Mobile-agent-based distributed variational Bayesian algorithm for density estimation in sensor networks

This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a mobile-agent-based distributed variational Bayesian algorithm is proposed. It is assumed that the measurements can be statistically modelled by a common Ga...

Full description

Saved in:
Bibliographic Details
Published inIET science, measurement & technology Vol. 11; no. 7; pp. 861 - 870
Main Authors Mozaffari, Mohiyeddin, Safarinejadian, Behrouz
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.10.2017
Subjects
Online AccessGet full text
ISSN1751-8822
1751-8830
DOI10.1049/iet-smt.2016.0260

Cover

Abstract This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a mobile-agent-based distributed variational Bayesian algorithm is proposed. It is assumed that the measurements can be statistically modelled by a common Gaussian mixture model. In the proposed algorithm, the problems of model order selection and probability density estimation will be considered simultaneously using mobile agents and the variational concept. Initially, considering a component number greater than the true one, the variational Bayesian algorithm will be executed in different nodes. In other words, the mobile agents move through different routes in the network and compute the local sufficient statistics. Afterwards, the global sufficient statistics will be updated using these values and finally the parameters of the probability density function will be calculated. This procedure will be repeated until convergence is reached. At this moment, the component whose mixture probability is lower than a threshold value will be removed. The mentioned steps will continue until the true component number is reached. Convergence of the proposed method will also be analytically studied. Finally, the proposed algorithm will be applied to synthetic and also real-world data sets to show its promising performance.
AbstractList This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a mobile‐agent‐based distributed variational Bayesian algorithm is proposed. It is assumed that the measurements can be statistically modelled by a common Gaussian mixture model. In the proposed algorithm, the problems of model order selection and probability density estimation will be considered simultaneously using mobile agents and the variational concept. Initially, considering a component number greater than the true one, the variational Bayesian algorithm will be executed in different nodes. In other words, the mobile agents move through different routes in the network and compute the local sufficient statistics. Afterwards, the global sufficient statistics will be updated using these values and finally the parameters of the probability density function will be calculated. This procedure will be repeated until convergence is reached. At this moment, the component whose mixture probability is lower than a threshold value will be removed. The mentioned steps will continue until the true component number is reached. Convergence of the proposed method will also be analytically studied. Finally, the proposed algorithm will be applied to synthetic and also real‐world data sets to show its promising performance.
Author Mozaffari, Mohiyeddin
Safarinejadian, Behrouz
Author_xml – sequence: 1
  givenname: Mohiyeddin
  surname: Mozaffari
  fullname: Mozaffari, Mohiyeddin
  organization: Electrical Engineering Department, Shiraz University of Technology, Shiraz, Iran
– sequence: 2
  givenname: Behrouz
  surname: Safarinejadian
  fullname: Safarinejadian, Behrouz
  email: safarinejad@sutech.ac.ir
  organization: Electrical Engineering Department, Shiraz University of Technology, Shiraz, Iran
BookMark eNqFkM1OAyEURompiW31AdzxAlR-ZhjqzjZWTWxcWNeEmWEqdQoGqM28vUxrXLioK77APdx7zwgMrLMagGuCJwRn0xujIwrbOKGY8AmmHJ-BISlygoRgePCbKb0AoxA2GOc8J2QI1ktXmlYjtdY2olIFXcPahOhNuYspfylvVDTOqhbOVKeDURaqdu28ie9b2DgPa22DiR3UIZrtoRYaC0O6TY9Wx73zH-ESnDeqDfrq5xyDt8X9av6Inl8enuZ3z6hiLMMoaxTlpSI1Fo2e6kpUosxzQSielrwphVAkZ1wrxjBJkdOiwBUXSjCWT1nadQzI8d_KuxC8buSnT1P5ThIse1MymZLJlOxNyd5UYoo_TGXiYZHolWlPkrdHcp8cdv-3kq_LFZ0tMM6KHkZHuC_buJ1PjsOJZt9gf5Vf
CitedBy_id crossref_primary_10_1109_JIOT_2019_2950730
crossref_primary_10_1109_TCYB_2021_3106660
crossref_primary_10_1109_TSP_2020_2995506
Cites_doi 10.1162/NECO_a_00661
10.1109/JSTSP.2011.2114324
10.7551/mitpress/1100.003.0014
10.1109/TSP.2015.2493979
10.1109/SURV.2013.100113.00293
10.1109/MCOM.2002.1024422
10.1109/TNN.2006.891114
10.1137/140966575
10.1109/TSP.2012.2198470
10.1007/s10115-009-0218-y
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.sigpro.2009.10.004
10.1214/06-BA121
10.1109/MSP.2008.929620
10.1109/TSP.2010.2055862
10.1016/j.csda.2006.07.020
10.1109/TSP.2014.2302731
10.1109/TSP.2003.814623
10.1109/LSP.2013.2260329
10.1109/TNN.2008.915110
10.1109/JSYST.2014.2337114
10.1016/j.inffus.2007.09.001
10.1214/14-AOS1282
10.1109/SPAWC.2016.7536851
10.1016/j.measurement.2016.03.074
10.1109/TSP.2014.2338839
10.1109/MSP.2012.2231991
10.1109/TNNLS.2012.2200694
10.1007/978-3-319-25040-3_77
10.1016/j.adhoc.2006.07.004
10.1109/MDSO.2004.10
10.1137/120876873
10.1007/s10462-011-9236-8
10.1109/TSP.2012.2194290
10.1109/TSP.2009.2033729
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-smt.2016.0260
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8830
EndPage 870
ExternalDocumentID 10_1049_iet_smt_2016_0260
SMT2BF00470
Genre article
GroupedDBID 0R
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
EBS
EJD
ESX
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
LOTEE
LXI
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
96U
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
K1G
MCNEO
MS~
OK1
ROL
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3340-4fa26ba1d08fe9ec8c8b5581209b6fb88a1536ea3301a1562770c68a833593883
IEDL.DBID IDLOA
ISSN 1751-8822
IngestDate Thu Apr 24 23:12:08 EDT 2025
Wed Oct 29 21:17:23 EDT 2025
Wed Jan 22 16:32:44 EST 2025
Tue Jan 05 21:45:56 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Gaussian processes
distributed sensors
Bayes methods
model order selection
global sufficient statistics
mixture models
belief networks
mobile-agent-based distributed variational Bayesian algorithm
distributed sensor networks
Gaussian mixture model
probability density estimation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3340-4fa26ba1d08fe9ec8c8b5581209b6fb88a1536ea3301a1562770c68a833593883
PageCount 10
ParticipantIDs crossref_primary_10_1049_iet_smt_2016_0260
wiley_primary_10_1049_iet_smt_2016_0260_SMT2BF00470
crossref_citationtrail_10_1049_iet_smt_2016_0260
iet_journals_10_1049_iet_smt_2016_0260
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20171000
October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 20171000
PublicationDecade 2010
PublicationTitle IET science, measurement & technology
PublicationYear 2017
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Gu, D.; Hu, H. (C11) 2012; 23
Akyildiz, I.F.; Weilian, S.; Sankarasubramaniam, Y. (C1) 2002; 40
Tunca, C.; Isik, S.; Donmez, M.Y. (C5) 2014; 16
Safarinejadian, B.; Menhaj, M.B.; Karrari, M. (C10) 2010; 23
Xu, Y.; Qi, H. (C38) 2008; 6
Pereira, S.S.; Lopez-Valcarce, R. (C21) 2013; 20
Biswas, P.K.; Qi, H.; Xu, Y. (C37) 2008; 9
Fox, C.W.; Roberts, S.J. (C41) 2012; 38
Nowak, R.D. (C19) 2003; 51
Safarinejadian, B.; Menhaj, M.B.; Karrari, M. (C12) 2010; 90
McGrory, C.A.; Titterington, D. (C47) 2007; 51
Mateos, G.; Giannakis, G.B. (C6) 2012; 60
Constantinopoulos, C.; Likas, A. (C26) 2007; 18
Kadir, S.N.; Goodman, D.F.; Harris, K.D. (C14) 2014; 26
Zhou, B.; Chen, Q.; Wymeersch, H. (C42) 2016
Dempster, A.P.; Laird, N.M.; Rubin, D.B. (C20) 1977; 39
Safarinejadian, B.; Hasanpour, K. (C39) 2014; 10
Safarinejadian, B.; Estahbanati, M.E. (C36) 2015; PP
Mohammad-Djafari, A. (C25) 2015; 9389
Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. (C43) 2008; 25
Chen, J.; Sayed, A.H. (C3) 2012; 60
Safarinejadian, B.; Estahbanati, M.E. (C35) 2016; 89
Liu, Z.; Liu, Y.; Li, C. (C8) 2014; 62
Fraysse, A.; Rodet, T. (C28) 2014; 7
Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. (C29) 2014; 62
Mateos, G.; Bazerque, J.A.; Giannakis, G.B. (C9) 2010; 58
Wang, B.; Titterington, D. (C30) 2006; 1
Sayed, A.H.; Sheng-Yuan, T.; Jianshu, C. (C4) 2013; 30
Hua, J.; Li, C. (C34) 2016; 64
Kubjas, K.; Robeva, E.; Sturmfels, B. (C15) 2015; 43
Gu, D. (C18) 2008; 19
Guessoum, Z. (C40) 2004; 5
Cattivelli, F.S.; Sayed, A.H. (C7) 2010; 58
Forero, P.; Cano, A.; Giannakis, G.B. (C17) 2011; 5
Fagnani, F.; Fosson, S.M.; Ravazzi, C. (C16) 2014; 52
2012; 60
2007; 18
2010; 58
2008; 19
2013; 20
2008; 9
1997
2014; 26
2004; 5
2008; 6
2006; 1
2012; 38
2007; 51
2014; 62
2003; 51
2011; 5
1999
2010; 23
2001
1977; 39
2002; 40
2015; PP
2013; 30
2015; 43
2014; 16
2008; 25
2016; 64
2016
2015
2014
2013
2014; 52
2012; 23
2010; 90
2014; 7
2015; 9389
2016; 89
2014; 10
e_1_2_8_29_1
Dempster A.P. (e_1_2_8_21_1) 1977; 39
Mohammad‐Djafari A. (e_1_2_8_26_1) 2015; 9389
e_1_2_8_24_1
Corduneanu A. (e_1_2_8_47_1) 2001
e_1_2_8_27_1
e_1_2_8_48_1
Zhou B. (e_1_2_8_43_1) 2016
Zhu S. (e_1_2_8_32_1) 2015
Attias H. (e_1_2_8_46_1) 1999
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
Pereira S.S. (e_1_2_8_23_1) 2013
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
Titsias M.K. (e_1_2_8_28_1) 2014
Dedecius K. (e_1_2_8_33_1) 2016
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Jaakkola T.S. (e_1_2_8_25_1) 2001
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
Safarinejadian B. (e_1_2_8_37_1) 2015
e_1_2_8_38_1
e_1_2_8_16_1
Gholami B. (e_1_2_8_3_1) 2016
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
Krishnan T. (e_1_2_8_14_1) 1997
Grasso R. (e_1_2_8_34_1) 2015
e_1_2_8_30_1
References_xml – volume: 51
  start-page: 5352
  issue: 11
  year: 2007
  end-page: 5367
  ident: C47
  article-title: Variational approximations in Bayesian model selection for finite mixture distributions
  publication-title: Comput. Stat. Data Anal.
– volume: 40
  start-page: 102
  issue: 8
  year: 2002
  end-page: 114
  ident: C1
  article-title: A survey on sensor networks
  publication-title: IEEE Commun. Mag.
– volume: 62
  start-page: 1386
  issue: 6
  year: 2014
  end-page: 1395
  ident: C8
  article-title: Distributed sparse recursive least-squares over networks
  publication-title: IEEE Trans. Signal Process.
– volume: 90
  start-page: 1197
  issue: 4
  year: 2010
  end-page: 1208
  ident: C12
  article-title: Distributed variational Bayesian algorithms for Gaussian mixtures in sensor networks
  publication-title: Signal Process.
– year: 2016
  ident: C42
  article-title: Variational inference-based positioning with nondeterministic measurement accuracies and reference location errors
  publication-title: IEEE Trans. Mob. Comput.
– volume: 18
  start-page: 745
  issue: 3
  year: 2007
  end-page: 755
  ident: C26
  article-title: Unsupervised learning of Gaussian mixtures based on variational component splitting
  publication-title: IEEE Trans. Neural Netw.
– volume: 9389
  start-page: 723
  year: 2015
  end-page: 731
  ident: C25
  article-title: Variational Bayesian approximation method for classification and clustering with a mixture of student-t model
  publication-title: Geom. Sci. Inf.
– volume: 5
  start-page: 707
  issue: 4
  year: 2011
  end-page: 724
  ident: C17
  article-title: Distributed clustering using wireless sensor networks
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 20
  start-page: 595
  issue: 6
  year: 2013
  end-page: 598
  ident: C21
  article-title: A diffusion-based EM algorithm for distributed estimation in unreliable sensor networks
  publication-title: IEEE Signal Process. Lett.
– volume: 5
  start-page: 1
  issue: 7
  year: 2004
  end-page: 4
  ident: C40
  article-title: Adaptive agents and multiagent systems
  publication-title: IEEE Distrib. Syst. Online
– volume: 51
  start-page: 2245
  issue: 8
  year: 2003
  end-page: 2253
  ident: C19
  article-title: Distributed EM algorithms for density estimation and clustering in sensor networks
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 399
  issue: 3
  year: 2008
  end-page: 411
  ident: C37
  article-title: Mobile-agent-based collaborative sensor fusion
  publication-title: Inf. Fusion
– volume: 1
  start-page: 625
  issue: 3
  year: 2006
  end-page: 650
  ident: C30
  article-title: Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
  publication-title: Bayesian Anal.
– volume: 10
  start-page: 281
  issue: 1
  year: 2014
  end-page: 289
  ident: C39
  article-title: Distributed data clustering using mobile agents and EM algorithm
  publication-title: IEEE Syst. J.
– volume: 64
  start-page: 783
  issue: 3
  year: 2016
  end-page: 798
  ident: C34
  article-title: Distributed variational Bayesian algorithms over sensor networks
  publication-title: IEEE Trans. Signal Process.
– volume: 23
  start-page: 267
  issue: 3
  year: 2010
  end-page: 292
  ident: C10
  article-title: A distributed EM algorithm to estimate the parameters of a finite mixture of components
  publication-title: Knowl. Inf. Syst.
– volume: 30
  start-page: 155
  issue: 3
  year: 2013
  end-page: 171
  ident: C4
  article-title: Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior
  publication-title: IEEE Signal Process. Mag.
– volume: 58
  start-page: 1035
  issue: 3
  year: 2010
  end-page: 1048
  ident: C7
  article-title: Diffusion LMS strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 6
  start-page: 1
  issue: 1
  year: 2008
  end-page: 16
  ident: C38
  article-title: Mobile agent migration modeling and design for target tracking in wireless sensor networks
  publication-title: Ad Hoc Netw.
– volume: 60
  start-page: 3740
  issue: 7
  year: 2012
  end-page: 3754
  ident: C6
  article-title: Distributed recursive least-squares: stability and performance analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 52
  start-page: 189
  issue: 1
  year: 2014
  end-page: 218
  ident: C16
  article-title: A distributed classification/estimation algorithm for sensor networks
  publication-title: SIAM J. Control Optim.
– volume: 38
  start-page: 85
  issue: 2
  year: 2012
  end-page: 95
  ident: C41
  article-title: A tutorial on variational Bayesian inference
  publication-title: Artif. Intell. Rev.
– volume: 89
  start-page: 78
  year: 2016
  end-page: 86
  ident: C35
  article-title: A novel distributed variational approximation method for density estimation in sensor networks
  publication-title: Measurement
– volume: 23
  start-page: 1279
  issue: 8
  year: 2012
  end-page: 1290
  ident: C11
  article-title: Spatial Gaussian process regression with mobile sensor networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  end-page: 5276
  ident: C9
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans. Signal Process.
– volume: 26
  start-page: 2379
  issue: 11
  year: 2014
  end-page: 2394
  ident: C14
  article-title: High-dimensional cluster analysis with the masked EM algorithm
  publication-title: Neural Comput..
– volume: 16
  start-page: 877
  issue: 2
  year: 2014
  end-page: 897
  ident: C5
  article-title: Distributed mobile sink routing for wireless sensor networks: a survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 62
  start-page: 4723
  issue: 18
  year: 2014
  end-page: 4736
  ident: C29
  article-title: A variational Bayes framework for sparse adaptive estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 25
  start-page: 131
  issue: 6
  year: 2008
  end-page: 146
  ident: C43
  article-title: The variational approximation for Bayesian inference
  publication-title: IEEE Signal Process. Mag.
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  end-page: 10
  ident: C36
  article-title: Consensus filter-based distributed variational Bayesian algorithm for flow and speed density prediction with distributed traffic sensors
  publication-title: IEEE Syst. J.
– volume: 60
  start-page: 4289
  issue: 8
  year: 2012
  end-page: 4305
  ident: C3
  article-title: Diffusion adaptation strategies for distributed optimization and learning over networks
  publication-title: IEEE Trans. Signal Process.
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  ident: C20
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B Met.
– volume: 7
  start-page: 2591
  issue: 4
  year: 2014
  end-page: 2622
  ident: C28
  article-title: A measure-theoretic variational Bayesian algorithm for large dimensional problems
  publication-title: SIAM J. Imaging Sci.
– volume: 43
  start-page: 422
  issue: 1
  year: 2015
  end-page: 461
  ident: C15
  article-title: Fixed points of the EM algorithm and nonnegative rank boundaries
  publication-title: Ann. Stat.
– volume: 19
  start-page: 1154
  issue: 7
  year: 2008
  end-page: 1166
  ident: C18
  article-title: Distributed EM algorithm for Gaussian mixtures in sensor networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  end-page: 5276
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 1154
  issue: 7
  year: 2008
  end-page: 1166
  article-title: Distributed EM algorithm for Gaussian mixtures in sensor networks
  publication-title: IEEE Trans. Neural Netw.
– start-page: 3202
  year: 2015
  end-page: 3206
– volume: 16
  start-page: 877
  issue: 2
  year: 2014
  end-page: 897
  article-title: Distributed mobile sink routing for wireless sensor networks: a survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 38
  start-page: 85
  issue: 2
  year: 2012
  end-page: 95
  article-title: A tutorial on variational Bayesian inference
  publication-title: Artif. Intell. Rev.
– volume: 40
  start-page: 102
  issue: 8
  year: 2002
  end-page: 114
  article-title: A survey on sensor networks
  publication-title: IEEE Commun. Mag.
– volume: 7
  start-page: 2591
  issue: 4
  year: 2014
  end-page: 2622
  article-title: A measure‐theoretic variational Bayesian algorithm for large dimensional problems
  publication-title: SIAM J. Imaging Sci.
– start-page: 205
  year: 2015
  end-page: 209
– volume: 52
  start-page: 189
  issue: 1
  year: 2014
  end-page: 218
  article-title: A distributed classification/estimation algorithm for sensor networks
  publication-title: SIAM J. Control Optim.
– volume: 5
  start-page: 707
  issue: 4
  year: 2011
  end-page: 724
  article-title: Distributed clustering using wireless sensor networks
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 4449
  year: 2013
  end-page: 4453
– volume: 1
  start-page: 625
  issue: 3
  year: 2006
  end-page: 650
  article-title: Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
  publication-title: Bayesian Anal.
– volume: 30
  start-page: 155
  issue: 3
  year: 2013
  end-page: 171
  article-title: Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior
  publication-title: IEEE Signal Process. Mag.
– volume: 18
  start-page: 745
  issue: 3
  year: 2007
  end-page: 755
  article-title: Unsupervised learning of Gaussian mixtures based on variational component splitting
  publication-title: IEEE Trans. Neural Netw.
– volume: 62
  start-page: 4723
  issue: 18
  year: 2014
  end-page: 4736
  article-title: A variational Bayes framework for sparse adaptive estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 58
  start-page: 1035
  issue: 3
  year: 2010
  end-page: 1048
  article-title: Diffusion LMS strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
– start-page: 129
  year: 2001
  end-page: 159
– volume: 51
  start-page: 5352
  issue: 11
  year: 2007
  end-page: 5367
  article-title: Variational approximations in Bayesian model selection for finite mixture distributions
  publication-title: Comput. Stat. Data Anal.
– volume: 89
  start-page: 78
  year: 2016
  end-page: 86
  article-title: A novel distributed variational approximation method for density estimation in sensor networks
  publication-title: Measurement
– volume: 23
  start-page: 1279
  issue: 8
  year: 2012
  end-page: 1290
  article-title: Spatial Gaussian process regression with mobile sensor networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2016
  article-title: Variational inference‐based positioning with nondeterministic measurement accuracies and reference location errors
  publication-title: IEEE Trans. Mob. Comput.
– volume: 23
  start-page: 267
  issue: 3
  year: 2010
  end-page: 292
  article-title: A distributed EM algorithm to estimate the parameters of a finite mixture of components
  publication-title: Knowl. Inf. Syst.
– year: 2016
– start-page: 27
  year: 2001
  end-page: 34
– volume: 62
  start-page: 1386
  issue: 6
  year: 2014
  end-page: 1395
  article-title: Distributed sparse recursive least‐squares over networks
  publication-title: IEEE Trans. Signal Process.
– volume: 90
  start-page: 1197
  issue: 4
  year: 2010
  end-page: 1208
  article-title: Distributed variational Bayesian algorithms for Gaussian mixtures in sensor networks
  publication-title: Signal Process.
– volume: 43
  start-page: 422
  issue: 1
  year: 2015
  end-page: 461
  article-title: Fixed points of the EM algorithm and nonnegative rank boundaries
  publication-title: Ann. Stat.
– volume: 10
  start-page: 281
  issue: 1
  year: 2014
  end-page: 289
  article-title: Distributed data clustering using mobile agents and EM algorithm
  publication-title: IEEE Syst. J.
– volume: 60
  start-page: 3740
  issue: 7
  year: 2012
  end-page: 3754
  article-title: Distributed recursive least‐squares: stability and performance analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 9389
  start-page: 723
  year: 2015
  end-page: 731
  article-title: Variational Bayesian approximation method for classification and clustering with a mixture of student‐t model
  publication-title: Geom. Sci. Inf.
– volume: 26
  start-page: 2379
  issue: 11
  year: 2014
  end-page: 2394
  article-title: High‐dimensional cluster analysis with the masked EM algorithm
  publication-title: Neural Comput..
– volume: 51
  start-page: 2245
  issue: 8
  year: 2003
  end-page: 2253
  article-title: Distributed EM algorithms for density estimation and clustering in sensor networks
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 399
  issue: 3
  year: 2008
  end-page: 411
  article-title: Mobile‐agent‐based collaborative sensor fusion
  publication-title: Inf. Fusion
– volume: 6
  start-page: 1
  issue: 1
  year: 2008
  end-page: 16
  article-title: Mobile agent migration modeling and design for target tracking in wireless sensor networks
  publication-title: Ad Hoc Netw.
– year: 1997
– volume: 5
  start-page: 1
  issue: 7
  year: 2004
  end-page: 4
  article-title: Adaptive agents and multiagent systems
  publication-title: IEEE Distrib. Syst. Online
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  end-page: 10
  article-title: Consensus filter‐based distributed variational Bayesian algorithm for flow and speed density prediction with distributed traffic sensors
  publication-title: IEEE Syst. J.
– volume: 64
  start-page: 783
  issue: 3
  year: 2016
  end-page: 798
  article-title: Distributed variational Bayesian algorithms over sensor networks
  publication-title: IEEE Trans. Signal Process.
– start-page: 21
  year: 1999
  end-page: 30
– volume: 60
  start-page: 4289
  issue: 8
  year: 2012
  end-page: 4305
  article-title: Diffusion adaptation strategies for distributed optimization and learning over networks
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2014
  end-page: 9
– start-page: 1
  year: 2016
  end-page: 8
– start-page: 362
  year: 2016
  end-page: 366
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B Met.
– volume: 25
  start-page: 131
  issue: 6
  year: 2008
  end-page: 146
  article-title: The variational approximation for Bayesian inference
  publication-title: IEEE Signal Process. Mag.
– year: 2015
– volume: 20
  start-page: 595
  issue: 6
  year: 2013
  end-page: 598
  article-title: A diffusion‐based EM algorithm for distributed estimation in unreliable sensor networks
  publication-title: IEEE Signal Process. Lett.
– ident: e_1_2_8_15_1
  doi: 10.1162/NECO_a_00661
– ident: e_1_2_8_18_1
  doi: 10.1109/JSTSP.2011.2114324
– start-page: 129
  volume-title: Tutorial on variational approximation methods. Advanced mean field methods: theory and practice
  year: 2001
  ident: e_1_2_8_25_1
  doi: 10.7551/mitpress/1100.003.0014
– ident: e_1_2_8_35_1
  doi: 10.1109/TSP.2015.2493979
– start-page: 4449
  volume-title: A diffusion‐based distributed EM algorithm for density estimation in wireless sensor networks
  year: 2013
  ident: e_1_2_8_23_1
– ident: e_1_2_8_6_1
  doi: 10.1109/SURV.2013.100113.00293
– volume: 9389
  start-page: 723
  year: 2015
  ident: e_1_2_8_26_1
  article-title: Variational Bayesian approximation method for classification and clustering with a mixture of student‐t model
  publication-title: Geom. Sci. Inf.
– ident: e_1_2_8_2_1
  doi: 10.1109/MCOM.2002.1024422
– ident: e_1_2_8_27_1
  doi: 10.1109/TNN.2006.891114
– ident: e_1_2_8_29_1
  doi: 10.1137/140966575
– year: 2016
  ident: e_1_2_8_43_1
  article-title: Variational inference‐based positioning with nondeterministic measurement accuracies and reference location errors
  publication-title: IEEE Trans. Mob. Comput.
– ident: e_1_2_8_4_1
  doi: 10.1109/TSP.2012.2198470
– ident: e_1_2_8_11_1
  doi: 10.1007/s10115-009-0218-y
– start-page: 1
  issue: 99
  year: 2015
  ident: e_1_2_8_37_1
  article-title: Consensus filter‐based distributed variational Bayesian algorithm for flow and speed density prediction with distributed traffic sensors
  publication-title: IEEE Syst. J.
– start-page: 362
  volume-title: Diffusion estimation of mixture models with local and global parameters
  year: 2016
  ident: e_1_2_8_33_1
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: e_1_2_8_21_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B Met.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.sigpro.2009.10.004
– ident: e_1_2_8_31_1
  doi: 10.1214/06-BA121
– volume-title: The EM algorithm and extensions
  year: 1997
  ident: e_1_2_8_14_1
– ident: e_1_2_8_44_1
  doi: 10.1109/MSP.2008.929620
– start-page: 27
  volume-title: Variational Bayesian model selection for mixture distributions
  year: 2001
  ident: e_1_2_8_47_1
– ident: e_1_2_8_10_1
  doi: 10.1109/TSP.2010.2055862
– ident: e_1_2_8_48_1
  doi: 10.1016/j.csda.2006.07.020
– start-page: 21
  volume-title: Inferring parameters and structure of latent variable models by variational Bayes
  year: 1999
  ident: e_1_2_8_46_1
– ident: e_1_2_8_9_1
  doi: 10.1109/TSP.2014.2302731
– ident: e_1_2_8_20_1
  doi: 10.1109/TSP.2003.814623
– ident: e_1_2_8_22_1
  doi: 10.1109/LSP.2013.2260329
– ident: e_1_2_8_19_1
  doi: 10.1109/TNN.2008.915110
– start-page: 205
  volume-title: Environmental field estimation by consensus based dynamic sensor networks and underwater gliders
  year: 2015
  ident: e_1_2_8_34_1
– ident: e_1_2_8_40_1
  doi: 10.1109/JSYST.2014.2337114
– ident: e_1_2_8_38_1
  doi: 10.1016/j.inffus.2007.09.001
– ident: e_1_2_8_16_1
  doi: 10.1214/14-AOS1282
– ident: e_1_2_8_24_1
  doi: 10.1109/SPAWC.2016.7536851
– ident: e_1_2_8_36_1
  doi: 10.1016/j.measurement.2016.03.074
– ident: e_1_2_8_30_1
  doi: 10.1109/TSP.2014.2338839
– ident: e_1_2_8_5_1
  doi: 10.1109/MSP.2012.2231991
– start-page: 1
  volume-title: Decentralized approximate Bayesian inference for distributed sensor network
  year: 2016
  ident: e_1_2_8_3_1
– ident: e_1_2_8_12_1
  doi: 10.1109/TNNLS.2012.2200694
– start-page: 3202
  volume-title: Averaging based distributed estimation algorithm for sensor networks with quantized and directed communication
  year: 2015
  ident: e_1_2_8_32_1
– ident: e_1_2_8_45_1
  doi: 10.1007/978-3-319-25040-3_77
– ident: e_1_2_8_39_1
  doi: 10.1016/j.adhoc.2006.07.004
– ident: e_1_2_8_41_1
  doi: 10.1109/MDSO.2004.10
– ident: e_1_2_8_17_1
  doi: 10.1137/120876873
– ident: e_1_2_8_42_1
  doi: 10.1007/s10462-011-9236-8
– start-page: 1
  volume-title: Doubly stochastic variational Bayes for non‐conjugate inference
  year: 2014
  ident: e_1_2_8_28_1
– ident: e_1_2_8_7_1
  doi: 10.1109/TSP.2012.2194290
– ident: e_1_2_8_8_1
  doi: 10.1109/TSP.2009.2033729
SSID ssj0056511
Score 2.123417
Snippet This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 861
SubjectTerms Bayes methods
belief networks
distributed sensor networks
distributed sensors
Gaussian mixture model
Gaussian processes
global sufficient statistics
mixture models
mobile‐agent‐based distributed variational Bayesian algorithm
model order selection
probability density estimation
Research Article
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXvQgfuL8IgfxIFTbpk3ToxuOIUwEN9itJGmqw62TtQq7-Sf4N_qX-F7bDYcwwVND83F4ycv7JXnv9wg5V8bTThI7VqCYbYEmCktKblsCrLXv6kBzg_eQ3Xve6Xt3A39QI615LEzJD7G4cEPNKPZrVHCpyiwkAGphEocmt7IxukM6_AqZsdbIugN4Bpe56z3Mt2MALEUSXjCTjgVw0l08bYbXv4ZYMk5rUL0MWQub094mWxVYpDfl7O6Qmkl3yeYPCsE98tKdKOj69fEpMUgKvmiXYhojIS7msoLyO5yHqzs_2pQzg3GTVI6eJtNh_jymAFtpjH7s-Ywi50YZzEiHKc3gL1Smpat4tk_67dteq2NVCRQszZgHok-ky5V0YlskJjRaaKF8X2C4rOKJEkLCfseNZKDlUORuENiaC4mBWCETgh2QejpJzSGhQmibeZLFYejBIYmFhrE40Eq5AYzk8Qax55KLdMUujkkuRlHxyu2FEUgzAmFHKOwIhd0gl4suryW1xqrGF_ivUrBsVUNWzNjfQ0aP3Z7bbCNfpn30r17HZMNFK1_49p2Qej59M6eAUXJ1VqzBb8yz4nE
  priority: 102
  providerName: Wiley-Blackwell
Title Mobile-agent-based distributed variational Bayesian algorithm for density estimation in sensor networks
URI http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2016.0260
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-smt.2016.0260
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8830
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056511
  issn: 1751-8822
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8830
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056511
  issn: 1751-8822
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8830
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056511
  issn: 1751-8822
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62vehBfGJ9lBzEgxC7m-xms0erFhUrghW8LUk2Wwu6FbsK_ntndrc-QKq3kNdhJsk8Mt8MIfvGBdbPUp9FRngMbqJiWkuPKZDWIbeRlQ79kINreX4XXN6H91_w6HQ8wloZbOZxQ2-5q5AHGLoN73C3pnFVkAT02y5MYNMnjIv05RGmyGqQFgfrnDdJ6-L0Ck2s6mUG3aWsxwsS02egWfLPX85fNvkhpxow_FN7LcVPf4Us13ojPa4YvUoWXL5Glr5lE1wno8HEwFKmES3FUDylNMW8uFjSCtpvYBbXrj_a0-8O4ZNUP44mL-Pi4YmC9kpTDGcv3imm3qgwjXSc0yn0wmBeRYxPN8hd_2x4cs7qOgrMChEABzLNpdF-6qnMxc4qq0wYKkTNGpkZpTQ8e9JpAZcdmpJHkWel0ojHioVSYpM080nutghVynoi0CKN4wBsJRE7IdLIGgMEz0wg28SbUS2xdZJxrHXxmJSf3UGcACUTIHSChE6Q0G1y-LnkucqwMW_yAfbNzsC8iaLk1t9bJreDIe_1MW2mt_3f7XfIIkf5Xkb17ZJm8fLq9kA7KUyHNHhw06mP3gfikuGW
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVoOQAHxCrK6gPigBRIYtdxjhSoylKERJG4RbbjQAWkqA1IvfEJfCNfwkySViCkInGK5e0wzngWz7whZFdbbrwk9pxAM9cBTpSOUsJ1JEjrum8CIyz6IdtXonXLz-_qd1PkZJQLU-BDjB1uyBn5fY0Mjg7pwuDkCJLZtZkzeMZ4SE8cIDRWhUxz4Qk0wXx-PbqPQWPJq_CCnPQc0Cf98dtmePhrix_SqQLDP3XWXOg0F8h8qS3So-J4F8mUTZfI3DcMwWXy2O5pWPr5_qEwSwq-KJhiGiMiLhazgvYbGMSl04821NBi4iRVT_e9fjd7eKagt9IYA9mzIUXQjSKbkXZTOoBeGEyLWPHBCrltnnaOW05ZQcExjHGgfaJ8oZUXuzKxoTXSSF2vS8yX1SLRUiq48IRVDNgcmsIPAtcIqTATK2RSslVSTXupXSNUSuMyrlgchhysJBZaxuLAaO0HsBMXNeKOKBeZEl4cq1w8RfkzNw8joGYExI6Q2BESu0b2x0teCmyNSZP3sK_ksMGkiSw_sb-3jG7aHb_RRMBMd_1fq3bITKvTvowuz64uNsisjyI_D_TbJNWs_2q3QGHJ9Hb-P34BC8Dl3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BkVZwQDxFefqw4oAUSGLXcY68KtjdopWWrhCXyHYcqIAU0YDEjZ_Ab-SXMJOkFQgJJE6x_DqMM_7G9sw3AD-NEzbI0sCLDPc91ETlaS19TyFat0IbWenoHrJzIo-64tdZ62wMDoaxMBU_xOjCjTSj3K9Jwd1tmlUHTkEkmT1XeIMb8ocM5DZRY43DBOK5Lxowsfu_e94d7shos5R5eBEpAw8tynD0uhnvfJjkHT6NY_N7q7WEnfYMTNf2ItutFngWxlw-B1NvWATn4arTNzj05elZU5wUfgmaUpYSJy6ls8LyAx6J62s_tqcfHYVOMn190b_rFZc3DC1XlpIre_HIiHajimdkvZwNsBYb88pbfLAA3fbh6f6RV-dQ8CznAqWf6VAaHaS-ylzsrLLKtFqKImaNzIxSGrc86TRHRceiDKPIt1JpisWKuVJ8ERp5P3dLwJSyPheap3Es8JzEY8d5GlljwghnErIJ_lByia0JxinPxXVSPnSLOEFpJijshISdkLCbsDUacluxa3zWeZPqah0bfNaRlyv29ZTJv85puNcmykx_-VujNuDH34N28uf45PcKTIaE-aWn3yo0irt7t4YWS2HW6x_yFThF5zE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobile-agent-based+distributed+variational+Bayesian+algorithm+for+density+estimation+in+sensor+networks&rft.jtitle=IET+science%2C+measurement+%26+technology&rft.au=Mozaffari%2C+Mohiyeddin&rft.au=Safarinejadian%2C+Behrouz&rft.date=2017-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8822&rft.eissn=1751-8830&rft.volume=11&rft.issue=7&rft.spage=861&rft.epage=870&rft_id=info:doi/10.1049%2Fiet-smt.2016.0260&rft.externalDocID=10_1049_iet_smt_2016_0260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8822&client=summon