Diversified learning for continuous hidden Markov models with application to fault diagnosis

•The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is effectively performed. The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 42; no. 23; pp. 9165 - 9173
Main Authors Li, Zefang, Fang, Huajing, Huang, Ming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2015
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2015.08.027

Cover

Abstract •The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is effectively performed. The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring no special form of the objective function and yielding various parameter estimates with different degree of diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that the global maximum of the likelihood function of CHMM can be better approximated or even discovered. Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform better in parameter estimation and bearing fault diagnosis compared to the conventional methods.
AbstractList •The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is effectively performed. The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring no special form of the objective function and yielding various parameter estimates with different degree of diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that the global maximum of the likelihood function of CHMM can be better approximated or even discovered. Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform better in parameter estimation and bearing fault diagnosis compared to the conventional methods.
The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring no special form of the objective function and yielding various parameter estimates with different degree of diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that the global maximum of the likelihood function of CHMM can be better approximated or even discovered. Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform better in parameter estimation and bearing fault diagnosis compared to the conventional methods.
Author Fang, Huajing
Li, Zefang
Huang, Ming
Author_xml – sequence: 1
  givenname: Zefang
  surname: Li
  fullname: Li, Zefang
  email: 408729494@qq.com
  organization: The School of Automation, Huazhong University of Science and Technology, 1037 Luo-yu Road, Wuhan 430074, PR China
– sequence: 2
  givenname: Huajing
  surname: Fang
  fullname: Fang, Huajing
  email: hjfang@mail.hust.edu.cn
  organization: The School of Automation, Huazhong University of Science and Technology, 1037 Luo-yu Road, Wuhan 430074, PR China
– sequence: 3
  givenname: Ming
  surname: Huang
  fullname: Huang, Ming
  email: 35706916@qq.com
  organization: The School of Automation, Huazhong University of Science and Technology, 1037 Luo-yu Road, Wuhan 430074, PR China
BookMark eNp9kD1v2zAURYnCBWq7_QOdOGaR8ihKogR0KfJZIEGXZgtA0ORT8lyZdEnaRv995TpTBk_vDfdcXJwFm_ngkbGvAkoBor1cl5gOpqxANCV0JVTqA5uLTsmiVb2csTn0jSpqoepPbJHSGkAoADVnz9e0x5hoIHR8RBM9-Rc-hMht8Jn8LuwSfyXn0PNHE3-HPd8Eh2PiB8qv3Gy3I1mTKXieAx_MbszckXnxIVH6zD4OZkz45e0u2dPtza-r--Lh592Pq-8PhZVS5sLhqgLXO6gGo1rrVkI2ArGujy_2q6Y2lQDlKgWDHPqubUFCraRD1a_aWsoluzj1bmP4s8OU9YaSxXE0Hqf9WnRVUzedBDFFu1PUxpBSxEFbyv_352ho1AL0Uahe66NQfRSqodOT0Amt3qHbSBsT_56Hvp2gSRnuCaNOltBbdBTRZu0CncP_ARtckzA
CitedBy_id crossref_primary_10_1155_2020_4302184
crossref_primary_10_3390_electronics9010181
crossref_primary_10_1016_j_asoc_2017_06_035
crossref_primary_10_1016_j_cie_2017_12_002
crossref_primary_10_1016_j_eswa_2016_06_040
crossref_primary_10_1016_j_isatra_2018_12_025
crossref_primary_10_1016_j_sigpro_2016_07_028
crossref_primary_10_1007_s13198_023_01950_z
crossref_primary_10_1016_j_sigpro_2018_12_005
crossref_primary_10_1088_1361_6501_ac3627
crossref_primary_10_1016_j_eswa_2020_114022
crossref_primary_10_1016_j_sigpro_2019_03_019
crossref_primary_10_21595_jve_2022_22271
crossref_primary_10_3390_su14052756
crossref_primary_10_1016_j_measurement_2021_110099
crossref_primary_10_1016_j_neucom_2018_05_021
crossref_primary_10_1016_j_eswa_2016_01_014
crossref_primary_10_1155_2020_1274380
Cites_doi 10.1109/TASSP.1983.1164173
10.1016/j.eswa.2013.07.098
10.1016/j.ymssp.2013.03.008
10.1109/TIE.2008.2004666
10.1109/TPAMI.2010.153
10.1016/j.patrec.2008.12.012
10.1016/j.eswa.2013.06.006
10.1109/TIM.2013.2245180
10.1016/0167-6393(93)90029-K
10.1109/5.537105
10.1016/j.eswa.2013.11.026
10.1109/TPAMI.2006.146
10.1214/12-EJS704
10.1016/j.ymssp.2005.09.012
10.1016/j.jsv.2009.01.003
10.1109/5.18626
10.1016/j.asoc.2012.01.020
10.1109/TIE.2012.2213566
10.1109/TASL.2006.876766
10.1016/j.csda.2013.02.017
10.1109/TIM.2009.2023814
10.1090/S0002-9904-1967-11751-8
10.1002/j.1538-7305.1983.tb03114.x
10.1016/j.ymssp.2011.06.001
10.1016/j.aei.2004.08.001
10.1109/TII.2012.2205583
10.1006/csla.2001.0182
10.1109/TASL.2008.925882
10.1016/j.jprocont.2003.09.004
10.1016/j.eswa.2014.05.030
10.1016/j.eswa.2014.05.026
10.1016/j.eswa.2013.08.052
10.1007/s00362-011-0405-2
10.1016/j.procs.2014.05.516
10.1016/j.ymssp.2011.11.015
10.1109/TSA.2005.860835
10.1016/j.ymssp.2011.01.013
10.1016/j.isatra.2011.06.003
10.1109/TNN.2004.841805
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.08.027
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 9173
ExternalDocumentID 10_1016_j_eswa_2015_08_027
S0957417415005722
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-deb20d9d02fa76cdb1351ee44cdb1e9b54a2107d270f3f9866030473de79b6433
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Oct 02 11:22:52 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Wed Oct 01 03:51:46 EDT 2025
Fri Feb 23 02:29:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Fault diagnosis
Diversified gradient descent algorithm
Likelihood-based model averaging
Continuous hidden Markov models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-deb20d9d02fa76cdb1351ee44cdb1e9b54a2107d270f3f9866030473de79b6433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825458301
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1825458301
crossref_citationtrail_10_1016_j_eswa_2015_08_027
crossref_primary_10_1016_j_eswa_2015_08_027
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_08_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-15
PublicationDateYYYYMMDD 2015-12-15
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schomaker (bib0035) 2012; 53
Li, Zhang, Wang, Mi, Liu (bib0024) 2011; 50
Wang, Kang, Jiang, Yang, Song, Mikulovich (bib0042) 2012; 29
Huo, Chan (bib0014) 1993; 13
Zhao, Jin, Zhao, Li (bib0047) 2014; 41
Yuan, Liu (bib0045) 2013; 38
Lee, Yoo, Lee (bib0021) 2004; 14
Zhou, Chen, Dong, Wang, Yuan (bib0048) 2015
Li, Zhang, He (bib0025) 2013; 62
Schomaker, Heumann (bib0036) 2014; 71
William, Hoffman (bib0043) 2011; 25
Baum, Egon (bib0003) 1967; 73
Biem (bib0004) 2006; 28
Friedman, Popescu (bib0011) 2003
Li, Fang, Xia (bib0026) 2014; 41
Dharanipragada, Visweswariah (bib0007) 2006; 14
Kohonen (bib0017) 1995
Elliott, Siu, Fung (bib0009) 2014; 41
Murphy, K. (1998). Hidden Markov model toolbox for Matlab.
Liang, Faghidi (bib0027) 2014; 41
Bahl, Brown, de Souza, Mercer (bib0002) 1986
Dias, Ramos (bib0008) 2014; 41
Azzalini, Bowman (bib0001) 1997
Wang, Zou, Wan (bib0040) 2012; 6
Liu, Wang, Golnaraghi (bib0028) 2010; 59
Immovilli, Bianchini, Cocconcelli, Bellini, Rubini (bib0015) 2013; 60
Qiu, Lee, Lin, Yu (bib0032) 2003; 17
Nelwamondo, Marwala, Mahola (bib0031a) 2006; 2
Frankel, King (bib0010) 2007; 15
Robinson, Azimi-Sadjadi, Salazar (bib0034) 2005; 16
Li, Liu, Hu, Mi, Fu (bib0023) 2012; 12
Kurimo (bib0019) 1994
Chatzis (bib0006) 2010; 32
Kohonen, Oja, Simula, Visa, Kangas (bib0018) 1996; 84
Rabiner (bib0033) 1989; 77
Woodland, Povey (bib0044) 2002; 16
Boutros, Liang (bib0005) 2011; 25
Geramifard, Xu, Zhou, Li (bib0013) 2012; 8
Tosun (bib0038) 2014; 32
Van Wyk, Van Wyk, Qi (bib0039) 2009; 30
Lebaroud, Clerc (bib0020) 2008; 55
Swansson, Favaloro (bib0037) 1984
Liu, Liu, Jiang, Song, Wang (bib0029) 2008; 16
Jardine, Lin, Banjevic (bib0016) 2006; 20
Levinson, Rabiner, Sondhi (bib0022) 1983; 62
Yuwono, Qin, Zhou, Guo, Celler, Su (bib0046) 2015
Nadas (bib0031) 1983; 31
Georgoulas, Mustafa, Tsoumas, Antonino-Daviu, Climente-Alarcon, Stylios (bib0012) 2013; 40
Wang, Li, Luo (bib0041) 2009; 323
Elliott (10.1016/j.eswa.2015.08.027_bib0009) 2014; 41
Jardine (10.1016/j.eswa.2015.08.027_bib0016) 2006; 20
William (10.1016/j.eswa.2015.08.027_bib0043) 2011; 25
Georgoulas (10.1016/j.eswa.2015.08.027_bib0012) 2013; 40
Chatzis (10.1016/j.eswa.2015.08.027_bib0006) 2010; 32
Liu (10.1016/j.eswa.2015.08.027_bib0028) 2010; 59
Kohonen (10.1016/j.eswa.2015.08.027_bib0018) 1996; 84
Li (10.1016/j.eswa.2015.08.027_bib0023) 2012; 12
Liu (10.1016/j.eswa.2015.08.027_bib0029) 2008; 16
Azzalini (10.1016/j.eswa.2015.08.027_bib0001) 1997
Lee (10.1016/j.eswa.2015.08.027_bib0021) 2004; 14
Yuwono (10.1016/j.eswa.2015.08.027_bib0046) 2015
Schomaker (10.1016/j.eswa.2015.08.027_bib0035) 2012; 53
Schomaker (10.1016/j.eswa.2015.08.027_bib0036) 2014; 71
Kurimo (10.1016/j.eswa.2015.08.027_bib0019) 1994
Nadas (10.1016/j.eswa.2015.08.027_bib0031) 1983; 31
Dharanipragada (10.1016/j.eswa.2015.08.027_bib0007) 2006; 14
Lebaroud (10.1016/j.eswa.2015.08.027_bib0020) 2008; 55
Tosun (10.1016/j.eswa.2015.08.027_bib0038) 2014; 32
Woodland (10.1016/j.eswa.2015.08.027_bib0044) 2002; 16
Zhou (10.1016/j.eswa.2015.08.027_bib0048) 2015
Boutros (10.1016/j.eswa.2015.08.027_bib0005) 2011; 25
Biem (10.1016/j.eswa.2015.08.027_bib0004) 2006; 28
10.1016/j.eswa.2015.08.027_bib0030
Wang (10.1016/j.eswa.2015.08.027_bib0040) 2012; 6
Dias (10.1016/j.eswa.2015.08.027_bib0008) 2014; 41
Li (10.1016/j.eswa.2015.08.027_bib0025) 2013; 62
Friedman (10.1016/j.eswa.2015.08.027_bib0011) 2003
Swansson (10.1016/j.eswa.2015.08.027_bib0037) 1984
Li (10.1016/j.eswa.2015.08.027_bib0024) 2011; 50
Baum (10.1016/j.eswa.2015.08.027_bib0003) 1967; 73
Van Wyk (10.1016/j.eswa.2015.08.027_bib0039) 2009; 30
Nelwamondo (10.1016/j.eswa.2015.08.027_bib0031a) 2006; 2
Wang (10.1016/j.eswa.2015.08.027_bib0041) 2009; 323
Frankel (10.1016/j.eswa.2015.08.027_bib0010) 2007; 15
Qiu (10.1016/j.eswa.2015.08.027_bib0032) 2003; 17
Liang (10.1016/j.eswa.2015.08.027_bib0027) 2014; 41
Robinson (10.1016/j.eswa.2015.08.027_bib0034) 2005; 16
Levinson (10.1016/j.eswa.2015.08.027_bib0022) 1983; 62
Geramifard (10.1016/j.eswa.2015.08.027_bib0013) 2012; 8
Immovilli (10.1016/j.eswa.2015.08.027_bib0015) 2013; 60
Zhao (10.1016/j.eswa.2015.08.027_bib0047) 2014; 41
Kohonen (10.1016/j.eswa.2015.08.027_bib0017) 1995
Rabiner (10.1016/j.eswa.2015.08.027_bib0033) 1989; 77
Bahl (10.1016/j.eswa.2015.08.027_bib0002) 1986
Huo (10.1016/j.eswa.2015.08.027_bib0014) 1993; 13
Li (10.1016/j.eswa.2015.08.027_bib0026) 2014; 41
Yuan (10.1016/j.eswa.2015.08.027_bib0045) 2013; 38
Wang (10.1016/j.eswa.2015.08.027_bib0042) 2012; 29
References_xml – year: 1984
  ident: bib0037
  article-title: Applications of vibration analysis to the condition monitoring of rolling element bearings. Technical Report ARL/AERO-PROP-R-163
– volume: 41
  start-page: 3391
  year: 2014
  end-page: 3401
  ident: bib0047
  article-title: Fault diagnosis of rolling element bearings via discriminative subspace learning: Visualization and classification
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 307
  year: 1993
  end-page: 313
  ident: bib0014
  article-title: The gradient projection method for the training of hidden Markov models
  publication-title: Speech Communication
– volume: 62
  start-page: 869
  year: 2013
  end-page: 879
  ident: bib0025
  article-title: Semi-supervised distance-preserving self-organizing map for machine-defect detection and classification
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 323
  start-page: 1077
  year: 2009
  end-page: 1089
  ident: bib0041
  article-title: Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model
  publication-title: Journal of Sound and Vibration
– volume: 16
  start-page: 447
  year: 2005
  end-page: 459
  ident: bib0034
  article-title: Multi-aspect target discrimination using hidden Markov models and neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 60
  start-page: 3408
  year: 2013
  end-page: 3418
  ident: bib0015
  article-title: Bearing fault model for induction motor with externally induced vibration
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 12
  start-page: 1708
  year: 2012
  end-page: 1719
  ident: bib0023
  article-title: Fuzzy lattice classifier and its application to bearing fault diagnosis
  publication-title: Applied Soft Computing
– volume: 32
  start-page: 2297
  year: 2010
  end-page: 2304
  ident: bib0006
  article-title: Hidden Markov models with nonelliptically contoured state densities
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 29
  start-page: 404
  year: 2012
  end-page: 414
  ident: bib0042
  article-title: Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine
  publication-title: Mechanical Systems and Signal Processing
– volume: 38
  start-page: 615
  year: 2013
  end-page: 627
  ident: bib0045
  article-title: Semi-supervised learning and condition fusion for fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– year: 1994
  ident: bib0019
  article-title: Application of learning vector quantization and Self-organizing maps for training continuous density and semi-continuous Markov models
– volume: 17
  start-page: 127
  year: 2003
  end-page: 140
  ident: bib0032
  article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
  publication-title: Advanced Engineering Information
– volume: 41
  start-page: 7223
  year: 2014
  end-page: 7234
  ident: bib0027
  article-title: Intelligent bearing fault detection by enhanced energy operator
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 1015
  year: 2012
  end-page: 1034
  ident: bib0035
  article-title: Shrinkage averaging estimation
  publication-title: Statistical Papers
– volume: 84
  start-page: 1358
  year: 1996
  end-page: 1384
  ident: bib0018
  article-title: Engineering application of the Self-organizing map
  publication-title: Proceedings of the IEEE
– volume: 2
  start-page: 1281
  year: 2006
  end-page: 1299
  ident: bib0031a
  article-title: Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency cepstral coefficients and fractals
  publication-title: International Journal of Innovative Computing Information and Control
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0033
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
– year: 1997
  ident: bib0001
  article-title: Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations
– volume: 16
  start-page: 25
  year: 2002
  end-page: 48
  ident: bib0044
  article-title: Large scale discriminative training of hidden Markov models for speech recognition
  publication-title: Computer Speech and Language
– volume: 55
  start-page: 4290
  year: 2008
  end-page: 4298
  ident: bib0020
  article-title: Classification of induction machine faults by optimal time–frequency representations
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2015
  ident: bib0046
  article-title: Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2003
  ident: bib0011
  article-title: Gradient directed regularization for linear regression and classification. Technical report
– volume: 50
  start-page: 599
  year: 2011
  end-page: 608
  ident: bib0024
  article-title: A weighted multi-scale morphological gradient filter for rolling element bearing fault detection
  publication-title: ISA Transactions
– volume: 14
  start-page: 1255
  year: 2006
  end-page: 1266
  ident: bib0007
  article-title: Gaussian mixture models with covariances or precisions in shared multiple subspaces
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– volume: 25
  start-page: 3078
  year: 2011
  end-page: 3088
  ident: bib0043
  article-title: Identification of bearing faults using time domain zero-crossings
  publication-title: Mechanical Systems and Signal Processing
– volume: 6
  start-page: 1017
  year: 2012
  end-page: 1039
  ident: bib0040
  article-title: Model averaging for varying-coefficient partially linear measurement error models
  publication-title: Electronic Journal of Statistics
– volume: 25
  start-page: 2102
  year: 2011
  end-page: 2124
  ident: bib0005
  article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
  publication-title: Mechanical Systems and Signal Processing
– volume: 30
  start-page: 595
  year: 2009
  end-page: 599
  ident: bib0039
  article-title: Difference histograms: A new tool for time series analysis applied to bearing fault diagnosis
  publication-title: Pattern Recognition Letters
– volume: 28
  start-page: 1041
  year: 2006
  end-page: 1051
  ident: bib0004
  article-title: Minimum classification error training for online handwriting recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 41
  start-page: 7722
  year: 2014
  end-page: 7729
  ident: bib0008
  article-title: Dynamic clustering of energy markets: An extended hidden Markov approach
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 246
  year: 2007
  end-page: 256
  ident: bib0010
  article-title: Speech recognition using linear dynamic models
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– volume: 40
  start-page: 7024
  year: 2013
  end-page: 7033
  ident: bib0012
  article-title: Principal component analysis of the start-up transient and hidden Markov modeling for broken rotor bar fault diagnosis in asynchronous machines
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib0016
  article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance
  publication-title: Mechanical Systems and Signal Processing
– volume: 16
  start-page: 900
  year: 2008
  end-page: 909
  ident: bib0029
  article-title: A constrained line search optimization method for discriminative training of HMMs
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– year: 2015
  ident: bib0048
  article-title: Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model
  publication-title: Mechanical Systems and Signal Processing
– volume: 73
  start-page: 360
  year: 1967
  end-page: 363
  ident: bib0003
  article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
  publication-title: Bulletin of the American Mathematical Society
– volume: 41
  start-page: 1553
  year: 2014
  end-page: 1560
  ident: bib0009
  article-title: A double HMM approach to Altman z-scores and credit ratings
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 947
  year: 2014
  end-page: 952
  ident: bib0038
  article-title: Policy misuse detection in communication networks with hidden Markov models
  publication-title: Procedia Computer Science
– start-page: 49
  year: 1986
  end-page: 52
  ident: bib0002
  article-title: Maximum mutual information estimation of hidden Markov model parameters for speech recognition
  publication-title: IEEE International Conference on ICASSP'86 Acoustics, Speech, and Signal Processing
– year: 1995
  ident: bib0017
  article-title: Self-organizing maps
– volume: 8
  start-page: 964
  year: 2012
  end-page: 973
  ident: bib0013
  article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: Diagnostics and prognostics
  publication-title: IEEE Transactions on Industrial Information
– volume: 59
  start-page: 309
  year: 2010
  end-page: 321
  ident: bib0028
  article-title: An enhanced diagnostic scheme for bearing condition monitoring
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 71
  start-page: 758
  year: 2014
  end-page: 770
  ident: bib0036
  article-title: Model selection and model averaging after multiple imputation
  publication-title: Computational Statistics and Data Analysis
– reference: Murphy, K. (1998). Hidden Markov model toolbox for Matlab.
– volume: 41
  start-page: 744
  year: 2014
  end-page: 751
  ident: bib0026
  article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 814
  year: 1983
  end-page: 817
  ident: bib0031
  article-title: A decision theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– volume: 14
  start-page: 467
  year: 2004
  end-page: 485
  ident: bib0021
  article-title: Statistical process monitoring with independent component analysis
  publication-title: Journal of Process Control
– volume: 62
  start-page: 1035
  year: 1983
  end-page: 1074
  ident: bib0022
  article-title: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition
  publication-title: Bell System Technical Journal
– volume: 31
  start-page: 814
  issue: 4
  year: 1983
  ident: 10.1016/j.eswa.2015.08.027_bib0031
  article-title: A decision theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/TASSP.1983.1164173
– volume: 41
  start-page: 744
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0026
  article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.07.098
– year: 2015
  ident: 10.1016/j.eswa.2015.08.027_bib0046
  article-title: Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2015
  ident: 10.1016/j.eswa.2015.08.027_bib0048
  article-title: Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model
  publication-title: Mechanical Systems and Signal Processing
– volume: 38
  start-page: 615
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2015.08.027_bib0045
  article-title: Semi-supervised learning and condition fusion for fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.03.008
– volume: 55
  start-page: 4290
  issue: 12
  year: 2008
  ident: 10.1016/j.eswa.2015.08.027_bib0020
  article-title: Classification of induction machine faults by optimal time–frequency representations
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2008.2004666
– ident: 10.1016/j.eswa.2015.08.027_bib0030
– volume: 32
  start-page: 2297
  issue: 12
  year: 2010
  ident: 10.1016/j.eswa.2015.08.027_bib0006
  article-title: Hidden Markov models with nonelliptically contoured state densities
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.153
– volume: 30
  start-page: 595
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2015.08.027_bib0039
  article-title: Difference histograms: A new tool for time series analysis applied to bearing fault diagnosis
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.12.012
– volume: 40
  start-page: 7024
  issue: 17
  year: 2013
  ident: 10.1016/j.eswa.2015.08.027_bib0012
  article-title: Principal component analysis of the start-up transient and hidden Markov modeling for broken rotor bar fault diagnosis in asynchronous machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.06.006
– volume: 62
  start-page: 869
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2015.08.027_bib0025
  article-title: Semi-supervised distance-preserving self-organizing map for machine-defect detection and classification
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2013.2245180
– volume: 13
  start-page: 307
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2015.08.027_bib0014
  article-title: The gradient projection method for the training of hidden Markov models
  publication-title: Speech Communication
  doi: 10.1016/0167-6393(93)90029-K
– volume: 84
  start-page: 1358
  issue: 10
  year: 1996
  ident: 10.1016/j.eswa.2015.08.027_bib0018
  article-title: Engineering application of the Self-organizing map
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.537105
– volume: 41
  start-page: 3391
  issue: 7
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0047
  article-title: Fault diagnosis of rolling element bearings via discriminative subspace learning: Visualization and classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.11.026
– volume: 28
  start-page: 1041
  issue: 7
  year: 2006
  ident: 10.1016/j.eswa.2015.08.027_bib0004
  article-title: Minimum classification error training for online handwriting recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.146
– volume: 6
  start-page: 1017
  year: 2012
  ident: 10.1016/j.eswa.2015.08.027_bib0040
  article-title: Model averaging for varying-coefficient partially linear measurement error models
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS704
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.eswa.2015.08.027_bib0016
  article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 323
  start-page: 1077
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2015.08.027_bib0041
  article-title: Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2009.01.003
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.eswa.2015.08.027_bib0033
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.18626
– volume: 12
  start-page: 1708
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2015.08.027_bib0023
  article-title: Fuzzy lattice classifier and its application to bearing fault diagnosis
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.01.020
– volume: 60
  start-page: 3408
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2015.08.027_bib0015
  article-title: Bearing fault model for induction motor with externally induced vibration
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2012.2213566
– volume: 2
  start-page: 1281
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2015.08.027_bib0031a
  article-title: Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency cepstral coefficients and fractals
  publication-title: International Journal of Innovative Computing Information and Control
– volume: 15
  start-page: 246
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.08.027_bib0010
  article-title: Speech recognition using linear dynamic models
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2006.876766
– volume: 71
  start-page: 758
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0036
  article-title: Model selection and model averaging after multiple imputation
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2013.02.017
– volume: 59
  start-page: 309
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2015.08.027_bib0028
  article-title: An enhanced diagnostic scheme for bearing condition monitoring
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2009.2023814
– volume: 73
  start-page: 360
  issue: 3
  year: 1967
  ident: 10.1016/j.eswa.2015.08.027_bib0003
  article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1967-11751-8
– volume: 62
  start-page: 1035
  issue: 4
  year: 1983
  ident: 10.1016/j.eswa.2015.08.027_bib0022
  article-title: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1983.tb03114.x
– volume: 25
  start-page: 3078
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2015.08.027_bib0043
  article-title: Identification of bearing faults using time domain zero-crossings
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.06.001
– volume: 17
  start-page: 127
  issue: 3
  year: 2003
  ident: 10.1016/j.eswa.2015.08.027_bib0032
  article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
  publication-title: Advanced Engineering Information
  doi: 10.1016/j.aei.2004.08.001
– volume: 8
  start-page: 964
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2015.08.027_bib0013
  article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: Diagnostics and prognostics
  publication-title: IEEE Transactions on Industrial Information
  doi: 10.1109/TII.2012.2205583
– volume: 16
  start-page: 25
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2015.08.027_bib0044
  article-title: Large scale discriminative training of hidden Markov models for speech recognition
  publication-title: Computer Speech and Language
  doi: 10.1006/csla.2001.0182
– volume: 16
  start-page: 900
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2015.08.027_bib0029
  article-title: A constrained line search optimization method for discriminative training of HMMs
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2008.925882
– volume: 14
  start-page: 467
  issue: 5
  year: 2004
  ident: 10.1016/j.eswa.2015.08.027_bib0021
  article-title: Statistical process monitoring with independent component analysis
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2003.09.004
– volume: 41
  start-page: 7722
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0008
  article-title: Dynamic clustering of energy markets: An extended hidden Markov approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.05.030
– volume: 41
  start-page: 7223
  issue: 16
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0027
  article-title: Intelligent bearing fault detection by enhanced energy operator
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.05.026
– volume: 41
  start-page: 1553
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0009
  article-title: A double HMM approach to Altman z-scores and credit ratings
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.052
– volume: 53
  start-page: 1015
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2015.08.027_bib0035
  article-title: Shrinkage averaging estimation
  publication-title: Statistical Papers
  doi: 10.1007/s00362-011-0405-2
– volume: 32
  start-page: 947
  year: 2014
  ident: 10.1016/j.eswa.2015.08.027_bib0038
  article-title: Policy misuse detection in communication networks with hidden Markov models
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2014.05.516
– year: 1995
  ident: 10.1016/j.eswa.2015.08.027_bib0017
– volume: 29
  start-page: 404
  year: 2012
  ident: 10.1016/j.eswa.2015.08.027_bib0042
  article-title: Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.11.015
– start-page: 49
  year: 1986
  ident: 10.1016/j.eswa.2015.08.027_bib0002
  article-title: Maximum mutual information estimation of hidden Markov model parameters for speech recognition
– year: 1994
  ident: 10.1016/j.eswa.2015.08.027_bib0019
– year: 1984
  ident: 10.1016/j.eswa.2015.08.027_bib0037
– volume: 14
  start-page: 1255
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2015.08.027_bib0007
  article-title: Gaussian mixture models with covariances or precisions in shared multiple subspaces
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TSA.2005.860835
– year: 1997
  ident: 10.1016/j.eswa.2015.08.027_bib0001
– volume: 25
  start-page: 2102
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2015.08.027_bib0005
  article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.01.013
– year: 2003
  ident: 10.1016/j.eswa.2015.08.027_bib0011
– volume: 50
  start-page: 599
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2015.08.027_bib0024
  article-title: A weighted multi-scale morphological gradient filter for rolling element bearing fault detection
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2011.06.003
– volume: 16
  start-page: 447
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2015.08.027_bib0034
  article-title: Multi-aspect target discrimination using hidden Markov models and neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.841805
SSID ssj0017007
Score 2.2646132
Snippet •The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is...
The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9165
SubjectTerms Algorithms
Approximation
Bearing
Continuous hidden Markov models
Diversified gradient descent algorithm
Expert systems
Fault diagnosis
Learning
Likelihood-based model averaging
Mathematical models
Parameter estimation
Title Diversified learning for continuous hidden Markov models with application to fault diagnosis
URI https://dx.doi.org/10.1016/j.eswa.2015.08.027
https://www.proquest.com/docview/1825458301
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PEcGb1LVN0nTHMZWpuIsKOwihaVKdjG64Tm_-7b7XpqIiO3hrS1rKy8v7SH7v_Qg5gZTExDYNPMMi3-PaNx7oDegy4wlLfeMLi1sDt8No8MCvR2LUIP26FgZhlc72Vza9tNbuScdJszMbjzt3EByAO0SPiBWVIdphziWyGJx9fME8sP2crPrtSQ9Hu8KZCuNl5-_YeygQZRtPZJb52zn9MtOl77ncIGsuaKS96r82ScPmW2S9JmSgbn1uk8fzCmWRQVxJHR_EE4WwlCIifZwvIM2nz9g0JKdYpDN9oyUTzpzidiz9dphNiynNksWkoKbC4o3nO-Th8uK-P_AcfYKXMsYKz0DS7Juu8cMskVFqNJLxWcs5XtquFjyBfE-aUPoZy7pxFOExqWTGyq6GQIXtkmY-ze0eoSF4ehboSBgdcyuyhLGMI9FVqmMdpXGLBLXcVOp6iyPFxUTVILIXhbJWKGuFvJehbJHTr3dmVWeNpaNFPR3qh34oMP1L3zuu507BwsHTkCS3IG0VYG4sYjBw-__89gFZxTsEtwTikDSL14U9ghCl0O1SB9tkpXd1Mxh-AoQL5kk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734FtdnBG9St22SpnuUVVl114sKHoTQNKlWlu7idvXmb3emTUVFPHgrbVrKZDKP5Jv5CDmElMTENg08wyLf49o3HugN6DLjCUt94wuLWwOD66h3xy_vxf0M6Ta1MAirdLa_tumVtXZ32k6a7XGet28gOAB3iB4RKypDsMNzXIQSM7Dj90-cB_afk3XDPenhcFc5U4O87OQNmw8FourjidQyv3unH3a6cj7ny2TRRY30pP6xFTJji1Wy1DAyULdA18jDaQ2zyCCwpI4Q4pFCXEoRkp4XU8jz6RN2DSkoVumMXmlFhTOhuB9Lv5xm03JEs2Q6LKmpwXj5ZJ3cnZ_ddnue40_wUsZY6RnImn3TMX6YJTJKjUY2Pms5x0vb0YInkPBJE0o_Y1knjiI8J5XMWNnREKmwDTJbjAq7SWgIrp4FOhJGx9yKLGEs48h0lepYR2ncIkEjN5W65uLIcTFUDYrsWaGsFcpaIfFlKFvk6POdcd1a48_RopkO9U1BFNj-P987aOZOwcrB45CksCBtFWByLGKwcFv__PY-me_dDvqqf3F9tU0W8AkiXQKxQ2bLl6ndhXil1HuVPn4A6d3n3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversified+learning+for+continuous+hidden+Markov+models+with+application+to+fault+diagnosis&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Zefang&rft.au=Fang%2C+Huajing&rft.au=Huang%2C+Ming&rft.date=2015-12-15&rft.issn=0957-4174&rft.volume=42&rft.issue=23&rft.spage=9165&rft.epage=9173&rft_id=info:doi/10.1016%2Fj.eswa.2015.08.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_08_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon