Diversified learning for continuous hidden Markov models with application to fault diagnosis
•The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is effectively performed. The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application...
Saved in:
| Published in | Expert systems with applications Vol. 42; no. 23; pp. 9165 - 9173 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.12.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2015.08.027 |
Cover
| Abstract | •The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is effectively performed.
The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring no special form of the objective function and yielding various parameter estimates with different degree of diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that the global maximum of the likelihood function of CHMM can be better approximated or even discovered. Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform better in parameter estimation and bearing fault diagnosis compared to the conventional methods. |
|---|---|
| AbstractList | •The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is effectively performed.
The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring no special form of the objective function and yielding various parameter estimates with different degree of diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that the global maximum of the likelihood function of CHMM can be better approximated or even discovered. Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform better in parameter estimation and bearing fault diagnosis compared to the conventional methods. The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring no special form of the objective function and yielding various parameter estimates with different degree of diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that the global maximum of the likelihood function of CHMM can be better approximated or even discovered. Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform better in parameter estimation and bearing fault diagnosis compared to the conventional methods. |
| Author | Fang, Huajing Li, Zefang Huang, Ming |
| Author_xml | – sequence: 1 givenname: Zefang surname: Li fullname: Li, Zefang email: 408729494@qq.com organization: The School of Automation, Huazhong University of Science and Technology, 1037 Luo-yu Road, Wuhan 430074, PR China – sequence: 2 givenname: Huajing surname: Fang fullname: Fang, Huajing email: hjfang@mail.hust.edu.cn organization: The School of Automation, Huazhong University of Science and Technology, 1037 Luo-yu Road, Wuhan 430074, PR China – sequence: 3 givenname: Ming surname: Huang fullname: Huang, Ming email: 35706916@qq.com organization: The School of Automation, Huazhong University of Science and Technology, 1037 Luo-yu Road, Wuhan 430074, PR China |
| BookMark | eNp9kD1v2zAURYnCBWq7_QOdOGaR8ihKogR0KfJZIEGXZgtA0ORT8lyZdEnaRv995TpTBk_vDfdcXJwFm_ngkbGvAkoBor1cl5gOpqxANCV0JVTqA5uLTsmiVb2csTn0jSpqoepPbJHSGkAoADVnz9e0x5hoIHR8RBM9-Rc-hMht8Jn8LuwSfyXn0PNHE3-HPd8Eh2PiB8qv3Gy3I1mTKXieAx_MbszckXnxIVH6zD4OZkz45e0u2dPtza-r--Lh592Pq-8PhZVS5sLhqgLXO6gGo1rrVkI2ArGujy_2q6Y2lQDlKgWDHPqubUFCraRD1a_aWsoluzj1bmP4s8OU9YaSxXE0Hqf9WnRVUzedBDFFu1PUxpBSxEFbyv_352ho1AL0Uahe66NQfRSqodOT0Amt3qHbSBsT_56Hvp2gSRnuCaNOltBbdBTRZu0CncP_ARtckzA |
| CitedBy_id | crossref_primary_10_1155_2020_4302184 crossref_primary_10_3390_electronics9010181 crossref_primary_10_1016_j_asoc_2017_06_035 crossref_primary_10_1016_j_cie_2017_12_002 crossref_primary_10_1016_j_eswa_2016_06_040 crossref_primary_10_1016_j_isatra_2018_12_025 crossref_primary_10_1016_j_sigpro_2016_07_028 crossref_primary_10_1007_s13198_023_01950_z crossref_primary_10_1016_j_sigpro_2018_12_005 crossref_primary_10_1088_1361_6501_ac3627 crossref_primary_10_1016_j_eswa_2020_114022 crossref_primary_10_1016_j_sigpro_2019_03_019 crossref_primary_10_21595_jve_2022_22271 crossref_primary_10_3390_su14052756 crossref_primary_10_1016_j_measurement_2021_110099 crossref_primary_10_1016_j_neucom_2018_05_021 crossref_primary_10_1016_j_eswa_2016_01_014 crossref_primary_10_1155_2020_1274380 |
| Cites_doi | 10.1109/TASSP.1983.1164173 10.1016/j.eswa.2013.07.098 10.1016/j.ymssp.2013.03.008 10.1109/TIE.2008.2004666 10.1109/TPAMI.2010.153 10.1016/j.patrec.2008.12.012 10.1016/j.eswa.2013.06.006 10.1109/TIM.2013.2245180 10.1016/0167-6393(93)90029-K 10.1109/5.537105 10.1016/j.eswa.2013.11.026 10.1109/TPAMI.2006.146 10.1214/12-EJS704 10.1016/j.ymssp.2005.09.012 10.1016/j.jsv.2009.01.003 10.1109/5.18626 10.1016/j.asoc.2012.01.020 10.1109/TIE.2012.2213566 10.1109/TASL.2006.876766 10.1016/j.csda.2013.02.017 10.1109/TIM.2009.2023814 10.1090/S0002-9904-1967-11751-8 10.1002/j.1538-7305.1983.tb03114.x 10.1016/j.ymssp.2011.06.001 10.1016/j.aei.2004.08.001 10.1109/TII.2012.2205583 10.1006/csla.2001.0182 10.1109/TASL.2008.925882 10.1016/j.jprocont.2003.09.004 10.1016/j.eswa.2014.05.030 10.1016/j.eswa.2014.05.026 10.1016/j.eswa.2013.08.052 10.1007/s00362-011-0405-2 10.1016/j.procs.2014.05.516 10.1016/j.ymssp.2011.11.015 10.1109/TSA.2005.860835 10.1016/j.ymssp.2011.01.013 10.1016/j.isatra.2011.06.003 10.1109/TNN.2004.841805 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2015.08.027 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 9173 |
| ExternalDocumentID | 10_1016_j_eswa_2015_08_027 S0957417415005722 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-deb20d9d02fa76cdb1351ee44cdb1e9b54a2107d270f3f9866030473de79b6433 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Thu Oct 02 11:22:52 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Wed Oct 01 03:51:46 EDT 2025 Fri Feb 23 02:29:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Fault diagnosis Diversified gradient descent algorithm Likelihood-based model averaging Continuous hidden Markov models |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-deb20d9d02fa76cdb1351ee44cdb1e9b54a2107d270f3f9866030473de79b6433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825458301 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1825458301 crossref_citationtrail_10_1016_j_eswa_2015_08_027 crossref_primary_10_1016_j_eswa_2015_08_027 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_08_027 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-15 |
| PublicationDateYYYYMMDD | 2015-12-15 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Schomaker (bib0035) 2012; 53 Li, Zhang, Wang, Mi, Liu (bib0024) 2011; 50 Wang, Kang, Jiang, Yang, Song, Mikulovich (bib0042) 2012; 29 Huo, Chan (bib0014) 1993; 13 Zhao, Jin, Zhao, Li (bib0047) 2014; 41 Yuan, Liu (bib0045) 2013; 38 Lee, Yoo, Lee (bib0021) 2004; 14 Zhou, Chen, Dong, Wang, Yuan (bib0048) 2015 Li, Zhang, He (bib0025) 2013; 62 Schomaker, Heumann (bib0036) 2014; 71 William, Hoffman (bib0043) 2011; 25 Baum, Egon (bib0003) 1967; 73 Biem (bib0004) 2006; 28 Friedman, Popescu (bib0011) 2003 Li, Fang, Xia (bib0026) 2014; 41 Dharanipragada, Visweswariah (bib0007) 2006; 14 Kohonen (bib0017) 1995 Elliott, Siu, Fung (bib0009) 2014; 41 Murphy, K. (1998). Hidden Markov model toolbox for Matlab. Liang, Faghidi (bib0027) 2014; 41 Bahl, Brown, de Souza, Mercer (bib0002) 1986 Dias, Ramos (bib0008) 2014; 41 Azzalini, Bowman (bib0001) 1997 Wang, Zou, Wan (bib0040) 2012; 6 Liu, Wang, Golnaraghi (bib0028) 2010; 59 Immovilli, Bianchini, Cocconcelli, Bellini, Rubini (bib0015) 2013; 60 Qiu, Lee, Lin, Yu (bib0032) 2003; 17 Nelwamondo, Marwala, Mahola (bib0031a) 2006; 2 Frankel, King (bib0010) 2007; 15 Robinson, Azimi-Sadjadi, Salazar (bib0034) 2005; 16 Li, Liu, Hu, Mi, Fu (bib0023) 2012; 12 Kurimo (bib0019) 1994 Chatzis (bib0006) 2010; 32 Kohonen, Oja, Simula, Visa, Kangas (bib0018) 1996; 84 Rabiner (bib0033) 1989; 77 Woodland, Povey (bib0044) 2002; 16 Boutros, Liang (bib0005) 2011; 25 Geramifard, Xu, Zhou, Li (bib0013) 2012; 8 Tosun (bib0038) 2014; 32 Van Wyk, Van Wyk, Qi (bib0039) 2009; 30 Lebaroud, Clerc (bib0020) 2008; 55 Swansson, Favaloro (bib0037) 1984 Liu, Liu, Jiang, Song, Wang (bib0029) 2008; 16 Jardine, Lin, Banjevic (bib0016) 2006; 20 Levinson, Rabiner, Sondhi (bib0022) 1983; 62 Yuwono, Qin, Zhou, Guo, Celler, Su (bib0046) 2015 Nadas (bib0031) 1983; 31 Georgoulas, Mustafa, Tsoumas, Antonino-Daviu, Climente-Alarcon, Stylios (bib0012) 2013; 40 Wang, Li, Luo (bib0041) 2009; 323 Elliott (10.1016/j.eswa.2015.08.027_bib0009) 2014; 41 Jardine (10.1016/j.eswa.2015.08.027_bib0016) 2006; 20 William (10.1016/j.eswa.2015.08.027_bib0043) 2011; 25 Georgoulas (10.1016/j.eswa.2015.08.027_bib0012) 2013; 40 Chatzis (10.1016/j.eswa.2015.08.027_bib0006) 2010; 32 Liu (10.1016/j.eswa.2015.08.027_bib0028) 2010; 59 Kohonen (10.1016/j.eswa.2015.08.027_bib0018) 1996; 84 Li (10.1016/j.eswa.2015.08.027_bib0023) 2012; 12 Liu (10.1016/j.eswa.2015.08.027_bib0029) 2008; 16 Azzalini (10.1016/j.eswa.2015.08.027_bib0001) 1997 Lee (10.1016/j.eswa.2015.08.027_bib0021) 2004; 14 Yuwono (10.1016/j.eswa.2015.08.027_bib0046) 2015 Schomaker (10.1016/j.eswa.2015.08.027_bib0035) 2012; 53 Schomaker (10.1016/j.eswa.2015.08.027_bib0036) 2014; 71 Kurimo (10.1016/j.eswa.2015.08.027_bib0019) 1994 Nadas (10.1016/j.eswa.2015.08.027_bib0031) 1983; 31 Dharanipragada (10.1016/j.eswa.2015.08.027_bib0007) 2006; 14 Lebaroud (10.1016/j.eswa.2015.08.027_bib0020) 2008; 55 Tosun (10.1016/j.eswa.2015.08.027_bib0038) 2014; 32 Woodland (10.1016/j.eswa.2015.08.027_bib0044) 2002; 16 Zhou (10.1016/j.eswa.2015.08.027_bib0048) 2015 Boutros (10.1016/j.eswa.2015.08.027_bib0005) 2011; 25 Biem (10.1016/j.eswa.2015.08.027_bib0004) 2006; 28 10.1016/j.eswa.2015.08.027_bib0030 Wang (10.1016/j.eswa.2015.08.027_bib0040) 2012; 6 Dias (10.1016/j.eswa.2015.08.027_bib0008) 2014; 41 Li (10.1016/j.eswa.2015.08.027_bib0025) 2013; 62 Friedman (10.1016/j.eswa.2015.08.027_bib0011) 2003 Swansson (10.1016/j.eswa.2015.08.027_bib0037) 1984 Li (10.1016/j.eswa.2015.08.027_bib0024) 2011; 50 Baum (10.1016/j.eswa.2015.08.027_bib0003) 1967; 73 Van Wyk (10.1016/j.eswa.2015.08.027_bib0039) 2009; 30 Nelwamondo (10.1016/j.eswa.2015.08.027_bib0031a) 2006; 2 Wang (10.1016/j.eswa.2015.08.027_bib0041) 2009; 323 Frankel (10.1016/j.eswa.2015.08.027_bib0010) 2007; 15 Qiu (10.1016/j.eswa.2015.08.027_bib0032) 2003; 17 Liang (10.1016/j.eswa.2015.08.027_bib0027) 2014; 41 Robinson (10.1016/j.eswa.2015.08.027_bib0034) 2005; 16 Levinson (10.1016/j.eswa.2015.08.027_bib0022) 1983; 62 Geramifard (10.1016/j.eswa.2015.08.027_bib0013) 2012; 8 Immovilli (10.1016/j.eswa.2015.08.027_bib0015) 2013; 60 Zhao (10.1016/j.eswa.2015.08.027_bib0047) 2014; 41 Kohonen (10.1016/j.eswa.2015.08.027_bib0017) 1995 Rabiner (10.1016/j.eswa.2015.08.027_bib0033) 1989; 77 Bahl (10.1016/j.eswa.2015.08.027_bib0002) 1986 Huo (10.1016/j.eswa.2015.08.027_bib0014) 1993; 13 Li (10.1016/j.eswa.2015.08.027_bib0026) 2014; 41 Yuan (10.1016/j.eswa.2015.08.027_bib0045) 2013; 38 Wang (10.1016/j.eswa.2015.08.027_bib0042) 2012; 29 |
| References_xml | – year: 1984 ident: bib0037 article-title: Applications of vibration analysis to the condition monitoring of rolling element bearings. Technical Report ARL/AERO-PROP-R-163 – volume: 41 start-page: 3391 year: 2014 end-page: 3401 ident: bib0047 article-title: Fault diagnosis of rolling element bearings via discriminative subspace learning: Visualization and classification publication-title: Expert Systems with Applications – volume: 13 start-page: 307 year: 1993 end-page: 313 ident: bib0014 article-title: The gradient projection method for the training of hidden Markov models publication-title: Speech Communication – volume: 62 start-page: 869 year: 2013 end-page: 879 ident: bib0025 article-title: Semi-supervised distance-preserving self-organizing map for machine-defect detection and classification publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 323 start-page: 1077 year: 2009 end-page: 1089 ident: bib0041 article-title: Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model publication-title: Journal of Sound and Vibration – volume: 16 start-page: 447 year: 2005 end-page: 459 ident: bib0034 article-title: Multi-aspect target discrimination using hidden Markov models and neural networks publication-title: IEEE Transactions on Neural Networks – volume: 60 start-page: 3408 year: 2013 end-page: 3418 ident: bib0015 article-title: Bearing fault model for induction motor with externally induced vibration publication-title: IEEE Transactions on Industrial Electronics – volume: 12 start-page: 1708 year: 2012 end-page: 1719 ident: bib0023 article-title: Fuzzy lattice classifier and its application to bearing fault diagnosis publication-title: Applied Soft Computing – volume: 32 start-page: 2297 year: 2010 end-page: 2304 ident: bib0006 article-title: Hidden Markov models with nonelliptically contoured state densities publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 29 start-page: 404 year: 2012 end-page: 414 ident: bib0042 article-title: Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine publication-title: Mechanical Systems and Signal Processing – volume: 38 start-page: 615 year: 2013 end-page: 627 ident: bib0045 article-title: Semi-supervised learning and condition fusion for fault diagnosis publication-title: Mechanical Systems and Signal Processing – year: 1994 ident: bib0019 article-title: Application of learning vector quantization and Self-organizing maps for training continuous density and semi-continuous Markov models – volume: 17 start-page: 127 year: 2003 end-page: 140 ident: bib0032 article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics publication-title: Advanced Engineering Information – volume: 41 start-page: 7223 year: 2014 end-page: 7234 ident: bib0027 article-title: Intelligent bearing fault detection by enhanced energy operator publication-title: Expert Systems with Applications – volume: 53 start-page: 1015 year: 2012 end-page: 1034 ident: bib0035 article-title: Shrinkage averaging estimation publication-title: Statistical Papers – volume: 84 start-page: 1358 year: 1996 end-page: 1384 ident: bib0018 article-title: Engineering application of the Self-organizing map publication-title: Proceedings of the IEEE – volume: 2 start-page: 1281 year: 2006 end-page: 1299 ident: bib0031a article-title: Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency cepstral coefficients and fractals publication-title: International Journal of Innovative Computing Information and Control – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib0033 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE – year: 1997 ident: bib0001 article-title: Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations – volume: 16 start-page: 25 year: 2002 end-page: 48 ident: bib0044 article-title: Large scale discriminative training of hidden Markov models for speech recognition publication-title: Computer Speech and Language – volume: 55 start-page: 4290 year: 2008 end-page: 4298 ident: bib0020 article-title: Classification of induction machine faults by optimal time–frequency representations publication-title: IEEE Transactions on Industrial Electronics – year: 2015 ident: bib0046 article-title: Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model publication-title: Engineering Applications of Artificial Intelligence – year: 2003 ident: bib0011 article-title: Gradient directed regularization for linear regression and classification. Technical report – volume: 50 start-page: 599 year: 2011 end-page: 608 ident: bib0024 article-title: A weighted multi-scale morphological gradient filter for rolling element bearing fault detection publication-title: ISA Transactions – volume: 14 start-page: 1255 year: 2006 end-page: 1266 ident: bib0007 article-title: Gaussian mixture models with covariances or precisions in shared multiple subspaces publication-title: IEEE Transactions on Audio, Speech, and Language Processing – volume: 25 start-page: 3078 year: 2011 end-page: 3088 ident: bib0043 article-title: Identification of bearing faults using time domain zero-crossings publication-title: Mechanical Systems and Signal Processing – volume: 6 start-page: 1017 year: 2012 end-page: 1039 ident: bib0040 article-title: Model averaging for varying-coefficient partially linear measurement error models publication-title: Electronic Journal of Statistics – volume: 25 start-page: 2102 year: 2011 end-page: 2124 ident: bib0005 article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models publication-title: Mechanical Systems and Signal Processing – volume: 30 start-page: 595 year: 2009 end-page: 599 ident: bib0039 article-title: Difference histograms: A new tool for time series analysis applied to bearing fault diagnosis publication-title: Pattern Recognition Letters – volume: 28 start-page: 1041 year: 2006 end-page: 1051 ident: bib0004 article-title: Minimum classification error training for online handwriting recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 41 start-page: 7722 year: 2014 end-page: 7729 ident: bib0008 article-title: Dynamic clustering of energy markets: An extended hidden Markov approach publication-title: Expert Systems with Applications – volume: 15 start-page: 246 year: 2007 end-page: 256 ident: bib0010 article-title: Speech recognition using linear dynamic models publication-title: IEEE Transactions on Audio, Speech, and Language Processing – volume: 40 start-page: 7024 year: 2013 end-page: 7033 ident: bib0012 article-title: Principal component analysis of the start-up transient and hidden Markov modeling for broken rotor bar fault diagnosis in asynchronous machines publication-title: Expert Systems with Applications – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: bib0016 article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance publication-title: Mechanical Systems and Signal Processing – volume: 16 start-page: 900 year: 2008 end-page: 909 ident: bib0029 article-title: A constrained line search optimization method for discriminative training of HMMs publication-title: IEEE Transactions on Audio, Speech, and Language Processing – year: 2015 ident: bib0048 article-title: Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model publication-title: Mechanical Systems and Signal Processing – volume: 73 start-page: 360 year: 1967 end-page: 363 ident: bib0003 article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology publication-title: Bulletin of the American Mathematical Society – volume: 41 start-page: 1553 year: 2014 end-page: 1560 ident: bib0009 article-title: A double HMM approach to Altman z-scores and credit ratings publication-title: Expert Systems with Applications – volume: 32 start-page: 947 year: 2014 end-page: 952 ident: bib0038 article-title: Policy misuse detection in communication networks with hidden Markov models publication-title: Procedia Computer Science – start-page: 49 year: 1986 end-page: 52 ident: bib0002 article-title: Maximum mutual information estimation of hidden Markov model parameters for speech recognition publication-title: IEEE International Conference on ICASSP'86 Acoustics, Speech, and Signal Processing – year: 1995 ident: bib0017 article-title: Self-organizing maps – volume: 8 start-page: 964 year: 2012 end-page: 973 ident: bib0013 article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: Diagnostics and prognostics publication-title: IEEE Transactions on Industrial Information – volume: 59 start-page: 309 year: 2010 end-page: 321 ident: bib0028 article-title: An enhanced diagnostic scheme for bearing condition monitoring publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 71 start-page: 758 year: 2014 end-page: 770 ident: bib0036 article-title: Model selection and model averaging after multiple imputation publication-title: Computational Statistics and Data Analysis – reference: Murphy, K. (1998). Hidden Markov model toolbox for Matlab. – volume: 41 start-page: 744 year: 2014 end-page: 751 ident: bib0026 article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis publication-title: Expert Systems with Applications – volume: 31 start-page: 814 year: 1983 end-page: 817 ident: bib0031 article-title: A decision theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – volume: 14 start-page: 467 year: 2004 end-page: 485 ident: bib0021 article-title: Statistical process monitoring with independent component analysis publication-title: Journal of Process Control – volume: 62 start-page: 1035 year: 1983 end-page: 1074 ident: bib0022 article-title: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition publication-title: Bell System Technical Journal – volume: 31 start-page: 814 issue: 4 year: 1983 ident: 10.1016/j.eswa.2015.08.027_bib0031 article-title: A decision theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/TASSP.1983.1164173 – volume: 41 start-page: 744 issue: 2 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0026 article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.07.098 – year: 2015 ident: 10.1016/j.eswa.2015.08.027_bib0046 article-title: Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model publication-title: Engineering Applications of Artificial Intelligence – year: 2015 ident: 10.1016/j.eswa.2015.08.027_bib0048 article-title: Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model publication-title: Mechanical Systems and Signal Processing – volume: 38 start-page: 615 issue: 2 year: 2013 ident: 10.1016/j.eswa.2015.08.027_bib0045 article-title: Semi-supervised learning and condition fusion for fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.03.008 – volume: 55 start-page: 4290 issue: 12 year: 2008 ident: 10.1016/j.eswa.2015.08.027_bib0020 article-title: Classification of induction machine faults by optimal time–frequency representations publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2008.2004666 – ident: 10.1016/j.eswa.2015.08.027_bib0030 – volume: 32 start-page: 2297 issue: 12 year: 2010 ident: 10.1016/j.eswa.2015.08.027_bib0006 article-title: Hidden Markov models with nonelliptically contoured state densities publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.153 – volume: 30 start-page: 595 issue: 6 year: 2009 ident: 10.1016/j.eswa.2015.08.027_bib0039 article-title: Difference histograms: A new tool for time series analysis applied to bearing fault diagnosis publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.12.012 – volume: 40 start-page: 7024 issue: 17 year: 2013 ident: 10.1016/j.eswa.2015.08.027_bib0012 article-title: Principal component analysis of the start-up transient and hidden Markov modeling for broken rotor bar fault diagnosis in asynchronous machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.06.006 – volume: 62 start-page: 869 issue: 5 year: 2013 ident: 10.1016/j.eswa.2015.08.027_bib0025 article-title: Semi-supervised distance-preserving self-organizing map for machine-defect detection and classification publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2013.2245180 – volume: 13 start-page: 307 issue: 3 year: 1993 ident: 10.1016/j.eswa.2015.08.027_bib0014 article-title: The gradient projection method for the training of hidden Markov models publication-title: Speech Communication doi: 10.1016/0167-6393(93)90029-K – volume: 84 start-page: 1358 issue: 10 year: 1996 ident: 10.1016/j.eswa.2015.08.027_bib0018 article-title: Engineering application of the Self-organizing map publication-title: Proceedings of the IEEE doi: 10.1109/5.537105 – volume: 41 start-page: 3391 issue: 7 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0047 article-title: Fault diagnosis of rolling element bearings via discriminative subspace learning: Visualization and classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.11.026 – volume: 28 start-page: 1041 issue: 7 year: 2006 ident: 10.1016/j.eswa.2015.08.027_bib0004 article-title: Minimum classification error training for online handwriting recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.146 – volume: 6 start-page: 1017 year: 2012 ident: 10.1016/j.eswa.2015.08.027_bib0040 article-title: Model averaging for varying-coefficient partially linear measurement error models publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS704 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 10.1016/j.eswa.2015.08.027_bib0016 article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – volume: 323 start-page: 1077 issue: 3 year: 2009 ident: 10.1016/j.eswa.2015.08.027_bib0041 article-title: Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2009.01.003 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.eswa.2015.08.027_bib0033 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.18626 – volume: 12 start-page: 1708 issue: 6 year: 2012 ident: 10.1016/j.eswa.2015.08.027_bib0023 article-title: Fuzzy lattice classifier and its application to bearing fault diagnosis publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.01.020 – volume: 60 start-page: 3408 issue: 8 year: 2013 ident: 10.1016/j.eswa.2015.08.027_bib0015 article-title: Bearing fault model for induction motor with externally induced vibration publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2012.2213566 – volume: 2 start-page: 1281 issue: 6 year: 2006 ident: 10.1016/j.eswa.2015.08.027_bib0031a article-title: Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency cepstral coefficients and fractals publication-title: International Journal of Innovative Computing Information and Control – volume: 15 start-page: 246 issue: 1 year: 2007 ident: 10.1016/j.eswa.2015.08.027_bib0010 article-title: Speech recognition using linear dynamic models publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2006.876766 – volume: 71 start-page: 758 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0036 article-title: Model selection and model averaging after multiple imputation publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2013.02.017 – volume: 59 start-page: 309 issue: 2 year: 2010 ident: 10.1016/j.eswa.2015.08.027_bib0028 article-title: An enhanced diagnostic scheme for bearing condition monitoring publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2023814 – volume: 73 start-page: 360 issue: 3 year: 1967 ident: 10.1016/j.eswa.2015.08.027_bib0003 article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology publication-title: Bulletin of the American Mathematical Society doi: 10.1090/S0002-9904-1967-11751-8 – volume: 62 start-page: 1035 issue: 4 year: 1983 ident: 10.1016/j.eswa.2015.08.027_bib0022 article-title: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition publication-title: Bell System Technical Journal doi: 10.1002/j.1538-7305.1983.tb03114.x – volume: 25 start-page: 3078 issue: 8 year: 2011 ident: 10.1016/j.eswa.2015.08.027_bib0043 article-title: Identification of bearing faults using time domain zero-crossings publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2011.06.001 – volume: 17 start-page: 127 issue: 3 year: 2003 ident: 10.1016/j.eswa.2015.08.027_bib0032 article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics publication-title: Advanced Engineering Information doi: 10.1016/j.aei.2004.08.001 – volume: 8 start-page: 964 issue: 4 year: 2012 ident: 10.1016/j.eswa.2015.08.027_bib0013 article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: Diagnostics and prognostics publication-title: IEEE Transactions on Industrial Information doi: 10.1109/TII.2012.2205583 – volume: 16 start-page: 25 issue: 1 year: 2002 ident: 10.1016/j.eswa.2015.08.027_bib0044 article-title: Large scale discriminative training of hidden Markov models for speech recognition publication-title: Computer Speech and Language doi: 10.1006/csla.2001.0182 – volume: 16 start-page: 900 issue: 5 year: 2008 ident: 10.1016/j.eswa.2015.08.027_bib0029 article-title: A constrained line search optimization method for discriminative training of HMMs publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2008.925882 – volume: 14 start-page: 467 issue: 5 year: 2004 ident: 10.1016/j.eswa.2015.08.027_bib0021 article-title: Statistical process monitoring with independent component analysis publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2003.09.004 – volume: 41 start-page: 7722 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0008 article-title: Dynamic clustering of energy markets: An extended hidden Markov approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.05.030 – volume: 41 start-page: 7223 issue: 16 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0027 article-title: Intelligent bearing fault detection by enhanced energy operator publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.05.026 – volume: 41 start-page: 1553 issue: 4 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0009 article-title: A double HMM approach to Altman z-scores and credit ratings publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.08.052 – volume: 53 start-page: 1015 issue: 4 year: 2012 ident: 10.1016/j.eswa.2015.08.027_bib0035 article-title: Shrinkage averaging estimation publication-title: Statistical Papers doi: 10.1007/s00362-011-0405-2 – volume: 32 start-page: 947 year: 2014 ident: 10.1016/j.eswa.2015.08.027_bib0038 article-title: Policy misuse detection in communication networks with hidden Markov models publication-title: Procedia Computer Science doi: 10.1016/j.procs.2014.05.516 – year: 1995 ident: 10.1016/j.eswa.2015.08.027_bib0017 – volume: 29 start-page: 404 year: 2012 ident: 10.1016/j.eswa.2015.08.027_bib0042 article-title: Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2011.11.015 – start-page: 49 year: 1986 ident: 10.1016/j.eswa.2015.08.027_bib0002 article-title: Maximum mutual information estimation of hidden Markov model parameters for speech recognition – year: 1994 ident: 10.1016/j.eswa.2015.08.027_bib0019 – year: 1984 ident: 10.1016/j.eswa.2015.08.027_bib0037 – volume: 14 start-page: 1255 issue: 4 year: 2006 ident: 10.1016/j.eswa.2015.08.027_bib0007 article-title: Gaussian mixture models with covariances or precisions in shared multiple subspaces publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TSA.2005.860835 – year: 1997 ident: 10.1016/j.eswa.2015.08.027_bib0001 – volume: 25 start-page: 2102 issue: 6 year: 2011 ident: 10.1016/j.eswa.2015.08.027_bib0005 article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2011.01.013 – year: 2003 ident: 10.1016/j.eswa.2015.08.027_bib0011 – volume: 50 start-page: 599 issue: 4 year: 2011 ident: 10.1016/j.eswa.2015.08.027_bib0024 article-title: A weighted multi-scale morphological gradient filter for rolling element bearing fault detection publication-title: ISA Transactions doi: 10.1016/j.isatra.2011.06.003 – volume: 16 start-page: 447 issue: 2 year: 2005 ident: 10.1016/j.eswa.2015.08.027_bib0034 article-title: Multi-aspect target discrimination using hidden Markov models and neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.841805 |
| SSID | ssj0017007 |
| Score | 2.2646132 |
| Snippet | •The diversified learning formulas of CHMM parameters are derived.•A likelihood-based model averaging estimator is developed.•Bearing fault diagnosis is... The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging one for the application of CHMMs. This paper aims to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9165 |
| SubjectTerms | Algorithms Approximation Bearing Continuous hidden Markov models Diversified gradient descent algorithm Expert systems Fault diagnosis Learning Likelihood-based model averaging Mathematical models Parameter estimation |
| Title | Diversified learning for continuous hidden Markov models with application to fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.eswa.2015.08.027 https://www.proquest.com/docview/1825458301 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PEcGb1LVN0nTHMZWpuIsKOwihaVKdjG64Tm_-7b7XpqIiO3hrS1rKy8v7SH7v_Qg5gZTExDYNPMMi3-PaNx7oDegy4wlLfeMLi1sDt8No8MCvR2LUIP26FgZhlc72Vza9tNbuScdJszMbjzt3EByAO0SPiBWVIdphziWyGJx9fME8sP2crPrtSQ9Hu8KZCuNl5-_YeygQZRtPZJb52zn9MtOl77ncIGsuaKS96r82ScPmW2S9JmSgbn1uk8fzCmWRQVxJHR_EE4WwlCIifZwvIM2nz9g0JKdYpDN9oyUTzpzidiz9dphNiynNksWkoKbC4o3nO-Th8uK-P_AcfYKXMsYKz0DS7Juu8cMskVFqNJLxWcs5XtquFjyBfE-aUPoZy7pxFOExqWTGyq6GQIXtkmY-ze0eoSF4ehboSBgdcyuyhLGMI9FVqmMdpXGLBLXcVOp6iyPFxUTVILIXhbJWKGuFvJehbJHTr3dmVWeNpaNFPR3qh34oMP1L3zuu507BwsHTkCS3IG0VYG4sYjBw-__89gFZxTsEtwTikDSL14U9ghCl0O1SB9tkpXd1Mxh-AoQL5kk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734FtdnBG9St22SpnuUVVl114sKHoTQNKlWlu7idvXmb3emTUVFPHgrbVrKZDKP5Jv5CDmElMTENg08wyLf49o3HugN6DLjCUt94wuLWwOD66h3xy_vxf0M6Ta1MAirdLa_tumVtXZ32k6a7XGet28gOAB3iB4RKypDsMNzXIQSM7Dj90-cB_afk3XDPenhcFc5U4O87OQNmw8FourjidQyv3unH3a6cj7ny2TRRY30pP6xFTJji1Wy1DAyULdA18jDaQ2zyCCwpI4Q4pFCXEoRkp4XU8jz6RN2DSkoVumMXmlFhTOhuB9Lv5xm03JEs2Q6LKmpwXj5ZJ3cnZ_ddnue40_wUsZY6RnImn3TMX6YJTJKjUY2Pms5x0vb0YInkPBJE0o_Y1knjiI8J5XMWNnREKmwDTJbjAq7SWgIrp4FOhJGx9yKLGEs48h0lepYR2ncIkEjN5W65uLIcTFUDYrsWaGsFcpaIfFlKFvk6POdcd1a48_RopkO9U1BFNj-P987aOZOwcrB45CksCBtFWByLGKwcFv__PY-me_dDvqqf3F9tU0W8AkiXQKxQ2bLl6ndhXil1HuVPn4A6d3n3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversified+learning+for+continuous+hidden+Markov+models+with+application+to+fault+diagnosis&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Zefang&rft.au=Fang%2C+Huajing&rft.au=Huang%2C+Ming&rft.date=2015-12-15&rft.issn=0957-4174&rft.volume=42&rft.issue=23&rft.spage=9165&rft.epage=9173&rft_id=info:doi/10.1016%2Fj.eswa.2015.08.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_08_027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |