Full-Spectrum Periodic Nonlinear Fourier Transform Optical Communication Through Solving the Riemann-Hilbert Problem

In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonline...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 38; no. 14; pp. 3602 - 3615
Main Authors Kamalian-Kopae, Morteza, Vasylchenkova, Anastasiia, Shepelsky, Dmitry, Prilepsky, Jaroslaw E., Turitsyn, Sergei K.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2020.2979322

Cover

Abstract In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>-factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach.
AbstractList In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q[Formula Omitted]-factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach.
In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>-factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach.
Author Kamalian-Kopae, Morteza
Turitsyn, Sergei K.
Vasylchenkova, Anastasiia
Prilepsky, Jaroslaw E.
Shepelsky, Dmitry
Author_xml – sequence: 1
  givenname: Morteza
  orcidid: 0000-0002-6278-976X
  surname: Kamalian-Kopae
  fullname: Kamalian-Kopae, Morteza
  email: kamalim1@aston.ac.uk
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
– sequence: 2
  givenname: Anastasiia
  orcidid: 0000-0002-6997-9427
  surname: Vasylchenkova
  fullname: Vasylchenkova, Anastasiia
  email: vasylcha@aston.ac.uk
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
– sequence: 3
  givenname: Dmitry
  orcidid: 0000-0001-6616-5893
  surname: Shepelsky
  fullname: Shepelsky, Dmitry
  email: shepelsky@ilt.kharkov.ua
  organization: B.Verkin Institute for Low Temperature Physics and Engineering, Kharkiv, Ukraine
– sequence: 4
  givenname: Jaroslaw E.
  orcidid: 0000-0002-3035-4112
  surname: Prilepsky
  fullname: Prilepsky, Jaroslaw E.
  email: y.prylepskiy1@aston.ac.uk
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
– sequence: 5
  givenname: Sergei K.
  orcidid: 0000-0003-0101-3834
  surname: Turitsyn
  fullname: Turitsyn, Sergei K.
  email: s.k.turitsyn@aston.ac.uk
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
BookMark eNp9kE1P6zAQRS0EEuVjj8TGEuv02R47TpaoosBTBQjKOnLdCTVy7OI4SPx7wit6CxasZhb3zNWcI7IfYkBCzjibcs7qP38Xy6lggk1FrWsQYo9MuFJVIQSHfTJhGqCotJCH5KjvXxnjUlZ6QvJ88L542qLNaejoAyYX187Suxi8C2gSncchOUx0mUzo25g6er_NzhpPZ7HrhjCu2cVAl5sUh5cNfYr-3YUXmjdIHx12JoTixvkVpkwfUlx57E7IQWt8j6ff85g8z6-Ws5ticX99O7tcFBYAcoGSKW4rUwtYA1i55qVoUWjLdFlWABJazpRUqxa1MaqytV4rpRWUbQvGcDgmF7u72xTfBuxz8zo-E8bKRkhRlqWseDWm2C5lU-z7hG2zTa4z6aPhrPly24xumy-3zbfbESl_INblfxpyMs7_Bp7vQIeI_3tqJnTNGHwCtV-JWA
CODEN JLTEDG
CitedBy_id crossref_primary_10_1016_j_cnsns_2024_108255
crossref_primary_10_1098_rspa_2023_0828
crossref_primary_10_1109_JLT_2024_3398561
crossref_primary_10_1364_OE_465574
crossref_primary_10_1111_sapm_12795
crossref_primary_10_1515_jiip_2022_0072
crossref_primary_10_1016_j_cnsns_2023_107311
crossref_primary_10_1109_JLT_2020_3013163
crossref_primary_10_1364_OE_546610
Cites_doi 10.1364/OFC.2019.W2A.50
10.1109/ICSEE.2018.8721181
10.1109/ICP.2016.7510023
10.1364/OE.24.018370
10.1109/50.219570
10.1109/TIT.2014.2321155
10.1364/OE.24.018353
10.4310/AMSA.2017.v2.n2.a6
10.1364/SPPCOM.2018.SpM4G.5
10.1007/s00211-012-0459-7
10.1364/OPTICA.4.000307
10.1038/nphoton.2017.118
10.1109/TIT.2014.2321151
10.1103/PhysRevApplied.13.054021
10.1109/TIT.2015.2485944
10.1364/CLEO_AT.2017.JTh2A.135
10.1109/JLT.2017.2775105
10.1109/TIWDC.2015.7323325
10.1103/PhysRevA.37.815
10.1364/ACOFT.2016.ATh1C.4
10.1109/ECOC.2018.8535278
10.1109/JLT.2019.2902961
10.1109/CLEOE-EQEC.2019.8871832
10.1364/OFC.2019.M1I.6
10.1364/OE.25.020286
10.1109/JLT.2018.2877103
10.1093/imrn/rnz156
10.1007/s10092-010-0029-2
10.1109/LPT.2017.2722040
10.1049/cp.2019.1089
10.1038/ncomms12710
10.1109/ECOC.2018.8535439
10.1109/JLT.2017.2766622
10.1109/BICOP.2018.8658274
10.1038/s41598-019-42510-5
10.1364/OL.44.002264
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2020.2979322
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (UHCL Subscription)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 3615
ExternalDocumentID 10_1109_JLT_2020_2979322
9027900
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council; EPSRC
  funderid: 10.13039/501100000266
– fundername: Leverhulme Trust
  funderid: 10.13039/501100000275
– fundername: Erasmus+ mobility exchange programme
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c333t-e4051c8a923d33c4d162fe27c076683343f10545bfe7aa58c97d557536ff3aa13
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:17:47 EDT 2025
Tue Jul 01 01:01:54 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
Wed Aug 27 02:29:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-e4051c8a923d33c4d162fe27c076683343f10545bfe7aa58c97d557536ff3aa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6278-976X
0000-0001-6616-5893
0000-0003-0101-3834
0000-0002-3035-4112
0000-0002-6997-9427
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9027900
PQID 2426664818
PQPubID 85485
PageCount 14
ParticipantIDs crossref_primary_10_1109_JLT_2020_2979322
proquest_journals_2426664818
crossref_citationtrail_10_1109_JLT_2020_2979322
ieee_primary_9027900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-15
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
wahls (ref13) 2016
ref34
ref12
belokolos (ref23) 1994
ref37
ref15
ref36
ref14
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref38
ref19
ref18
agrawal (ref26) 2000
zakharov (ref1) 1972; 34
ref24
ref45
ref25
ref20
ref41
ref22
kamalian kopae (ref42) 2018
ref44
kotlyarov (ref28) 2017; 2
ref21
ref43
goossens (ref47) 2019
ref27
ref29
ref8
ref7
ref9
ref4
ref3
proakis (ref16) 2001; 4
ref6
ref5
trogdon (ref31) 2016
ref40
trogdon (ref30) 0; 469
goossens (ref46) 2019
References_xml – ident: ref10
  doi: 10.1364/OFC.2019.W2A.50
– ident: ref18
  doi: 10.1109/ICSEE.2018.8721181
– ident: ref15
  doi: 10.1364/OFC.2019.W2A.50
– ident: ref19
  doi: 10.1109/ICP.2016.7510023
– ident: ref22
  doi: 10.1364/OE.24.018370
– ident: ref2
  doi: 10.1109/50.219570
– ident: ref39
  doi: 10.1109/TIT.2014.2321155
– volume: 34
  start-page: 62
  year: 1972
  ident: ref1
  article-title: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
  publication-title: Sov Phys JETP
– ident: ref7
  doi: 10.1364/OE.24.018353
– volume: 2
  start-page: 343
  year: 2017
  ident: ref28
  article-title: Planar unmodular Baker-Akhiezer function for the nonlinear Schrödinger equation
  publication-title: Ann Math Sci Appl
  doi: 10.4310/AMSA.2017.v2.n2.a6
– volume: 4
  year: 2001
  ident: ref16
  publication-title: Digital Communications
– year: 2016
  ident: ref31
  publication-title: Riemann-Hilbert Problems Their Numerical Solution and the Computation of Nonlinear Special Functions
– ident: ref44
  doi: 10.1364/SPPCOM.2018.SpM4G.5
– ident: ref29
  doi: 10.1007/s00211-012-0459-7
– ident: ref4
  doi: 10.1364/OPTICA.4.000307
– ident: ref5
  doi: 10.1038/nphoton.2017.118
– volume: 469
  year: 0
  ident: ref30
  article-title: Numerical inverse scattering for the focusing and defocusing nonlinear Schrödinger equations
  publication-title: Proc Royal Society Math Phys Sci
– ident: ref3
  doi: 10.1109/TIT.2014.2321151
– ident: ref11
  doi: 10.1103/PhysRevApplied.13.054021
– ident: ref14
  doi: 10.1109/TIT.2015.2485944
– year: 2019
  ident: ref46
  article-title: Data transmission based on exact inverse periodic nonlinear Fourier transform, Part I: Theory
– ident: ref36
  doi: 10.1364/CLEO_AT.2017.JTh2A.135
– year: 2018
  ident: ref42
  article-title: On nonlinear fourier transform-based fibre-optic communication systems for periodic signals
– ident: ref27
  doi: 10.1109/JLT.2017.2775105
– ident: ref38
  doi: 10.1109/TIWDC.2015.7323325
– ident: ref40
  doi: 10.1103/PhysRevA.37.815
– ident: ref17
  doi: 10.1364/ACOFT.2016.ATh1C.4
– ident: ref8
  doi: 10.1109/ECOC.2018.8535278
– ident: ref43
  doi: 10.1109/JLT.2019.2902961
– ident: ref34
  doi: 10.1109/CLEOE-EQEC.2019.8871832
– ident: ref20
  doi: 10.1364/OFC.2019.M1I.6
– ident: ref37
  doi: 10.1364/OE.25.020286
– year: 2000
  ident: ref26
  publication-title: Nonlinear Fiber Optics
– ident: ref21
  doi: 10.1109/JLT.2018.2877103
– ident: ref41
  doi: 10.1093/imrn/rnz156
– ident: ref25
  doi: 10.1007/s10092-010-0029-2
– start-page: 1
  year: 2016
  ident: ref13
  article-title: Fast inverse nonlinear Fourier transforms for continuous spectra of Zakharov-Shabat type
– ident: ref12
  doi: 10.1109/LPT.2017.2722040
– ident: ref35
  doi: 10.1049/cp.2019.1089
– ident: ref6
  doi: 10.1038/ncomms12710
– ident: ref24
  doi: 10.1109/ECOC.2018.8535439
– ident: ref9
  doi: 10.1109/JLT.2017.2766622
– ident: ref33
  doi: 10.1109/BICOP.2018.8658274
– year: 2019
  ident: ref47
  article-title: Data transmission based on exact inverse periodic nonlinear Fourier transform, Part II: Waveform design and experiment
– ident: ref32
  doi: 10.1038/s41598-019-42510-5
– ident: ref45
  doi: 10.1364/OL.44.002264
– year: 1994
  ident: ref23
  publication-title: Algebro-geometric Approach to Nonlinear Integrable Equations
SSID ssj0014487
Score 2.4147177
Snippet In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3602
SubjectTerms Bit error rate
coherent communications
Communications systems
Computer simulation
Fibre-optic communications
Fourier transforms
Inverse problems
inverse scattering
Mathematical model
Nonlinear control
nonlinear Fourier transform
Nonlinear optics
Optical communication
Optical fiber communication
Riemann-Hilbert problem
Signal processing
Time domain analysis
Title Full-Spectrum Periodic Nonlinear Fourier Transform Optical Communication Through Solving the Riemann-Hilbert Problem
URI https://ieeexplore.ieee.org/document/9027900
https://www.proquest.com/docview/2426664818
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oQPDi1ClOp-TgRbBblzRpexRxjOEvdANvJUlTGG6duO7iX-9L2g78gXjrISmB773k-17y3gM4FxKVcaq4F2UuWoU-pyKZejwyeD4YFSqXW3V3L4aTYPTCXzbgcp0LY4xxj89M1366u_x0oVc2VNaLUUPFPgr0TTSzMldrfWOAMsOlRoeMoYfToL6S9OPe6HaMQpD6XRqjNVL65QhyPVV-bMTudBk04a5eV_mo5LW7KlRXf3wr2fjfhe_CTkUzyVVpF3uwYfJ9aFaUk1QOvdyHLfcCVC9bUFgx6tl29MX7ak4e0TIX6VST-7KWhnwng7K9HRnXXJc8vLlIOPmSZULGZesf8ryY2WgFQYpJnqZmLvPcG05tTa2CPJZ9bA5gMrgZXw-9qiWDpxljhWeQ3_V1JJEWpozpIO0Lmhkaaj8UImIsYBkStoCrzIRS8kjHYcqRETKRZUzKPjuERr7IzREQgQ6vufaFVDRA1SNlkMXMRJJyg9uwakOvRinRVb1y2zZjljjd4scJ4ppYXJMK1zZcrGe8lbU6_hjbsjCtx1UItaFTG0JSOfMycSxGBEhtjn-fdQLb9t825NvnHWggTuYUuUqhzpyRfgLgyeWO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ra9swED5CRule2jXdWLp01UNfBnXiSJZsP47RkKZJFjoX8mYkWYaw1imN89Jf35NsB9KNsTdjLCz47qTvO-nuAC6FRGWcKe5FuYtWoc-pSGYejwzuD0aFyuVWzeZifB9MlnzZgqtdLowxxl0-M3376M7ys7Xe2lDZIEYNFfso0N9xVBVRla21OzPAVy45OmQMfZwGzaGkHw8m0wSlIPX7NEZ7pHRvE3JdVf5Yit3-MjqGWTOz6lrJ7_62VH398qZo4_9O_QMc1USTfK8s4wRapujAcU06Se3Smw4cuDugenMKpZWjnm1IXz5vH8kCbXOdrTSZV9U05DMZVQ3uSNKwXfLzycXCyV6eCUmq5j_k1_rBxisIkkxytzKPsii88cpW1SrJoupk8xHuR9fJj7FXN2XwNGOs9AwyvKGOJBLDjDEdZENBc0ND7YdCRIwFLEfKFnCVm1BKHuk4zDhyQibynEk5ZJ-gXawL8xmIQJfXXPtCKhqg7pEyyGNmIkm5wYVYdWHQoJTqumK5bZzxkDrl4scp4ppaXNMa1y582414qqp1_OPbUwvT7rsaoS70GkNIa3fepI7HiADJzdnfR13A4TiZTdPpzfz2C7y3_7EB4CHvQRsxM-fIXEr11RnsKxuE6OE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-Spectrum+Periodic+Nonlinear+Fourier+Transform+Optical+Communication+Through+Solving+the+Riemann-Hilbert+Problem&rft.jtitle=Journal+of+lightwave+technology&rft.au=Kamalian-Kopae%2C+Morteza&rft.au=Vasylchenkova%2C+Anastasiia&rft.au=Shepelsky%2C+Dmitry&rft.au=Prilepsky%2C+Jaroslaw+E.&rft.date=2020-07-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=14&rft.spage=3602&rft.epage=3615&rft_id=info:doi/10.1109%2FJLT.2020.2979322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_2979322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon