Parkinson's disease detection and stage classification: quantitative gait evaluation through variational mode decomposition and DCNN architecture

Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition and dexterity. For diagnosing PD in a clinical setting, in addition to the neurological examinations, clinicians use the unified Park...

Full description

Saved in:
Bibliographic Details
Published inConnection science Vol. 36; no. 1
Main Authors E, Balaji, Elumalai, Vinodh Kumar, Sandhiya, Dhanasekaran, Swarna Priya, R. M., Shantharajah, S. P.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0954-0091
1360-0494
1360-0494
DOI10.1080/09540091.2024.2383894

Cover

Abstract Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition and dexterity. For diagnosing PD in a clinical setting, in addition to the neurological examinations, clinicians use the unified Parkinson disease rating scale (UPDRS) to assess the motor and non-motor impairments. Such a clinical assessment highly depends on the experience and expertise of the clinicians, and it may result in biased evaluation. Hence, to assist the clinicians, we put forward a gait analysis-based deep convolutional neural network (DCNN) framework which leverages the potentials of variational mode decomposition (VMD) technique with the recurrence plots (RP) to enhance the PD severity classification performance. Specifically, transforming the VMD modes of vertical ground reaction force (VGRF) time series data into two-dimensional texture images to capture the temporal dependency, this work trains the DCNN classifier through recurrence images for its ability to extract the discriminative features among the PD severity levels. For evaluation, this study utilises the VGRF dataset of 93 PD subjects and 73 healthy controls from Physiobank for three different walking tests. Consequently, utilising VMD, RP and DCNN in a unified framework, this investigation shows that the PD severity rating can be significantly enhanced through DCNN model that is trained using RP of dominant intrinsic mode functions (IMFs). The novelty of the proposed framework lies in identifying the prominent gait biomarkers through dominant IMFs from power spectral analysis for reducing the computational burden of DCNN. Moreover, to handle the data over-fitting issue in the classifier, L2 regularisation technique, which penalises the weight parameters of the nodes, is used in combination with the dropout layer. Experimental results underscore that the proposed VMD-RP-DCNN architecture can address the spectral overlapping issue in VGRF decomposition and achieve an average PD severity prediction accuracy of 98.45%.
AbstractList Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition and dexterity. For diagnosing PD in a clinical setting, in addition to the neurological examinations, clinicians use the unified Parkinson disease rating scale (UPDRS) to assess the motor and non-motor impairments. Such a clinical assessment highly depends on the experience and expertise of the clinicians, and it may result in biased evaluation. Hence, to assist the clinicians, we put forward a gait analysis-based deep convolutional neural network (DCNN) framework which leverages the potentials of variational mode decomposition (VMD) technique with the recurrence plots (RP) to enhance the PD severity classification performance. Specifically, transforming the VMD modes of vertical ground reaction force (VGRF) time series data into two-dimensional texture images to capture the temporal dependency, this work trains the DCNN classifier through recurrence images for its ability to extract the discriminative features among the PD severity levels. For evaluation, this study utilises the VGRF dataset of 93 PD subjects and 73 healthy controls from Physiobank for three different walking tests. Consequently, utilising VMD, RP and DCNN in a unified framework, this investigation shows that the PD severity rating can be significantly enhanced through DCNN model that is trained using RP of dominant intrinsic mode functions (IMFs). The novelty of the proposed framework lies in identifying the prominent gait biomarkers through dominant IMFs from power spectral analysis for reducing the computational burden of DCNN. Moreover, to handle the data over-fitting issue in the classifier, L2 regularisation technique, which penalises the weight parameters of the nodes, is used in combination with the dropout layer. Experimental results underscore that the proposed VMD-RP-DCNN architecture can address the spectral overlapping issue in VGRF decomposition and achieve an average PD severity prediction accuracy of 98.45%.
Author Shantharajah, S. P.
E, Balaji
Sandhiya, Dhanasekaran
Elumalai, Vinodh Kumar
Swarna Priya, R. M.
Author_xml – sequence: 1
  givenname: Balaji
  surname: E
  fullname: E, Balaji
  organization: Vellore Institute of Technology
– sequence: 2
  givenname: Vinodh Kumar
  surname: Elumalai
  fullname: Elumalai, Vinodh Kumar
  email: vinodhkumar.e@vit.ac.in
  organization: Vellore Institute of Technology
– sequence: 3
  givenname: Dhanasekaran
  surname: Sandhiya
  fullname: Sandhiya, Dhanasekaran
  organization: National University of Singapore
– sequence: 4
  givenname: R. M.
  surname: Swarna Priya
  fullname: Swarna Priya, R. M.
  organization: Vellore Institute of Technology
– sequence: 5
  givenname: S. P.
  surname: Shantharajah
  fullname: Shantharajah, S. P.
  organization: Vellore Institute of Technology
BookMark eNqNkMFu2zAMhoWhA5Z2e4QBAnroyRll2a7cU4u03QYU3Q7bWaBlKlHrSKkkp8hj7I0XN92Ow04Eyf__CP7H7MgHT4x9FDAXoOATtHUF0Ip5CWU1L6WSqq3esJmQDRRQtdURm02aYhK9Y8cpPQBADULM2K_vGB-dT8GfJd67RJiI95TJZBc8R9_zlHFJ3AyYkrPO4LS44E8j-uzyvtsSX6LLnLY4jC9bnlcxjMsV32J0LxMc-Dr0E9mE9SYk95d-vbi_5xjNyk03x0jv2VuLQ6IPr_WE_by9-bH4Utx9-_x1cXVXGCllLiyphoxtewBjlepQdbItFfV1Z4SUdN6Zsq6RLIFqqq5Rtu2UarpONhKqUskT1hy4o9_g7hmHQW-iW2PcaQF6Clb_CVZPwerXYPfG04NxE8PTSCnrhzDG_YtJS1HVrZLyvNmr6oPKxJBSJPvf9MuDz3kb4hqfQxx6nXE3hGgjeuOmM_9E_AZ0FqHD
Cites_doi 10.1109/JSEN.7361
10.1016/j.eswa.2019.113075
10.1111/ejn.2007.26.issue-8
10.1016/j.icte.2016.10.005
10.3389/fphys.2020.587057
10.1016/j.compbiomed.2018.02.007
10.1016/j.cmpb.2017.04.007
10.1016/j.measurement.2019.107357
10.1016/j.neulet.2016.09.043
10.1016/j.artmed.2018.04.001
10.1016/j.bspc.2016.08.022
10.1007/s10618-019-00619-1
10.1111/ejn.2005.22.issue-5
10.1016/j.knosys.2017.10.017
10.1109/ISIE.2019.8781511
10.1016/j.medengphy.2017.12.006
10.1016/j.compbiomed.2019.04.031
10.1016/j.ejrad.2019.02.038
10.1609/aaai.v33i01.33011118
10.1016/j.future.2018.02.009
10.1016/j.neucom.2019.10.008
10.1016/j.asoc.2021.107463
10.1016/j.cmpb.2018.04.012
10.1016/j.jestch.2021.05.009
10.1016/j.bspc.2022.104448
10.1016/j.eswa.2022.118045
10.3390/pr10102127
10.1016/j.neunet.2018.01.005
10.1016/j.asoc.2021.107939
10.1016/j.bspc.2018.07.015
10.1109/TNSRE.2023.3277749
10.1016/j.eswa.2016.03.018
10.1016/j.patrec.2018.05.006
10.1002/mds.v20:9
10.1007/s10916-017-0877-2
10.1142/WSSNSA
10.3390/s19020242
10.1016/j.biosystems.2023.105006
10.1016/j.artmed.2019.01.005
10.1016/j.bspc.2021.102854
10.1109/JBHI.6221020
10.1016/j.array.2019.100004
10.1016/j.asoc.2020.106494
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
JQ2
NAPCQ
ADTOC
UNPAY
DOI 10.1080/09540091.2024.2383894
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Computer Science Collection
Nursing & Allied Health Premium
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Nursing & Allied Health Premium
ProQuest Computer Science Collection
DatabaseTitleList Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1360-0494
ExternalDocumentID 10.1080/09540091.2024.2383894
10_1080_09540091_2024_2383894
2383894
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0YH
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGMYJ
AIJEM
AJWEG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EAS
EBS
ECS
EDO
EMK
EPL
EPS
ESO
EST
ESX
E~A
E~B
F5P
FEDTE
FRP
GROUPED_DOAJ
GTTXZ
H13
HF~
HVGLF
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
O9-
RIG
S-T
SNACF
TDBHL
TFL
TFT
TFW
TNC
TTHFI
TUS
TWF
UT5
UU3
~S~
AAFWJ
AAYXX
ADMLS
AFPKN
AIYEW
CITATION
NX~
JQ2
NAPCQ
07I
4B5
7RV
8FE
8FG
8FI
8FJ
8G5
ABJNI
ABUWG
ADBBV
ADTOC
ADXEU
AEHZU
AEZBV
AFION
AFKRA
AGBLW
AGWUF
AGYFW
AKHJE
AKMBP
ALRRR
ALXIB
ARAPS
AWYRJ
AZQEC
BENPR
BGLVJ
BGSSV
BKEYQ
BPHCQ
BVXVI
BWMZZ
C0-
C5H
CAG
CCPQU
COF
CYRSC
DAOYK
DEXXA
DWQXO
EJD
EX3
FETWF
FYUFA
GNUQQ
GUQSH
HCIFZ
IFELN
K6V
K7-
L8C
M2M
M2O
MVM
NUSFT
OPCYK
P62
PCD
PHGZM
PHGZT
PPXIY
PQGLB
PQQKQ
PROAC
PSYQQ
PUEGO
TAJZE
TAP
UB6
UKHRP
UNPAY
WOW
ID FETCH-LOGICAL-c333t-fe86ecf9d00cf88ba8b3928ed5bc133e7bc255aefe0864b68f9b886bb36304283
IEDL.DBID 0YH
ISSN 0954-0091
1360-0494
IngestDate Sun Sep 07 11:00:15 EDT 2025
Mon Jun 30 13:31:43 EDT 2025
Wed Oct 01 00:38:51 EDT 2025
Wed Dec 25 09:05:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-fe86ecf9d00cf88ba8b3928ed5bc133e7bc255aefe0864b68f9b886bb36304283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/09540091.2024.2383894
PQID 3145983376
PQPubID 32754
ParticipantIDs informaworld_taylorfrancis_310_1080_09540091_2024_2383894
crossref_primary_10_1080_09540091_2024_2383894
unpaywall_primary_10_1080_09540091_2024_2383894
proquest_journals_3145983376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Connection science
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_40_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_5_1
  doi: 10.1109/JSEN.7361
– ident: e_1_3_2_14_1
  doi: 10.1016/j.eswa.2019.113075
– ident: e_1_3_2_19_1
  doi: 10.1111/ejn.2007.26.issue-8
– ident: e_1_3_2_29_1
  doi: 10.1016/j.icte.2016.10.005
– ident: e_1_3_2_39_1
  doi: 10.3389/fphys.2020.587057
– ident: e_1_3_2_25_1
  doi: 10.1016/j.compbiomed.2018.02.007
– ident: e_1_3_2_22_1
  doi: 10.1016/j.cmpb.2017.04.007
– ident: e_1_3_2_20_1
  doi: 10.1016/j.measurement.2019.107357
– ident: e_1_3_2_44_1
  doi: 10.1016/j.neulet.2016.09.043
– ident: e_1_3_2_28_1
  doi: 10.1016/j.artmed.2018.04.001
– ident: e_1_3_2_41_1
  doi: 10.1016/j.bspc.2016.08.022
– ident: e_1_3_2_16_1
  doi: 10.1007/s10618-019-00619-1
– ident: e_1_3_2_43_1
  doi: 10.1111/ejn.2005.22.issue-5
– ident: e_1_3_2_12_1
  doi: 10.1016/j.knosys.2017.10.017
– ident: e_1_3_2_4_1
  doi: 10.1109/ISIE.2019.8781511
– ident: e_1_3_2_27_1
– ident: e_1_3_2_17_1
  doi: 10.1016/j.medengphy.2017.12.006
– ident: e_1_3_2_32_1
  doi: 10.1016/j.compbiomed.2019.04.031
– ident: e_1_3_2_31_1
  doi: 10.1016/j.ejrad.2019.02.038
– ident: e_1_3_2_33_1
  doi: 10.1609/aaai.v33i01.33011118
– ident: e_1_3_2_2_1
  doi: 10.1016/j.future.2018.02.009
– ident: e_1_3_2_10_1
  doi: 10.1016/j.neucom.2019.10.008
– ident: e_1_3_2_9_1
  doi: 10.1016/j.asoc.2021.107463
– ident: e_1_3_2_3_1
  doi: 10.1016/j.cmpb.2018.04.012
– ident: e_1_3_2_23_1
  doi: 10.1016/j.jestch.2021.05.009
– ident: e_1_3_2_35_1
  doi: 10.1016/j.bspc.2022.104448
– ident: e_1_3_2_37_1
  doi: 10.1016/j.eswa.2022.118045
– ident: e_1_3_2_21_1
  doi: 10.3390/pr10102127
– ident: e_1_3_2_6_1
  doi: 10.1016/j.neunet.2018.01.005
– ident: e_1_3_2_40_1
  doi: 10.1016/j.asoc.2021.107939
– ident: e_1_3_2_42_1
  doi: 10.1016/j.bspc.2018.07.015
– ident: e_1_3_2_36_1
  doi: 10.1109/TNSRE.2023.3277749
– ident: e_1_3_2_15_1
  doi: 10.1016/j.eswa.2016.03.018
– ident: e_1_3_2_30_1
  doi: 10.1016/j.patrec.2018.05.006
– ident: e_1_3_2_18_1
  doi: 10.1002/mds.v20:9
– ident: e_1_3_2_26_1
  doi: 10.1007/s10916-017-0877-2
– ident: e_1_3_2_13_1
  doi: 10.1142/WSSNSA
– ident: e_1_3_2_24_1
  doi: 10.3390/s19020242
– ident: e_1_3_2_11_1
  doi: 10.1016/j.biosystems.2023.105006
– ident: e_1_3_2_7_1
  doi: 10.1016/j.artmed.2019.01.005
– ident: e_1_3_2_34_1
  doi: 10.1016/j.bspc.2021.102854
– ident: e_1_3_2_38_1
  doi: 10.1109/JBHI.6221020
– ident: e_1_3_2_45_1
  doi: 10.1016/j.array.2019.100004
– ident: e_1_3_2_8_1
  doi: 10.1016/j.asoc.2020.106494
SSID ssj0005011
Score 2.363685
Snippet Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition...
SourceID unpaywall
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Artificial neural networks
Biomarkers
Classification
Cognition
Decomposition reactions
deep convolutional neural network
Gait
gait analysis
Parameter identification
Parkinson's disease
recurrence plot
Regularization
Spectrum analysis
variational mode decomposition
Vertical forces
Title Parkinson's disease detection and stage classification: quantitative gait evaluation through variational mode decomposition and DCNN architecture
URI https://www.tandfonline.com/doi/abs/10.1080/09540091.2024.2383894
https://www.proquest.com/docview/3145983376
https://doi.org/10.1080/09540091.2024.2383894
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1360-0494
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: ABDBF
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: ADMLS
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: 0YH
  dateStart: 20231201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86D3rxW5zOkYPgqVu2pG3qTaZjCO7kQE8lSZMhjDpdp_hn-B_7kqZuO4iCl0IP7xHyS_I-8st7CJ3LDFBWAjw3iH4CJoUKRCxtRoxGKpNZplx1_bthNBix24ewYhPOPK3SxtCmLBThzmq7uYWcVYy4NngFsPISG911WQtsDhhdto42ujGYI1jS5HGwYHkQ14LXigRWpnrE85OaFfO0Urx0xQXdnOdT8fEuJpMla9TfRdvejcRXJe57aE3n-2inatGA_Y49QJ_2VbN74HUxw_4yBme6cASsHMMUYHAPxxor60Vb2pBD6hK_zEXu3p_BaYjH4qnAi7rg2Df3wW8QaPtkIrYtdUCzpah7HpjTft0bDvHybcUhGvVv7nuDwHdhCBSltAiM5pFWJskIUYZzKbgEn4rrLJQKAlwdSwVhidBGQ3TEZMRNIjmPpKSRTZVweoRq-XOujxGOlGFUhFSFsWIdQRKbQxGgXHYTIgSpo1Y1-em0LLaRdqoaph6t1KKVerTqKFmGKC1clsOULUlS-otso8Iz9fvWirAw4RRO3Tpqf2P8t8Gc_GMwp2jL_pYVJBuoVrzO9Rl4O4VsuvUMX0qGTZcx-AIyUvit
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UD3jx24ii9mDiaTDpNjpvBiWowAkSPC1t1xETMlGHxj_D_9j3uk7gYDTxvLyXpr-27_fe3gchZzIGlJUA5gbej-NJoRzRlBgRY4GKZRwr012_1w86Q-9u5I8WamEwrRJ96CRvFGHearzcGIwuUuLqQAvg6IXo3jW8GhgdsLreKlnzOfBzONPuQ2ee5uGaGbwo4qBMUcXzk5ol-7TUvXSJg5Zn6VR8vIvJZMEctbfIhuWR9CoHfpus6HSHbBYzGqi9srvkE8uaTYXX-Su1f2NorDOTgZVS2AMK_HCsqUIajXlDBqpL-jwTqSlAg-eQjsVjRueNwamd7kPfwNO20USKM3VAM-ao20Qwo_261e_Txd8Ve2TYvhm0Oo4dw-AoxljmJJoHWiVh7Loq4VwKLoFUcR37UoGHq5tSgV8idKLBPfJkwJNQAhBSsgBjJZztk1L6lOoDQgOVeEz4TPlN5V0IN8QgigDlshG6QrgVUis2P5rm3Taii6KJqUUrQrQii1aFhIsQRZkJcyT5TJKI_SJbLfCM7MVFEc8POYNnt0Lq3xj_bTGH_1jMKSl3Br1u1L3t3x-RdfyUt5OsklL2MtPHQH0yeWLO9hcJUPpb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aQb34FqtVcxA8rW5Ndpv1Jmqpr-JBQU9Lkk1EKGu1W8Wf4T92JpvV9iAKnpcJId9O5pvJPAjZURmgrCUwN_B-Aq6kDmRLYUSMxTpTWaZdd_2rbty55ed3UZVNOPBplehD27JRhLurUbn7ma0y4vaBFcCfl6B3d8D3wOaA0eWTZCoSIkbdDO8731keoRvBiyIBylRFPD8tM2aexpqXjlHQmWHel-9vstcbsUbtBTLnaSQ9KnFfJBMmXyLz1YgG6jV2mXxgVbMr8NodUP8YQzNTuASsnMIRUKCHD4ZqZNGYNuSQOqTPQ5m7-jO4DemDfCzod19w6of70FdwtH0wkeJIHVgZU9R9Hphb_eS426WjrxUr5LZ9enPcCfwUhkAzxorAGhEbbZMsDLUVQkmhgFMJk0VKg4NrWkqDWyKNNeAdcRULmygAQikWY6hEsFVSy59ys0ZorC1nMmI6amnelGGCMRQJi6uDJJQyrJO96vDTftlsI21WPUw9WimilXq06iQZhSgtXJTDliNJUvaLbKPCM_V6iyI8SgSDW7dO9r8w_ttm1v-xmW0yfX3STi_PuhcbZBa_lM0kG6RWvAzNJhCfQm25X_sTeeX5hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+disease+detection+and+stage+classification%3A+quantitative+gait+evaluation+through+variational+mode+decomposition+and+DCNN+architecture&rft.jtitle=Connection+science&rft.au=Balaji%2C+E&rft.au=Elumalai%2C+Vinodh+Kumar&rft.au=Dhanasekaran+Sandhiya&rft.au=Priya%2C+R+M+Swarna&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0954-0091&rft.eissn=1360-0494&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1080%2F09540091.2024.2383894&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0091&client=summon