Full-Spectrum Periodic Nonlinear Fourier Transform Optical Communication Through Solving the Riemann-Hilbert Problem
In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonline...
Saved in:
Published in | Journal of lightwave technology Vol. 38; no. 14; pp. 3602 - 3615 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8724 1558-2213 |
DOI | 10.1109/JLT.2020.2979322 |
Cover
Abstract | In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>-factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach. |
---|---|
AbstractList | In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q[Formula Omitted]-factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach. In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>-factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach. |
Author | Kamalian-Kopae, Morteza Turitsyn, Sergei K. Vasylchenkova, Anastasiia Prilepsky, Jaroslaw E. Shepelsky, Dmitry |
Author_xml | – sequence: 1 givenname: Morteza orcidid: 0000-0002-6278-976X surname: Kamalian-Kopae fullname: Kamalian-Kopae, Morteza email: kamalim1@aston.ac.uk organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K – sequence: 2 givenname: Anastasiia orcidid: 0000-0002-6997-9427 surname: Vasylchenkova fullname: Vasylchenkova, Anastasiia email: vasylcha@aston.ac.uk organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K – sequence: 3 givenname: Dmitry orcidid: 0000-0001-6616-5893 surname: Shepelsky fullname: Shepelsky, Dmitry email: shepelsky@ilt.kharkov.ua organization: B.Verkin Institute for Low Temperature Physics and Engineering, Kharkiv, Ukraine – sequence: 4 givenname: Jaroslaw E. orcidid: 0000-0002-3035-4112 surname: Prilepsky fullname: Prilepsky, Jaroslaw E. email: y.prylepskiy1@aston.ac.uk organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K – sequence: 5 givenname: Sergei K. orcidid: 0000-0003-0101-3834 surname: Turitsyn fullname: Turitsyn, Sergei K. email: s.k.turitsyn@aston.ac.uk organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K |
BookMark | eNp9kE1P6zAQRS0EEuVjj8TGEuv02R47TpaoosBTBQjKOnLdCTVy7OI4SPx7wit6CxasZhb3zNWcI7IfYkBCzjibcs7qP38Xy6lggk1FrWsQYo9MuFJVIQSHfTJhGqCotJCH5KjvXxnjUlZ6QvJ88L542qLNaejoAyYX187Suxi8C2gSncchOUx0mUzo25g6er_NzhpPZ7HrhjCu2cVAl5sUh5cNfYr-3YUXmjdIHx12JoTixvkVpkwfUlx57E7IQWt8j6ff85g8z6-Ws5ticX99O7tcFBYAcoGSKW4rUwtYA1i55qVoUWjLdFlWABJazpRUqxa1MaqytV4rpRWUbQvGcDgmF7u72xTfBuxz8zo-E8bKRkhRlqWseDWm2C5lU-z7hG2zTa4z6aPhrPly24xumy-3zbfbESl_INblfxpyMs7_Bp7vQIeI_3tqJnTNGHwCtV-JWA |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1016_j_cnsns_2024_108255 crossref_primary_10_1098_rspa_2023_0828 crossref_primary_10_1109_JLT_2024_3398561 crossref_primary_10_1364_OE_465574 crossref_primary_10_1111_sapm_12795 crossref_primary_10_1515_jiip_2022_0072 crossref_primary_10_1016_j_cnsns_2023_107311 crossref_primary_10_1109_JLT_2020_3013163 crossref_primary_10_1364_OE_546610 |
Cites_doi | 10.1364/OFC.2019.W2A.50 10.1109/ICSEE.2018.8721181 10.1109/ICP.2016.7510023 10.1364/OE.24.018370 10.1109/50.219570 10.1109/TIT.2014.2321155 10.1364/OE.24.018353 10.4310/AMSA.2017.v2.n2.a6 10.1364/SPPCOM.2018.SpM4G.5 10.1007/s00211-012-0459-7 10.1364/OPTICA.4.000307 10.1038/nphoton.2017.118 10.1109/TIT.2014.2321151 10.1103/PhysRevApplied.13.054021 10.1109/TIT.2015.2485944 10.1364/CLEO_AT.2017.JTh2A.135 10.1109/JLT.2017.2775105 10.1109/TIWDC.2015.7323325 10.1103/PhysRevA.37.815 10.1364/ACOFT.2016.ATh1C.4 10.1109/ECOC.2018.8535278 10.1109/JLT.2019.2902961 10.1109/CLEOE-EQEC.2019.8871832 10.1364/OFC.2019.M1I.6 10.1364/OE.25.020286 10.1109/JLT.2018.2877103 10.1093/imrn/rnz156 10.1007/s10092-010-0029-2 10.1109/LPT.2017.2722040 10.1049/cp.2019.1089 10.1038/ncomms12710 10.1109/ECOC.2018.8535439 10.1109/JLT.2017.2766622 10.1109/BICOP.2018.8658274 10.1038/s41598-019-42510-5 10.1364/OL.44.002264 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2020.2979322 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (UHCL Subscription) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 3615 |
ExternalDocumentID | 10_1109_JLT_2020_2979322 9027900 |
Genre | orig-research |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council; EPSRC funderid: 10.13039/501100000266 – fundername: Leverhulme Trust funderid: 10.13039/501100000275 – fundername: Erasmus+ mobility exchange programme |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c333t-e4051c8a923d33c4d162fe27c076683343f10545bfe7aa58c97d557536ff3aa13 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:17:47 EDT 2025 Tue Jul 01 01:01:54 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Wed Aug 27 02:29:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-e4051c8a923d33c4d162fe27c076683343f10545bfe7aa58c97d557536ff3aa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6278-976X 0000-0001-6616-5893 0000-0003-0101-3834 0000-0002-3035-4112 0000-0002-6997-9427 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9027900 |
PQID | 2426664818 |
PQPubID | 85485 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_JLT_2020_2979322 proquest_journals_2426664818 crossref_citationtrail_10_1109_JLT_2020_2979322 ieee_primary_9027900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 wahls (ref13) 2016 ref34 ref12 belokolos (ref23) 1994 ref37 ref15 ref36 ref14 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref38 ref19 ref18 agrawal (ref26) 2000 zakharov (ref1) 1972; 34 ref24 ref45 ref25 ref20 ref41 ref22 kamalian kopae (ref42) 2018 ref44 kotlyarov (ref28) 2017; 2 ref21 ref43 goossens (ref47) 2019 ref27 ref29 ref8 ref7 ref9 ref4 ref3 proakis (ref16) 2001; 4 ref6 ref5 trogdon (ref31) 2016 ref40 trogdon (ref30) 0; 469 goossens (ref46) 2019 |
References_xml | – ident: ref10 doi: 10.1364/OFC.2019.W2A.50 – ident: ref18 doi: 10.1109/ICSEE.2018.8721181 – ident: ref15 doi: 10.1364/OFC.2019.W2A.50 – ident: ref19 doi: 10.1109/ICP.2016.7510023 – ident: ref22 doi: 10.1364/OE.24.018370 – ident: ref2 doi: 10.1109/50.219570 – ident: ref39 doi: 10.1109/TIT.2014.2321155 – volume: 34 start-page: 62 year: 1972 ident: ref1 article-title: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media publication-title: Sov Phys JETP – ident: ref7 doi: 10.1364/OE.24.018353 – volume: 2 start-page: 343 year: 2017 ident: ref28 article-title: Planar unmodular Baker-Akhiezer function for the nonlinear Schrödinger equation publication-title: Ann Math Sci Appl doi: 10.4310/AMSA.2017.v2.n2.a6 – volume: 4 year: 2001 ident: ref16 publication-title: Digital Communications – year: 2016 ident: ref31 publication-title: Riemann-Hilbert Problems Their Numerical Solution and the Computation of Nonlinear Special Functions – ident: ref44 doi: 10.1364/SPPCOM.2018.SpM4G.5 – ident: ref29 doi: 10.1007/s00211-012-0459-7 – ident: ref4 doi: 10.1364/OPTICA.4.000307 – ident: ref5 doi: 10.1038/nphoton.2017.118 – volume: 469 year: 0 ident: ref30 article-title: Numerical inverse scattering for the focusing and defocusing nonlinear Schrödinger equations publication-title: Proc Royal Society Math Phys Sci – ident: ref3 doi: 10.1109/TIT.2014.2321151 – ident: ref11 doi: 10.1103/PhysRevApplied.13.054021 – ident: ref14 doi: 10.1109/TIT.2015.2485944 – year: 2019 ident: ref46 article-title: Data transmission based on exact inverse periodic nonlinear Fourier transform, Part I: Theory – ident: ref36 doi: 10.1364/CLEO_AT.2017.JTh2A.135 – year: 2018 ident: ref42 article-title: On nonlinear fourier transform-based fibre-optic communication systems for periodic signals – ident: ref27 doi: 10.1109/JLT.2017.2775105 – ident: ref38 doi: 10.1109/TIWDC.2015.7323325 – ident: ref40 doi: 10.1103/PhysRevA.37.815 – ident: ref17 doi: 10.1364/ACOFT.2016.ATh1C.4 – ident: ref8 doi: 10.1109/ECOC.2018.8535278 – ident: ref43 doi: 10.1109/JLT.2019.2902961 – ident: ref34 doi: 10.1109/CLEOE-EQEC.2019.8871832 – ident: ref20 doi: 10.1364/OFC.2019.M1I.6 – ident: ref37 doi: 10.1364/OE.25.020286 – year: 2000 ident: ref26 publication-title: Nonlinear Fiber Optics – ident: ref21 doi: 10.1109/JLT.2018.2877103 – ident: ref41 doi: 10.1093/imrn/rnz156 – ident: ref25 doi: 10.1007/s10092-010-0029-2 – start-page: 1 year: 2016 ident: ref13 article-title: Fast inverse nonlinear Fourier transforms for continuous spectra of Zakharov-Shabat type – ident: ref12 doi: 10.1109/LPT.2017.2722040 – ident: ref35 doi: 10.1049/cp.2019.1089 – ident: ref6 doi: 10.1038/ncomms12710 – ident: ref24 doi: 10.1109/ECOC.2018.8535439 – ident: ref9 doi: 10.1109/JLT.2017.2766622 – ident: ref33 doi: 10.1109/BICOP.2018.8658274 – year: 2019 ident: ref47 article-title: Data transmission based on exact inverse periodic nonlinear Fourier transform, Part II: Waveform design and experiment – ident: ref32 doi: 10.1038/s41598-019-42510-5 – ident: ref45 doi: 10.1364/OL.44.002264 – year: 1994 ident: ref23 publication-title: Algebro-geometric Approach to Nonlinear Integrable Equations |
SSID | ssj0014487 |
Score | 2.4147177 |
Snippet | In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3602 |
SubjectTerms | Bit error rate coherent communications Communications systems Computer simulation Fibre-optic communications Fourier transforms Inverse problems inverse scattering Mathematical model Nonlinear control nonlinear Fourier transform Nonlinear optics Optical communication Optical fiber communication Riemann-Hilbert problem Signal processing Time domain analysis |
Title | Full-Spectrum Periodic Nonlinear Fourier Transform Optical Communication Through Solving the Riemann-Hilbert Problem |
URI | https://ieeexplore.ieee.org/document/9027900 https://www.proquest.com/docview/2426664818 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oQPDi1ClOp-TgRbBblzRpexRxjOEvdANvJUlTGG6duO7iX-9L2g78gXjrISmB773k-17y3gM4FxKVcaq4F2UuWoU-pyKZejwyeD4YFSqXW3V3L4aTYPTCXzbgcp0LY4xxj89M1366u_x0oVc2VNaLUUPFPgr0TTSzMldrfWOAMsOlRoeMoYfToL6S9OPe6HaMQpD6XRqjNVL65QhyPVV-bMTudBk04a5eV_mo5LW7KlRXf3wr2fjfhe_CTkUzyVVpF3uwYfJ9aFaUk1QOvdyHLfcCVC9bUFgx6tl29MX7ak4e0TIX6VST-7KWhnwng7K9HRnXXJc8vLlIOPmSZULGZesf8ryY2WgFQYpJnqZmLvPcG05tTa2CPJZ9bA5gMrgZXw-9qiWDpxljhWeQ3_V1JJEWpozpIO0Lmhkaaj8UImIsYBkStoCrzIRS8kjHYcqRETKRZUzKPjuERr7IzREQgQ6vufaFVDRA1SNlkMXMRJJyg9uwakOvRinRVb1y2zZjljjd4scJ4ppYXJMK1zZcrGe8lbU6_hjbsjCtx1UItaFTG0JSOfMycSxGBEhtjn-fdQLb9t825NvnHWggTuYUuUqhzpyRfgLgyeWO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ra9swED5CRule2jXdWLp01UNfBnXiSJZsP47RkKZJFjoX8mYkWYaw1imN89Jf35NsB9KNsTdjLCz47qTvO-nuAC6FRGWcKe5FuYtWoc-pSGYejwzuD0aFyuVWzeZifB9MlnzZgqtdLowxxl0-M3376M7ys7Xe2lDZIEYNFfso0N9xVBVRla21OzPAVy45OmQMfZwGzaGkHw8m0wSlIPX7NEZ7pHRvE3JdVf5Yit3-MjqGWTOz6lrJ7_62VH398qZo4_9O_QMc1USTfK8s4wRapujAcU06Se3Smw4cuDugenMKpZWjnm1IXz5vH8kCbXOdrTSZV9U05DMZVQ3uSNKwXfLzycXCyV6eCUmq5j_k1_rBxisIkkxytzKPsii88cpW1SrJoupk8xHuR9fJj7FXN2XwNGOs9AwyvKGOJBLDjDEdZENBc0ND7YdCRIwFLEfKFnCVm1BKHuk4zDhyQibynEk5ZJ-gXawL8xmIQJfXXPtCKhqg7pEyyGNmIkm5wYVYdWHQoJTqumK5bZzxkDrl4scp4ppaXNMa1y582414qqp1_OPbUwvT7rsaoS70GkNIa3fepI7HiADJzdnfR13A4TiZTdPpzfz2C7y3_7EB4CHvQRsxM-fIXEr11RnsKxuE6OE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-Spectrum+Periodic+Nonlinear+Fourier+Transform+Optical+Communication+Through+Solving+the+Riemann-Hilbert+Problem&rft.jtitle=Journal+of+lightwave+technology&rft.au=Kamalian-Kopae%2C+Morteza&rft.au=Vasylchenkova%2C+Anastasiia&rft.au=Shepelsky%2C+Dmitry&rft.au=Prilepsky%2C+Jaroslaw+E.&rft.date=2020-07-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=14&rft.spage=3602&rft.epage=3615&rft_id=info:doi/10.1109%2FJLT.2020.2979322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_2979322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |