Parkinson's disease detection and stage classification: quantitative gait evaluation through variational mode decomposition and DCNN architecture
Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition and dexterity. For diagnosing PD in a clinical setting, in addition to the neurological examinations, clinicians use the unified Park...
Saved in:
Published in | Connection science Vol. 36; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0954-0091 1360-0494 1360-0494 |
DOI | 10.1080/09540091.2024.2383894 |
Cover
Abstract | Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition and dexterity. For diagnosing PD in a clinical setting, in addition to the neurological examinations, clinicians use the unified Parkinson disease rating scale (UPDRS) to assess the motor and non-motor impairments. Such a clinical assessment highly depends on the experience and expertise of the clinicians, and it may result in biased evaluation. Hence, to assist the clinicians, we put forward a gait analysis-based deep convolutional neural network (DCNN) framework which leverages the potentials of variational mode decomposition (VMD) technique with the recurrence plots (RP) to enhance the PD severity classification performance. Specifically, transforming the VMD modes of vertical ground reaction force (VGRF) time series data into two-dimensional texture images to capture the temporal dependency, this work trains the DCNN classifier through recurrence images for its ability to extract the discriminative features among the PD severity levels. For evaluation, this study utilises the VGRF dataset of 93 PD subjects and 73 healthy controls from Physiobank for three different walking tests. Consequently, utilising VMD, RP and DCNN in a unified framework, this investigation shows that the PD severity rating can be significantly enhanced through DCNN model that is trained using RP of dominant intrinsic mode functions (IMFs). The novelty of the proposed framework lies in identifying the prominent gait biomarkers through dominant IMFs from power spectral analysis for reducing the computational burden of DCNN. Moreover, to handle the data over-fitting issue in the classifier, L2 regularisation technique, which penalises the weight parameters of the nodes, is used in combination with the dropout layer. Experimental results underscore that the proposed VMD-RP-DCNN architecture can address the spectral overlapping issue in VGRF decomposition and achieve an average PD severity prediction accuracy of 98.45%. |
---|---|
AbstractList | Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition and dexterity. For diagnosing PD in a clinical setting, in addition to the neurological examinations, clinicians use the unified Parkinson disease rating scale (UPDRS) to assess the motor and non-motor impairments. Such a clinical assessment highly depends on the experience and expertise of the clinicians, and it may result in biased evaluation. Hence, to assist the clinicians, we put forward a gait analysis-based deep convolutional neural network (DCNN) framework which leverages the potentials of variational mode decomposition (VMD) technique with the recurrence plots (RP) to enhance the PD severity classification performance. Specifically, transforming the VMD modes of vertical ground reaction force (VGRF) time series data into two-dimensional texture images to capture the temporal dependency, this work trains the DCNN classifier through recurrence images for its ability to extract the discriminative features among the PD severity levels. For evaluation, this study utilises the VGRF dataset of 93 PD subjects and 73 healthy controls from Physiobank for three different walking tests. Consequently, utilising VMD, RP and DCNN in a unified framework, this investigation shows that the PD severity rating can be significantly enhanced through DCNN model that is trained using RP of dominant intrinsic mode functions (IMFs). The novelty of the proposed framework lies in identifying the prominent gait biomarkers through dominant IMFs from power spectral analysis for reducing the computational burden of DCNN. Moreover, to handle the data over-fitting issue in the classifier, L2 regularisation technique, which penalises the weight parameters of the nodes, is used in combination with the dropout layer. Experimental results underscore that the proposed VMD-RP-DCNN architecture can address the spectral overlapping issue in VGRF decomposition and achieve an average PD severity prediction accuracy of 98.45%. |
Author | Shantharajah, S. P. E, Balaji Sandhiya, Dhanasekaran Elumalai, Vinodh Kumar Swarna Priya, R. M. |
Author_xml | – sequence: 1 givenname: Balaji surname: E fullname: E, Balaji organization: Vellore Institute of Technology – sequence: 2 givenname: Vinodh Kumar surname: Elumalai fullname: Elumalai, Vinodh Kumar email: vinodhkumar.e@vit.ac.in organization: Vellore Institute of Technology – sequence: 3 givenname: Dhanasekaran surname: Sandhiya fullname: Sandhiya, Dhanasekaran organization: National University of Singapore – sequence: 4 givenname: R. M. surname: Swarna Priya fullname: Swarna Priya, R. M. organization: Vellore Institute of Technology – sequence: 5 givenname: S. P. surname: Shantharajah fullname: Shantharajah, S. P. organization: Vellore Institute of Technology |
BookMark | eNqNkMFu2zAMhoWhA5Z2e4QBAnroyRll2a7cU4u03QYU3Q7bWaBlKlHrSKkkp8hj7I0XN92Ow04Eyf__CP7H7MgHT4x9FDAXoOATtHUF0Ip5CWU1L6WSqq3esJmQDRRQtdURm02aYhK9Y8cpPQBADULM2K_vGB-dT8GfJd67RJiI95TJZBc8R9_zlHFJ3AyYkrPO4LS44E8j-uzyvtsSX6LLnLY4jC9bnlcxjMsV32J0LxMc-Dr0E9mE9SYk95d-vbi_5xjNyk03x0jv2VuLQ6IPr_WE_by9-bH4Utx9-_x1cXVXGCllLiyphoxtewBjlepQdbItFfV1Z4SUdN6Zsq6RLIFqqq5Rtu2UarpONhKqUskT1hy4o9_g7hmHQW-iW2PcaQF6Clb_CVZPwerXYPfG04NxE8PTSCnrhzDG_YtJS1HVrZLyvNmr6oPKxJBSJPvf9MuDz3kb4hqfQxx6nXE3hGgjeuOmM_9E_AZ0FqHD |
Cites_doi | 10.1109/JSEN.7361 10.1016/j.eswa.2019.113075 10.1111/ejn.2007.26.issue-8 10.1016/j.icte.2016.10.005 10.3389/fphys.2020.587057 10.1016/j.compbiomed.2018.02.007 10.1016/j.cmpb.2017.04.007 10.1016/j.measurement.2019.107357 10.1016/j.neulet.2016.09.043 10.1016/j.artmed.2018.04.001 10.1016/j.bspc.2016.08.022 10.1007/s10618-019-00619-1 10.1111/ejn.2005.22.issue-5 10.1016/j.knosys.2017.10.017 10.1109/ISIE.2019.8781511 10.1016/j.medengphy.2017.12.006 10.1016/j.compbiomed.2019.04.031 10.1016/j.ejrad.2019.02.038 10.1609/aaai.v33i01.33011118 10.1016/j.future.2018.02.009 10.1016/j.neucom.2019.10.008 10.1016/j.asoc.2021.107463 10.1016/j.cmpb.2018.04.012 10.1016/j.jestch.2021.05.009 10.1016/j.bspc.2022.104448 10.1016/j.eswa.2022.118045 10.3390/pr10102127 10.1016/j.neunet.2018.01.005 10.1016/j.asoc.2021.107939 10.1016/j.bspc.2018.07.015 10.1109/TNSRE.2023.3277749 10.1016/j.eswa.2016.03.018 10.1016/j.patrec.2018.05.006 10.1002/mds.v20:9 10.1007/s10916-017-0877-2 10.1142/WSSNSA 10.3390/s19020242 10.1016/j.biosystems.2023.105006 10.1016/j.artmed.2019.01.005 10.1016/j.bspc.2021.102854 10.1109/JBHI.6221020 10.1016/j.array.2019.100004 10.1016/j.asoc.2020.106494 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION JQ2 NAPCQ ADTOC UNPAY |
DOI | 10.1080/09540091.2024.2383894 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Computer Science Collection Nursing & Allied Health Premium Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Nursing & Allied Health Premium ProQuest Computer Science Collection |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1360-0494 |
ExternalDocumentID | 10.1080/09540091.2024.2383894 10_1080_09540091_2024_2383894 2383894 |
Genre | Research Article |
GroupedDBID | .4S .7F .DC .QJ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACTIO ACUHS ADCVX ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGMYJ AIJEM AJWEG ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EAS EBS ECS EDO EMK EPL EPS ESO EST ESX E~A E~B F5P FEDTE FRP GROUPED_DOAJ GTTXZ H13 HF~ HVGLF HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 O9- RIG S-T SNACF TDBHL TFL TFT TFW TNC TTHFI TUS TWF UT5 UU3 ~S~ AAFWJ AAYXX ADMLS AFPKN AIYEW CITATION NX~ JQ2 NAPCQ 07I 4B5 7RV 8FE 8FG 8FI 8FJ 8G5 ABJNI ABUWG ADBBV ADTOC ADXEU AEHZU AEZBV AFION AFKRA AGBLW AGWUF AGYFW AKHJE AKMBP ALRRR ALXIB ARAPS AWYRJ AZQEC BENPR BGLVJ BGSSV BKEYQ BPHCQ BVXVI BWMZZ C0- C5H CAG CCPQU COF CYRSC DAOYK DEXXA DWQXO EJD EX3 FETWF FYUFA GNUQQ GUQSH HCIFZ IFELN K6V K7- L8C M2M M2O MVM NUSFT OPCYK P62 PCD PHGZM PHGZT PPXIY PQGLB PQQKQ PROAC PSYQQ PUEGO TAJZE TAP UB6 UKHRP UNPAY WOW |
ID | FETCH-LOGICAL-c333t-fe86ecf9d00cf88ba8b3928ed5bc133e7bc255aefe0864b68f9b886bb36304283 |
IEDL.DBID | 0YH |
ISSN | 0954-0091 1360-0494 |
IngestDate | Sun Sep 07 11:00:15 EDT 2025 Mon Jun 30 13:31:43 EDT 2025 Wed Oct 01 00:38:51 EDT 2025 Wed Dec 25 09:05:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-fe86ecf9d00cf88ba8b3928ed5bc133e7bc255aefe0864b68f9b886bb36304283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/09540091.2024.2383894 |
PQID | 3145983376 |
PQPubID | 32754 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_09540091_2024_2383894 crossref_primary_10_1080_09540091_2024_2383894 unpaywall_primary_10_1080_09540091_2024_2383894 proquest_journals_3145983376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Connection science |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_40_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
References_xml | – ident: e_1_3_2_5_1 doi: 10.1109/JSEN.7361 – ident: e_1_3_2_14_1 doi: 10.1016/j.eswa.2019.113075 – ident: e_1_3_2_19_1 doi: 10.1111/ejn.2007.26.issue-8 – ident: e_1_3_2_29_1 doi: 10.1016/j.icte.2016.10.005 – ident: e_1_3_2_39_1 doi: 10.3389/fphys.2020.587057 – ident: e_1_3_2_25_1 doi: 10.1016/j.compbiomed.2018.02.007 – ident: e_1_3_2_22_1 doi: 10.1016/j.cmpb.2017.04.007 – ident: e_1_3_2_20_1 doi: 10.1016/j.measurement.2019.107357 – ident: e_1_3_2_44_1 doi: 10.1016/j.neulet.2016.09.043 – ident: e_1_3_2_28_1 doi: 10.1016/j.artmed.2018.04.001 – ident: e_1_3_2_41_1 doi: 10.1016/j.bspc.2016.08.022 – ident: e_1_3_2_16_1 doi: 10.1007/s10618-019-00619-1 – ident: e_1_3_2_43_1 doi: 10.1111/ejn.2005.22.issue-5 – ident: e_1_3_2_12_1 doi: 10.1016/j.knosys.2017.10.017 – ident: e_1_3_2_4_1 doi: 10.1109/ISIE.2019.8781511 – ident: e_1_3_2_27_1 – ident: e_1_3_2_17_1 doi: 10.1016/j.medengphy.2017.12.006 – ident: e_1_3_2_32_1 doi: 10.1016/j.compbiomed.2019.04.031 – ident: e_1_3_2_31_1 doi: 10.1016/j.ejrad.2019.02.038 – ident: e_1_3_2_33_1 doi: 10.1609/aaai.v33i01.33011118 – ident: e_1_3_2_2_1 doi: 10.1016/j.future.2018.02.009 – ident: e_1_3_2_10_1 doi: 10.1016/j.neucom.2019.10.008 – ident: e_1_3_2_9_1 doi: 10.1016/j.asoc.2021.107463 – ident: e_1_3_2_3_1 doi: 10.1016/j.cmpb.2018.04.012 – ident: e_1_3_2_23_1 doi: 10.1016/j.jestch.2021.05.009 – ident: e_1_3_2_35_1 doi: 10.1016/j.bspc.2022.104448 – ident: e_1_3_2_37_1 doi: 10.1016/j.eswa.2022.118045 – ident: e_1_3_2_21_1 doi: 10.3390/pr10102127 – ident: e_1_3_2_6_1 doi: 10.1016/j.neunet.2018.01.005 – ident: e_1_3_2_40_1 doi: 10.1016/j.asoc.2021.107939 – ident: e_1_3_2_42_1 doi: 10.1016/j.bspc.2018.07.015 – ident: e_1_3_2_36_1 doi: 10.1109/TNSRE.2023.3277749 – ident: e_1_3_2_15_1 doi: 10.1016/j.eswa.2016.03.018 – ident: e_1_3_2_30_1 doi: 10.1016/j.patrec.2018.05.006 – ident: e_1_3_2_18_1 doi: 10.1002/mds.v20:9 – ident: e_1_3_2_26_1 doi: 10.1007/s10916-017-0877-2 – ident: e_1_3_2_13_1 doi: 10.1142/WSSNSA – ident: e_1_3_2_24_1 doi: 10.3390/s19020242 – ident: e_1_3_2_11_1 doi: 10.1016/j.biosystems.2023.105006 – ident: e_1_3_2_7_1 doi: 10.1016/j.artmed.2019.01.005 – ident: e_1_3_2_34_1 doi: 10.1016/j.bspc.2021.102854 – ident: e_1_3_2_38_1 doi: 10.1109/JBHI.6221020 – ident: e_1_3_2_45_1 doi: 10.1016/j.array.2019.100004 – ident: e_1_3_2_8_1 doi: 10.1016/j.asoc.2020.106494 |
SSID | ssj0005011 |
Score | 2.363685 |
Snippet | Parkinson's disease (PD) is a progressive, debilitating neurological movement disorder that affects the person's muscle control, movement, speech, cognition... |
SourceID | unpaywall proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Artificial neural networks Biomarkers Classification Cognition Decomposition reactions deep convolutional neural network Gait gait analysis Parameter identification Parkinson's disease recurrence plot Regularization Spectrum analysis variational mode decomposition Vertical forces |
Title | Parkinson's disease detection and stage classification: quantitative gait evaluation through variational mode decomposition and DCNN architecture |
URI | https://www.tandfonline.com/doi/abs/10.1080/09540091.2024.2383894 https://www.proquest.com/docview/3145983376 https://doi.org/10.1080/09540091.2024.2383894 |
UnpaywallVersion | publishedVersion |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1360-0494 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1360-0494 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: ABDBF dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: ADMLS dateStart: 19890101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: 0YH dateStart: 20231201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86D3rxW5zOkYPgqVu2pG3qTaZjCO7kQE8lSZMhjDpdp_hn-B_7kqZuO4iCl0IP7xHyS_I-8st7CJ3LDFBWAjw3iH4CJoUKRCxtRoxGKpNZplx1_bthNBix24ewYhPOPK3SxtCmLBThzmq7uYWcVYy4NngFsPISG911WQtsDhhdto42ujGYI1jS5HGwYHkQ14LXigRWpnrE85OaFfO0Urx0xQXdnOdT8fEuJpMla9TfRdvejcRXJe57aE3n-2inatGA_Y49QJ_2VbN74HUxw_4yBme6cASsHMMUYHAPxxor60Vb2pBD6hK_zEXu3p_BaYjH4qnAi7rg2Df3wW8QaPtkIrYtdUCzpah7HpjTft0bDvHybcUhGvVv7nuDwHdhCBSltAiM5pFWJskIUYZzKbgEn4rrLJQKAlwdSwVhidBGQ3TEZMRNIjmPpKSRTZVweoRq-XOujxGOlGFUhFSFsWIdQRKbQxGgXHYTIgSpo1Y1-em0LLaRdqoaph6t1KKVerTqKFmGKC1clsOULUlS-otso8Iz9fvWirAw4RRO3Tpqf2P8t8Gc_GMwp2jL_pYVJBuoVrzO9Rl4O4VsuvUMX0qGTZcx-AIyUvit |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UD3jx24ii9mDiaTDpNjpvBiWowAkSPC1t1xETMlGHxj_D_9j3uk7gYDTxvLyXpr-27_fe3gchZzIGlJUA5gbej-NJoRzRlBgRY4GKZRwr012_1w86Q-9u5I8WamEwrRJ96CRvFGHearzcGIwuUuLqQAvg6IXo3jW8GhgdsLreKlnzOfBzONPuQ2ee5uGaGbwo4qBMUcXzk5ol-7TUvXSJg5Zn6VR8vIvJZMEctbfIhuWR9CoHfpus6HSHbBYzGqi9srvkE8uaTYXX-Su1f2NorDOTgZVS2AMK_HCsqUIajXlDBqpL-jwTqSlAg-eQjsVjRueNwamd7kPfwNO20USKM3VAM-ao20Qwo_261e_Txd8Ve2TYvhm0Oo4dw-AoxljmJJoHWiVh7Loq4VwKLoFUcR37UoGHq5tSgV8idKLBPfJkwJNQAhBSsgBjJZztk1L6lOoDQgOVeEz4TPlN5V0IN8QgigDlshG6QrgVUis2P5rm3Taii6KJqUUrQrQii1aFhIsQRZkJcyT5TJKI_SJbLfCM7MVFEc8POYNnt0Lq3xj_bTGH_1jMKSl3Br1u1L3t3x-RdfyUt5OsklL2MtPHQH0yeWLO9hcJUPpb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aQb34FqtVcxA8rW5Ndpv1Jmqpr-JBQU9Lkk1EKGu1W8Wf4T92JpvV9iAKnpcJId9O5pvJPAjZURmgrCUwN_B-Aq6kDmRLYUSMxTpTWaZdd_2rbty55ed3UZVNOPBplehD27JRhLurUbn7ma0y4vaBFcCfl6B3d8D3wOaA0eWTZCoSIkbdDO8731keoRvBiyIBylRFPD8tM2aexpqXjlHQmWHel-9vstcbsUbtBTLnaSQ9KnFfJBMmXyLz1YgG6jV2mXxgVbMr8NodUP8YQzNTuASsnMIRUKCHD4ZqZNGYNuSQOqTPQ5m7-jO4DemDfCzod19w6of70FdwtH0wkeJIHVgZU9R9Hphb_eS426WjrxUr5LZ9enPcCfwUhkAzxorAGhEbbZMsDLUVQkmhgFMJk0VKg4NrWkqDWyKNNeAdcRULmygAQikWY6hEsFVSy59ys0ZorC1nMmI6amnelGGCMRQJi6uDJJQyrJO96vDTftlsI21WPUw9WimilXq06iQZhSgtXJTDliNJUvaLbKPCM_V6iyI8SgSDW7dO9r8w_ttm1v-xmW0yfX3STi_PuhcbZBa_lM0kG6RWvAzNJhCfQm25X_sTeeX5hA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+disease+detection+and+stage+classification%3A+quantitative+gait+evaluation+through+variational+mode+decomposition+and+DCNN+architecture&rft.jtitle=Connection+science&rft.au=Balaji%2C+E&rft.au=Elumalai%2C+Vinodh+Kumar&rft.au=Dhanasekaran+Sandhiya&rft.au=Priya%2C+R+M+Swarna&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0954-0091&rft.eissn=1360-0494&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1080%2F09540091.2024.2383894&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0091&client=summon |