerName: Institution of Engineering and Technology |
| Title | General generative model-based image compression method using an optimisation encoder |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.0715 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.0715 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access Collection customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_HiW6yPsgfxIAST7GaTPdZqaUW0iNHiJeSxWwo2LW29-xP8jf4SZzZpoQgVPAWS3T3M7Mx8m535hpDzRNiZgmOCJXjsW7BDEitIfWalWrqKcenHsWH7fBCdkN_1vX6FtBa1MAU_xPKHG1qG8ddo4HFSdCEBUAtKHKq5NZwgpacjkWbP2yA1B_AMbnOX9xbuGHt6e6YqEvvJC08urzbl1a8lVoLTBnxehawm5rR3yFYJFmmz0O4uqah8j2yXwJGWZjnbJ68leTQdmCd6MGpa3Hx_fmGYyuhwBH6DYv54kfea06J1NMW89wGNczoG3zEqc3sosltmanpAwvbtc6tjlR0TrJQxblvSU1qkrq2ZsFWgggzwg-NplQYSQrkEBWgPi019lXAtQXkyEwoAX6Id7SVuzA5JNR_n6ohQCNwIXngqg4Ar7cQJ46nDhBOoDCANrxN7IaooLenEsavFe2SutbmMQHwRSDdC6UYo3Tq5XE6ZFFwa6wZf4LvSombrBjKjor-XjLq9J_e6jeW89vG_Zp2QTRfP27YP3uWUVOfTD3UGoGSeNMyma5Ba8yV8C-HZvbl_bP4AfNDfQQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4gBySKJHSceeVUtlKpCregWJY6NKkFatWXnJ_Ab-SX4HLdShVQkpkiJ7eHOd_c5vvsOofOMe7kyxwTCWRoRs0MyEsuIEqlFoCgTUZpats82b_TYQz_sV9DdrBam5IeY_3ADy7D-GgwcfkiXB04GJJkDNSWDEXB6-gJ49sIVtMq4z-EIFrDOzB9DU-_QlkVCQ3keivndprj6tcRCdFoxnxcxqw069S204dAivi7Vu40qqthBmw45YmeXk1304tij8at9ggvDtsfN9-cXxKkcD96N48CQQF4mvha47B2NIfH9FacFHhrn8e6SezDQW-ZqvId69fvubYO4lglEUso8IkKluQw8TbmnYhXnBkD4oVYyFiaWC6MBHUK1aaQypoXRnsi5Mogv074OsyCl-6haDAt1gLCJ3IBemBRxzJT204wy6VPuxyo3mIbVkDcTVSIdnzi0tXhL7L02E4kRX2Kkm4B0E5BuDV3Op4xKMo1lgy_gnTOpybKB1Kro7yWTZuc5uKlDPa93-K9ZZ2it0X1qJa1m-_EIrQdw-PYi42qOUXU6_lAnBqFMs1O7AX8AjU7fYw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qC-LFt1ifexAPQjDJbh57rNZiVYqI1eIl5LFbCjYtbb37E_yN_hJnkm1BBAVPgWR3DzM7M99mZ74BOEl8O1N4TLB8EQcW7pDECtOAW6mWruJCBnFcsH12_OuuuOl5vQo057UwJT_E4ocbWUbhr8nA1TjT5YFTEEnmQM2swZg4PR1JPHveEtQwntuiCrXGU_elO_fI1NbbKwojqaW878nF7aY8_7HIt_i0hJ-_o9Yi7LTWYdXgRdYoFbwBFZVvwprBjsxY5nQLng1_NOsXT3JirOhy8_n-QZEqY4Mhug5GKeRl6mvOyu7RjFLf-yzO2Qjdx9Ck9zAiuMzUZBu6ravHy2vLNE2wUs6FbUlPaT91bc19W4UqzBBCOJ5WaSgxmkvUgfao3jRQidAS9SczXyHmS7SjvcSN-Q5U81GudoFh7Cb8IlIZhkJpJ064SB3uO6HKENWIOthzUUWpYRSnxhavUXGzLWSE4otQuhFJNyLp1uFsMWVc0mn8NviU3hmjmv42kBcq-nvJqH3_4F60qKLX3vvXrGNYvm-2ort253YfVlw6fdsB-poDqM4mb-oQIcosOTI78Aunu-C3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+generative+model%E2%80%90based+image+compression+method+using+an+optimisation+encoder&rft.jtitle=IET+image+processing&rft.au=Wu%2C+Mengtian&rft.au=He%2C+Zaixing&rft.au=Zhao%2C+Xinyue&rft.au=Zhang%2C+Shuyou&rft.date=2020-07-20&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=14&rft.issue=9&rft.spage=1750&rft.epage=1758&rft_id=info:doi/10.1049%2Fiet-ipr.2019.0715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ipr_2019_0715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |