Mobile-agent-based distributed variational Bayesian algorithm for density estimation in sensor networks
This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a mobile-agent-based distributed variational Bayesian algorithm is proposed. It is assumed that the measurements can be statistically modelled by a common Ga...
Saved in:
| Published in | IET science, measurement & technology Vol. 11; no. 7; pp. 861 - 870 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
01.10.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8822 1751-8830 |
| DOI | 10.1049/iet-smt.2016.0260 |
Cover
| Abstract | This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a mobile-agent-based distributed variational Bayesian algorithm is proposed. It is assumed that the measurements can be statistically modelled by a common Gaussian mixture model. In the proposed algorithm, the problems of model order selection and probability density estimation will be considered simultaneously using mobile agents and the variational concept. Initially, considering a component number greater than the true one, the variational Bayesian algorithm will be executed in different nodes. In other words, the mobile agents move through different routes in the network and compute the local sufficient statistics. Afterwards, the global sufficient statistics will be updated using these values and finally the parameters of the probability density function will be calculated. This procedure will be repeated until convergence is reached. At this moment, the component whose mixture probability is lower than a threshold value will be removed. The mentioned steps will continue until the true component number is reached. Convergence of the proposed method will also be analytically studied. Finally, the proposed algorithm will be applied to synthetic and also real-world data sets to show its promising performance. |
|---|---|
| AbstractList | This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a mobile‐agent‐based distributed variational Bayesian algorithm is proposed. It is assumed that the measurements can be statistically modelled by a common Gaussian mixture model. In the proposed algorithm, the problems of model order selection and probability density estimation will be considered simultaneously using mobile agents and the variational concept. Initially, considering a component number greater than the true one, the variational Bayesian algorithm will be executed in different nodes. In other words, the mobile agents move through different routes in the network and compute the local sufficient statistics. Afterwards, the global sufficient statistics will be updated using these values and finally the parameters of the probability density function will be calculated. This procedure will be repeated until convergence is reached. At this moment, the component whose mixture probability is lower than a threshold value will be removed. The mentioned steps will continue until the true component number is reached. Convergence of the proposed method will also be analytically studied. Finally, the proposed algorithm will be applied to synthetic and also real‐world data sets to show its promising performance. |
| Author | Mozaffari, Mohiyeddin Safarinejadian, Behrouz |
| Author_xml | – sequence: 1 givenname: Mohiyeddin surname: Mozaffari fullname: Mozaffari, Mohiyeddin organization: Electrical Engineering Department, Shiraz University of Technology, Shiraz, Iran – sequence: 2 givenname: Behrouz surname: Safarinejadian fullname: Safarinejadian, Behrouz email: safarinejad@sutech.ac.ir organization: Electrical Engineering Department, Shiraz University of Technology, Shiraz, Iran |
| BookMark | eNqFkM1OAyEURompiW31AdzxAlR-ZhjqzjZWTWxcWNeEmWEqdQoGqM28vUxrXLioK77APdx7zwgMrLMagGuCJwRn0xujIwrbOKGY8AmmHJ-BISlygoRgePCbKb0AoxA2GOc8J2QI1ktXmlYjtdY2olIFXcPahOhNuYspfylvVDTOqhbOVKeDURaqdu28ie9b2DgPa22DiR3UIZrtoRYaC0O6TY9Wx73zH-ESnDeqDfrq5xyDt8X9av6Inl8enuZ3z6hiLMMoaxTlpSI1Fo2e6kpUosxzQSielrwphVAkZ1wrxjBJkdOiwBUXSjCWT1nadQzI8d_KuxC8buSnT1P5ThIse1MymZLJlOxNyd5UYoo_TGXiYZHolWlPkrdHcp8cdv-3kq_LFZ0tMM6KHkZHuC_buJ1PjsOJZt9gf5Vf |
| CitedBy_id | crossref_primary_10_1109_JIOT_2019_2950730 crossref_primary_10_1109_TCYB_2021_3106660 crossref_primary_10_1109_TSP_2020_2995506 |
| Cites_doi | 10.1162/NECO_a_00661 10.1109/JSTSP.2011.2114324 10.7551/mitpress/1100.003.0014 10.1109/TSP.2015.2493979 10.1109/SURV.2013.100113.00293 10.1109/MCOM.2002.1024422 10.1109/TNN.2006.891114 10.1137/140966575 10.1109/TSP.2012.2198470 10.1007/s10115-009-0218-y 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.sigpro.2009.10.004 10.1214/06-BA121 10.1109/MSP.2008.929620 10.1109/TSP.2010.2055862 10.1016/j.csda.2006.07.020 10.1109/TSP.2014.2302731 10.1109/TSP.2003.814623 10.1109/LSP.2013.2260329 10.1109/TNN.2008.915110 10.1109/JSYST.2014.2337114 10.1016/j.inffus.2007.09.001 10.1214/14-AOS1282 10.1109/SPAWC.2016.7536851 10.1016/j.measurement.2016.03.074 10.1109/TSP.2014.2338839 10.1109/MSP.2012.2231991 10.1109/TNNLS.2012.2200694 10.1007/978-3-319-25040-3_77 10.1016/j.adhoc.2006.07.004 10.1109/MDSO.2004.10 10.1137/120876873 10.1007/s10462-011-9236-8 10.1109/TSP.2012.2194290 10.1109/TSP.2009.2033729 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-smt.2016.0260 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8830 |
| EndPage | 870 |
| ExternalDocumentID | 10_1049_iet_smt_2016_0260 SMT2BF00470 |
| Genre | article |
| GroupedDBID | 0R 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB AAJGR ABJCF ABPTK ACGFS ACIWK AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ EBS EJD ESX GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI LOTEE LXI M43 M7S MS NADUK NXXTH O9- OCL P62 PTHSS QWB RIE RNS RUI S0W U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 96U AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AIWBW AJBDE ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO IGS ITC K1G MCNEO MS~ OK1 ROL AAYXX AFFHD CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3340-4fa26ba1d08fe9ec8c8b5581209b6fb88a1536ea3301a1562770c68a833593883 |
| IEDL.DBID | IDLOA |
| ISSN | 1751-8822 |
| IngestDate | Thu Apr 24 23:12:08 EDT 2025 Wed Oct 29 21:17:23 EDT 2025 Wed Jan 22 16:32:44 EST 2025 Tue Jan 05 21:45:56 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Gaussian processes distributed sensors Bayes methods model order selection global sufficient statistics mixture models belief networks mobile-agent-based distributed variational Bayesian algorithm distributed sensor networks Gaussian mixture model probability density estimation |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3340-4fa26ba1d08fe9ec8c8b5581209b6fb88a1536ea3301a1562770c68a833593883 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1049_iet_smt_2016_0260 wiley_primary_10_1049_iet_smt_2016_0260_SMT2BF00470 crossref_citationtrail_10_1049_iet_smt_2016_0260 iet_journals_10_1049_iet_smt_2016_0260 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20171000 October 2017 2017-10-00 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 20171000 |
| PublicationDecade | 2010 |
| PublicationTitle | IET science, measurement & technology |
| PublicationYear | 2017 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Gu, D.; Hu, H. (C11) 2012; 23 Akyildiz, I.F.; Weilian, S.; Sankarasubramaniam, Y. (C1) 2002; 40 Tunca, C.; Isik, S.; Donmez, M.Y. (C5) 2014; 16 Safarinejadian, B.; Menhaj, M.B.; Karrari, M. (C10) 2010; 23 Xu, Y.; Qi, H. (C38) 2008; 6 Pereira, S.S.; Lopez-Valcarce, R. (C21) 2013; 20 Biswas, P.K.; Qi, H.; Xu, Y. (C37) 2008; 9 Fox, C.W.; Roberts, S.J. (C41) 2012; 38 Nowak, R.D. (C19) 2003; 51 Safarinejadian, B.; Menhaj, M.B.; Karrari, M. (C12) 2010; 90 McGrory, C.A.; Titterington, D. (C47) 2007; 51 Mateos, G.; Giannakis, G.B. (C6) 2012; 60 Constantinopoulos, C.; Likas, A. (C26) 2007; 18 Kadir, S.N.; Goodman, D.F.; Harris, K.D. (C14) 2014; 26 Zhou, B.; Chen, Q.; Wymeersch, H. (C42) 2016 Dempster, A.P.; Laird, N.M.; Rubin, D.B. (C20) 1977; 39 Safarinejadian, B.; Hasanpour, K. (C39) 2014; 10 Safarinejadian, B.; Estahbanati, M.E. (C36) 2015; PP Mohammad-Djafari, A. (C25) 2015; 9389 Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. (C43) 2008; 25 Chen, J.; Sayed, A.H. (C3) 2012; 60 Safarinejadian, B.; Estahbanati, M.E. (C35) 2016; 89 Liu, Z.; Liu, Y.; Li, C. (C8) 2014; 62 Fraysse, A.; Rodet, T. (C28) 2014; 7 Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. (C29) 2014; 62 Mateos, G.; Bazerque, J.A.; Giannakis, G.B. (C9) 2010; 58 Wang, B.; Titterington, D. (C30) 2006; 1 Sayed, A.H.; Sheng-Yuan, T.; Jianshu, C. (C4) 2013; 30 Hua, J.; Li, C. (C34) 2016; 64 Kubjas, K.; Robeva, E.; Sturmfels, B. (C15) 2015; 43 Gu, D. (C18) 2008; 19 Guessoum, Z. (C40) 2004; 5 Cattivelli, F.S.; Sayed, A.H. (C7) 2010; 58 Forero, P.; Cano, A.; Giannakis, G.B. (C17) 2011; 5 Fagnani, F.; Fosson, S.M.; Ravazzi, C. (C16) 2014; 52 2012; 60 2007; 18 2010; 58 2008; 19 2013; 20 2008; 9 1997 2014; 26 2004; 5 2008; 6 2006; 1 2012; 38 2007; 51 2014; 62 2003; 51 2011; 5 1999 2010; 23 2001 1977; 39 2002; 40 2015; PP 2013; 30 2015; 43 2014; 16 2008; 25 2016; 64 2016 2015 2014 2013 2014; 52 2012; 23 2010; 90 2014; 7 2015; 9389 2016; 89 2014; 10 e_1_2_8_29_1 Dempster A.P. (e_1_2_8_21_1) 1977; 39 Mohammad‐Djafari A. (e_1_2_8_26_1) 2015; 9389 e_1_2_8_24_1 Corduneanu A. (e_1_2_8_47_1) 2001 e_1_2_8_27_1 e_1_2_8_48_1 Zhou B. (e_1_2_8_43_1) 2016 Zhu S. (e_1_2_8_32_1) 2015 Attias H. (e_1_2_8_46_1) 1999 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 Pereira S.S. (e_1_2_8_23_1) 2013 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 Titsias M.K. (e_1_2_8_28_1) 2014 Dedecius K. (e_1_2_8_33_1) 2016 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Jaakkola T.S. (e_1_2_8_25_1) 2001 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 Safarinejadian B. (e_1_2_8_37_1) 2015 e_1_2_8_38_1 e_1_2_8_16_1 Gholami B. (e_1_2_8_3_1) 2016 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 Krishnan T. (e_1_2_8_14_1) 1997 Grasso R. (e_1_2_8_34_1) 2015 e_1_2_8_30_1 |
| References_xml | – volume: 51 start-page: 5352 issue: 11 year: 2007 end-page: 5367 ident: C47 article-title: Variational approximations in Bayesian model selection for finite mixture distributions publication-title: Comput. Stat. Data Anal. – volume: 40 start-page: 102 issue: 8 year: 2002 end-page: 114 ident: C1 article-title: A survey on sensor networks publication-title: IEEE Commun. Mag. – volume: 62 start-page: 1386 issue: 6 year: 2014 end-page: 1395 ident: C8 article-title: Distributed sparse recursive least-squares over networks publication-title: IEEE Trans. Signal Process. – volume: 90 start-page: 1197 issue: 4 year: 2010 end-page: 1208 ident: C12 article-title: Distributed variational Bayesian algorithms for Gaussian mixtures in sensor networks publication-title: Signal Process. – year: 2016 ident: C42 article-title: Variational inference-based positioning with nondeterministic measurement accuracies and reference location errors publication-title: IEEE Trans. Mob. Comput. – volume: 18 start-page: 745 issue: 3 year: 2007 end-page: 755 ident: C26 article-title: Unsupervised learning of Gaussian mixtures based on variational component splitting publication-title: IEEE Trans. Neural Netw. – volume: 9389 start-page: 723 year: 2015 end-page: 731 ident: C25 article-title: Variational Bayesian approximation method for classification and clustering with a mixture of student-t model publication-title: Geom. Sci. Inf. – volume: 5 start-page: 707 issue: 4 year: 2011 end-page: 724 ident: C17 article-title: Distributed clustering using wireless sensor networks publication-title: IEEE J. Sel. Top. Signal Process. – volume: 20 start-page: 595 issue: 6 year: 2013 end-page: 598 ident: C21 article-title: A diffusion-based EM algorithm for distributed estimation in unreliable sensor networks publication-title: IEEE Signal Process. Lett. – volume: 5 start-page: 1 issue: 7 year: 2004 end-page: 4 ident: C40 article-title: Adaptive agents and multiagent systems publication-title: IEEE Distrib. Syst. Online – volume: 51 start-page: 2245 issue: 8 year: 2003 end-page: 2253 ident: C19 article-title: Distributed EM algorithms for density estimation and clustering in sensor networks publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 399 issue: 3 year: 2008 end-page: 411 ident: C37 article-title: Mobile-agent-based collaborative sensor fusion publication-title: Inf. Fusion – volume: 1 start-page: 625 issue: 3 year: 2006 end-page: 650 ident: C30 article-title: Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model publication-title: Bayesian Anal. – volume: 10 start-page: 281 issue: 1 year: 2014 end-page: 289 ident: C39 article-title: Distributed data clustering using mobile agents and EM algorithm publication-title: IEEE Syst. J. – volume: 64 start-page: 783 issue: 3 year: 2016 end-page: 798 ident: C34 article-title: Distributed variational Bayesian algorithms over sensor networks publication-title: IEEE Trans. Signal Process. – volume: 23 start-page: 267 issue: 3 year: 2010 end-page: 292 ident: C10 article-title: A distributed EM algorithm to estimate the parameters of a finite mixture of components publication-title: Knowl. Inf. Syst. – volume: 30 start-page: 155 issue: 3 year: 2013 end-page: 171 ident: C4 article-title: Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior publication-title: IEEE Signal Process. Mag. – volume: 58 start-page: 1035 issue: 3 year: 2010 end-page: 1048 ident: C7 article-title: Diffusion LMS strategies for distributed estimation publication-title: IEEE Trans. Signal Process. – volume: 6 start-page: 1 issue: 1 year: 2008 end-page: 16 ident: C38 article-title: Mobile agent migration modeling and design for target tracking in wireless sensor networks publication-title: Ad Hoc Netw. – volume: 60 start-page: 3740 issue: 7 year: 2012 end-page: 3754 ident: C6 article-title: Distributed recursive least-squares: stability and performance analysis publication-title: IEEE Trans. Signal Process. – volume: 52 start-page: 189 issue: 1 year: 2014 end-page: 218 ident: C16 article-title: A distributed classification/estimation algorithm for sensor networks publication-title: SIAM J. Control Optim. – volume: 38 start-page: 85 issue: 2 year: 2012 end-page: 95 ident: C41 article-title: A tutorial on variational Bayesian inference publication-title: Artif. Intell. Rev. – volume: 89 start-page: 78 year: 2016 end-page: 86 ident: C35 article-title: A novel distributed variational approximation method for density estimation in sensor networks publication-title: Measurement – volume: 23 start-page: 1279 issue: 8 year: 2012 end-page: 1290 ident: C11 article-title: Spatial Gaussian process regression with mobile sensor networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 58 start-page: 5262 issue: 10 year: 2010 end-page: 5276 ident: C9 article-title: Distributed sparse linear regression publication-title: IEEE Trans. Signal Process. – volume: 26 start-page: 2379 issue: 11 year: 2014 end-page: 2394 ident: C14 article-title: High-dimensional cluster analysis with the masked EM algorithm publication-title: Neural Comput.. – volume: 16 start-page: 877 issue: 2 year: 2014 end-page: 897 ident: C5 article-title: Distributed mobile sink routing for wireless sensor networks: a survey publication-title: IEEE Commun. Surv. Tutor. – volume: 62 start-page: 4723 issue: 18 year: 2014 end-page: 4736 ident: C29 article-title: A variational Bayes framework for sparse adaptive estimation publication-title: IEEE Trans. Signal Process. – volume: 25 start-page: 131 issue: 6 year: 2008 end-page: 146 ident: C43 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Process. Mag. – volume: PP start-page: 1 issue: 99 year: 2015 end-page: 10 ident: C36 article-title: Consensus filter-based distributed variational Bayesian algorithm for flow and speed density prediction with distributed traffic sensors publication-title: IEEE Syst. J. – volume: 60 start-page: 4289 issue: 8 year: 2012 end-page: 4305 ident: C3 article-title: Diffusion adaptation strategies for distributed optimization and learning over networks publication-title: IEEE Trans. Signal Process. – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 ident: C20 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B Met. – volume: 7 start-page: 2591 issue: 4 year: 2014 end-page: 2622 ident: C28 article-title: A measure-theoretic variational Bayesian algorithm for large dimensional problems publication-title: SIAM J. Imaging Sci. – volume: 43 start-page: 422 issue: 1 year: 2015 end-page: 461 ident: C15 article-title: Fixed points of the EM algorithm and nonnegative rank boundaries publication-title: Ann. Stat. – volume: 19 start-page: 1154 issue: 7 year: 2008 end-page: 1166 ident: C18 article-title: Distributed EM algorithm for Gaussian mixtures in sensor networks publication-title: IEEE Trans. Neural Netw. – volume: 58 start-page: 5262 issue: 10 year: 2010 end-page: 5276 article-title: Distributed sparse linear regression publication-title: IEEE Trans. Signal Process. – volume: 19 start-page: 1154 issue: 7 year: 2008 end-page: 1166 article-title: Distributed EM algorithm for Gaussian mixtures in sensor networks publication-title: IEEE Trans. Neural Netw. – start-page: 3202 year: 2015 end-page: 3206 – volume: 16 start-page: 877 issue: 2 year: 2014 end-page: 897 article-title: Distributed mobile sink routing for wireless sensor networks: a survey publication-title: IEEE Commun. Surv. Tutor. – volume: 38 start-page: 85 issue: 2 year: 2012 end-page: 95 article-title: A tutorial on variational Bayesian inference publication-title: Artif. Intell. Rev. – volume: 40 start-page: 102 issue: 8 year: 2002 end-page: 114 article-title: A survey on sensor networks publication-title: IEEE Commun. Mag. – volume: 7 start-page: 2591 issue: 4 year: 2014 end-page: 2622 article-title: A measure‐theoretic variational Bayesian algorithm for large dimensional problems publication-title: SIAM J. Imaging Sci. – start-page: 205 year: 2015 end-page: 209 – volume: 52 start-page: 189 issue: 1 year: 2014 end-page: 218 article-title: A distributed classification/estimation algorithm for sensor networks publication-title: SIAM J. Control Optim. – volume: 5 start-page: 707 issue: 4 year: 2011 end-page: 724 article-title: Distributed clustering using wireless sensor networks publication-title: IEEE J. Sel. Top. Signal Process. – start-page: 4449 year: 2013 end-page: 4453 – volume: 1 start-page: 625 issue: 3 year: 2006 end-page: 650 article-title: Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model publication-title: Bayesian Anal. – volume: 30 start-page: 155 issue: 3 year: 2013 end-page: 171 article-title: Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior publication-title: IEEE Signal Process. Mag. – volume: 18 start-page: 745 issue: 3 year: 2007 end-page: 755 article-title: Unsupervised learning of Gaussian mixtures based on variational component splitting publication-title: IEEE Trans. Neural Netw. – volume: 62 start-page: 4723 issue: 18 year: 2014 end-page: 4736 article-title: A variational Bayes framework for sparse adaptive estimation publication-title: IEEE Trans. Signal Process. – volume: 58 start-page: 1035 issue: 3 year: 2010 end-page: 1048 article-title: Diffusion LMS strategies for distributed estimation publication-title: IEEE Trans. Signal Process. – start-page: 129 year: 2001 end-page: 159 – volume: 51 start-page: 5352 issue: 11 year: 2007 end-page: 5367 article-title: Variational approximations in Bayesian model selection for finite mixture distributions publication-title: Comput. Stat. Data Anal. – volume: 89 start-page: 78 year: 2016 end-page: 86 article-title: A novel distributed variational approximation method for density estimation in sensor networks publication-title: Measurement – volume: 23 start-page: 1279 issue: 8 year: 2012 end-page: 1290 article-title: Spatial Gaussian process regression with mobile sensor networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2016 article-title: Variational inference‐based positioning with nondeterministic measurement accuracies and reference location errors publication-title: IEEE Trans. Mob. Comput. – volume: 23 start-page: 267 issue: 3 year: 2010 end-page: 292 article-title: A distributed EM algorithm to estimate the parameters of a finite mixture of components publication-title: Knowl. Inf. Syst. – year: 2016 – start-page: 27 year: 2001 end-page: 34 – volume: 62 start-page: 1386 issue: 6 year: 2014 end-page: 1395 article-title: Distributed sparse recursive least‐squares over networks publication-title: IEEE Trans. Signal Process. – volume: 90 start-page: 1197 issue: 4 year: 2010 end-page: 1208 article-title: Distributed variational Bayesian algorithms for Gaussian mixtures in sensor networks publication-title: Signal Process. – volume: 43 start-page: 422 issue: 1 year: 2015 end-page: 461 article-title: Fixed points of the EM algorithm and nonnegative rank boundaries publication-title: Ann. Stat. – volume: 10 start-page: 281 issue: 1 year: 2014 end-page: 289 article-title: Distributed data clustering using mobile agents and EM algorithm publication-title: IEEE Syst. J. – volume: 60 start-page: 3740 issue: 7 year: 2012 end-page: 3754 article-title: Distributed recursive least‐squares: stability and performance analysis publication-title: IEEE Trans. Signal Process. – volume: 9389 start-page: 723 year: 2015 end-page: 731 article-title: Variational Bayesian approximation method for classification and clustering with a mixture of student‐t model publication-title: Geom. Sci. Inf. – volume: 26 start-page: 2379 issue: 11 year: 2014 end-page: 2394 article-title: High‐dimensional cluster analysis with the masked EM algorithm publication-title: Neural Comput.. – volume: 51 start-page: 2245 issue: 8 year: 2003 end-page: 2253 article-title: Distributed EM algorithms for density estimation and clustering in sensor networks publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 399 issue: 3 year: 2008 end-page: 411 article-title: Mobile‐agent‐based collaborative sensor fusion publication-title: Inf. Fusion – volume: 6 start-page: 1 issue: 1 year: 2008 end-page: 16 article-title: Mobile agent migration modeling and design for target tracking in wireless sensor networks publication-title: Ad Hoc Netw. – year: 1997 – volume: 5 start-page: 1 issue: 7 year: 2004 end-page: 4 article-title: Adaptive agents and multiagent systems publication-title: IEEE Distrib. Syst. Online – volume: PP start-page: 1 issue: 99 year: 2015 end-page: 10 article-title: Consensus filter‐based distributed variational Bayesian algorithm for flow and speed density prediction with distributed traffic sensors publication-title: IEEE Syst. J. – volume: 64 start-page: 783 issue: 3 year: 2016 end-page: 798 article-title: Distributed variational Bayesian algorithms over sensor networks publication-title: IEEE Trans. Signal Process. – start-page: 21 year: 1999 end-page: 30 – volume: 60 start-page: 4289 issue: 8 year: 2012 end-page: 4305 article-title: Diffusion adaptation strategies for distributed optimization and learning over networks publication-title: IEEE Trans. Signal Process. – start-page: 1 year: 2014 end-page: 9 – start-page: 1 year: 2016 end-page: 8 – start-page: 362 year: 2016 end-page: 366 – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B Met. – volume: 25 start-page: 131 issue: 6 year: 2008 end-page: 146 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Process. Mag. – year: 2015 – volume: 20 start-page: 595 issue: 6 year: 2013 end-page: 598 article-title: A diffusion‐based EM algorithm for distributed estimation in unreliable sensor networks publication-title: IEEE Signal Process. Lett. – ident: e_1_2_8_15_1 doi: 10.1162/NECO_a_00661 – ident: e_1_2_8_18_1 doi: 10.1109/JSTSP.2011.2114324 – start-page: 129 volume-title: Tutorial on variational approximation methods. Advanced mean field methods: theory and practice year: 2001 ident: e_1_2_8_25_1 doi: 10.7551/mitpress/1100.003.0014 – ident: e_1_2_8_35_1 doi: 10.1109/TSP.2015.2493979 – start-page: 4449 volume-title: A diffusion‐based distributed EM algorithm for density estimation in wireless sensor networks year: 2013 ident: e_1_2_8_23_1 – ident: e_1_2_8_6_1 doi: 10.1109/SURV.2013.100113.00293 – volume: 9389 start-page: 723 year: 2015 ident: e_1_2_8_26_1 article-title: Variational Bayesian approximation method for classification and clustering with a mixture of student‐t model publication-title: Geom. Sci. Inf. – ident: e_1_2_8_2_1 doi: 10.1109/MCOM.2002.1024422 – ident: e_1_2_8_27_1 doi: 10.1109/TNN.2006.891114 – ident: e_1_2_8_29_1 doi: 10.1137/140966575 – year: 2016 ident: e_1_2_8_43_1 article-title: Variational inference‐based positioning with nondeterministic measurement accuracies and reference location errors publication-title: IEEE Trans. Mob. Comput. – ident: e_1_2_8_4_1 doi: 10.1109/TSP.2012.2198470 – ident: e_1_2_8_11_1 doi: 10.1007/s10115-009-0218-y – start-page: 1 issue: 99 year: 2015 ident: e_1_2_8_37_1 article-title: Consensus filter‐based distributed variational Bayesian algorithm for flow and speed density prediction with distributed traffic sensors publication-title: IEEE Syst. J. – start-page: 362 volume-title: Diffusion estimation of mixture models with local and global parameters year: 2016 ident: e_1_2_8_33_1 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: e_1_2_8_21_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B Met. doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_8_13_1 doi: 10.1016/j.sigpro.2009.10.004 – ident: e_1_2_8_31_1 doi: 10.1214/06-BA121 – volume-title: The EM algorithm and extensions year: 1997 ident: e_1_2_8_14_1 – ident: e_1_2_8_44_1 doi: 10.1109/MSP.2008.929620 – start-page: 27 volume-title: Variational Bayesian model selection for mixture distributions year: 2001 ident: e_1_2_8_47_1 – ident: e_1_2_8_10_1 doi: 10.1109/TSP.2010.2055862 – ident: e_1_2_8_48_1 doi: 10.1016/j.csda.2006.07.020 – start-page: 21 volume-title: Inferring parameters and structure of latent variable models by variational Bayes year: 1999 ident: e_1_2_8_46_1 – ident: e_1_2_8_9_1 doi: 10.1109/TSP.2014.2302731 – ident: e_1_2_8_20_1 doi: 10.1109/TSP.2003.814623 – ident: e_1_2_8_22_1 doi: 10.1109/LSP.2013.2260329 – ident: e_1_2_8_19_1 doi: 10.1109/TNN.2008.915110 – start-page: 205 volume-title: Environmental field estimation by consensus based dynamic sensor networks and underwater gliders year: 2015 ident: e_1_2_8_34_1 – ident: e_1_2_8_40_1 doi: 10.1109/JSYST.2014.2337114 – ident: e_1_2_8_38_1 doi: 10.1016/j.inffus.2007.09.001 – ident: e_1_2_8_16_1 doi: 10.1214/14-AOS1282 – ident: e_1_2_8_24_1 doi: 10.1109/SPAWC.2016.7536851 – ident: e_1_2_8_36_1 doi: 10.1016/j.measurement.2016.03.074 – ident: e_1_2_8_30_1 doi: 10.1109/TSP.2014.2338839 – ident: e_1_2_8_5_1 doi: 10.1109/MSP.2012.2231991 – start-page: 1 volume-title: Decentralized approximate Bayesian inference for distributed sensor network year: 2016 ident: e_1_2_8_3_1 – ident: e_1_2_8_12_1 doi: 10.1109/TNNLS.2012.2200694 – start-page: 3202 volume-title: Averaging based distributed estimation algorithm for sensor networks with quantized and directed communication year: 2015 ident: e_1_2_8_32_1 – ident: e_1_2_8_45_1 doi: 10.1007/978-3-319-25040-3_77 – ident: e_1_2_8_39_1 doi: 10.1016/j.adhoc.2006.07.004 – ident: e_1_2_8_41_1 doi: 10.1109/MDSO.2004.10 – ident: e_1_2_8_17_1 doi: 10.1137/120876873 – ident: e_1_2_8_42_1 doi: 10.1007/s10462-011-9236-8 – start-page: 1 volume-title: Doubly stochastic variational Bayes for non‐conjugate inference year: 2014 ident: e_1_2_8_28_1 – ident: e_1_2_8_7_1 doi: 10.1109/TSP.2012.2194290 – ident: e_1_2_8_8_1 doi: 10.1109/TSP.2009.2033729 |
| SSID | ssj0056511 |
| Score | 2.123417 |
| Snippet | This study considers the problem of probability density estimation and model order selection in distributed sensor networks. For this purpose, a... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 861 |
| SubjectTerms | Bayes methods belief networks distributed sensor networks distributed sensors Gaussian mixture model Gaussian processes global sufficient statistics mixture models mobile‐agent‐based distributed variational Bayesian algorithm model order selection probability density estimation Research Article |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXvQgfuL8IgfxIFTbpk3ToxuOIUwEN9itJGmqw62TtQq7-Sf4N_qX-F7bDYcwwVND83F4ycv7JXnv9wg5V8bTThI7VqCYbYEmCktKblsCrLXv6kBzg_eQ3Xve6Xt3A39QI615LEzJD7G4cEPNKPZrVHCpyiwkAGphEocmt7IxukM6_AqZsdbIugN4Bpe56z3Mt2MALEUSXjCTjgVw0l08bYbXv4ZYMk5rUL0MWQub094mWxVYpDfl7O6Qmkl3yeYPCsE98tKdKOj69fEpMUgKvmiXYhojIS7msoLyO5yHqzs_2pQzg3GTVI6eJtNh_jymAFtpjH7s-Ywi50YZzEiHKc3gL1Smpat4tk_67dteq2NVCRQszZgHok-ky5V0YlskJjRaaKF8X2C4rOKJEkLCfseNZKDlUORuENiaC4mBWCETgh2QejpJzSGhQmibeZLFYejBIYmFhrE40Eq5AYzk8Qax55KLdMUujkkuRlHxyu2FEUgzAmFHKOwIhd0gl4suryW1xqrGF_ivUrBsVUNWzNjfQ0aP3Z7bbCNfpn30r17HZMNFK1_49p2Qej59M6eAUXJ1VqzBb8yz4nE priority: 102 providerName: Wiley-Blackwell |
| Title | Mobile-agent-based distributed variational Bayesian algorithm for density estimation in sensor networks |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2016.0260 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-smt.2016.0260 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8830 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056511 issn: 1751-8822 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8830 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056511 issn: 1751-8822 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8830 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056511 issn: 1751-8822 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62vehBfGJ9lBzEgxC7m-xms0erFhUrghW8LUk2Wwu6FbsK_ntndrc-QKq3kNdhJsk8Mt8MIfvGBdbPUp9FRngMbqJiWkuPKZDWIbeRlQ79kINreX4XXN6H91_w6HQ8wloZbOZxQ2-5q5AHGLoN73C3pnFVkAT02y5MYNMnjIv05RGmyGqQFgfrnDdJ6-L0Ck2s6mUG3aWsxwsS02egWfLPX85fNvkhpxow_FN7LcVPf4Us13ojPa4YvUoWXL5Glr5lE1wno8HEwFKmES3FUDylNMW8uFjSCtpvYBbXrj_a0-8O4ZNUP44mL-Pi4YmC9kpTDGcv3imm3qgwjXSc0yn0wmBeRYxPN8hd_2x4cs7qOgrMChEABzLNpdF-6qnMxc4qq0wYKkTNGpkZpTQ8e9JpAZcdmpJHkWel0ojHioVSYpM080nutghVynoi0CKN4wBsJRE7IdLIGgMEz0wg28SbUS2xdZJxrHXxmJSf3UGcACUTIHSChE6Q0G1y-LnkucqwMW_yAfbNzsC8iaLk1t9bJreDIe_1MW2mt_3f7XfIIkf5Xkb17ZJm8fLq9kA7KUyHNHhw06mP3gfikuGW |
| linkProvider | Institution of Engineering and Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVoOQAHxCrK6gPigBRIYtdxjhSoylKERJG4RbbjQAWkqA1IvfEJfCNfwkySViCkInGK5e0wzngWz7whZFdbbrwk9pxAM9cBTpSOUsJ1JEjrum8CIyz6IdtXonXLz-_qd1PkZJQLU-BDjB1uyBn5fY0Mjg7pwuDkCJLZtZkzeMZ4SE8cIDRWhUxz4Qk0wXx-PbqPQWPJq_CCnPQc0Cf98dtmePhrix_SqQLDP3XWXOg0F8h8qS3So-J4F8mUTZfI3DcMwWXy2O5pWPr5_qEwSwq-KJhiGiMiLhazgvYbGMSl04821NBi4iRVT_e9fjd7eKagt9IYA9mzIUXQjSKbkXZTOoBeGEyLWPHBCrltnnaOW05ZQcExjHGgfaJ8oZUXuzKxoTXSSF2vS8yX1SLRUiq48IRVDNgcmsIPAtcIqTATK2RSslVSTXupXSNUSuMyrlgchhysJBZaxuLAaO0HsBMXNeKOKBeZEl4cq1w8RfkzNw8joGYExI6Q2BESu0b2x0teCmyNSZP3sK_ksMGkiSw_sb-3jG7aHb_RRMBMd_1fq3bITKvTvowuz64uNsisjyI_D_TbJNWs_2q3QGHJ9Hb-P34BC8Dl3Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BkVZwQDxFefqw4oAUSGLXcY68KtjdopWWrhCXyHYcqIAU0YDEjZ_Ab-SXMJOkFQgJJE6x_DqMM_7G9sw3AD-NEzbI0sCLDPc91ETlaS19TyFat0IbWenoHrJzIo-64tdZ62wMDoaxMBU_xOjCjTSj3K9Jwd1tmlUHTkEkmT1XeIMb8ocM5DZRY43DBOK5Lxowsfu_e94d7shos5R5eBEpAw8tynD0uhnvfJjkHT6NY_N7q7WEnfYMTNf2ItutFngWxlw-B1NvWATn4arTNzj05elZU5wUfgmaUpYSJy6ls8LyAx6J62s_tqcfHYVOMn190b_rFZc3DC1XlpIre_HIiHajimdkvZwNsBYb88pbfLAA3fbh6f6RV-dQ8CznAqWf6VAaHaS-ylzsrLLKtFqKImaNzIxSGrc86TRHRceiDKPIt1JpisWKuVJ8ERp5P3dLwJSyPheap3Es8JzEY8d5GlljwghnErIJ_lByia0JxinPxXVSPnSLOEFpJijshISdkLCbsDUacluxa3zWeZPqah0bfNaRlyv29ZTJv85puNcmykx_-VujNuDH34N28uf45PcKTIaE-aWn3yo0irt7t4YWS2HW6x_yFThF5zE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobile-agent-based+distributed+variational+Bayesian+algorithm+for+density+estimation+in+sensor+networks&rft.jtitle=IET+science%2C+measurement+%26+technology&rft.au=Mozaffari%2C+Mohiyeddin&rft.au=Safarinejadian%2C+Behrouz&rft.date=2017-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8822&rft.eissn=1751-8830&rft.volume=11&rft.issue=7&rft.spage=861&rft.epage=870&rft_id=info:doi/10.1049%2Fiet-smt.2016.0260&rft.externalDocID=10_1049_iet_smt_2016_0260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8822&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8822&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8822&client=summon |