Bias and covariance of the least squares estimate in a structured errors-in-variables problem

A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 144; p. 106893
Main Authors Quintana Carapia, Gustavo, Markovsky, Ivan, Pintelon, Rik, Csurcsia, Péter Zoltán, Verbeke, Dieter
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/j.csda.2019.106893

Cover

Abstract A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian, the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified. Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér–Rao lower bound of the structured EIV problem. •A statistical analysis of a structured and correlated EIV problem is conducted.•Expressions for the bias and covariance of its least-squares solution are obtained.•The accuracy of the statistical moments estimation is numerically validated.•The expressions provide uncertainty assessment for metrology applications.•The mean-squared error of the LS solution is compared to the Cramér–Rao bound.
AbstractList A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian, the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified. Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér–Rao lower bound of the structured EIV problem. •A statistical analysis of a structured and correlated EIV problem is conducted.•Expressions for the bias and covariance of its least-squares solution are obtained.•The accuracy of the statistical moments estimation is numerically validated.•The expressions provide uncertainty assessment for metrology applications.•The mean-squared error of the LS solution is compared to the Cramér–Rao bound.
A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian, the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified. Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér–Rao lower bound of the structured EIV problem.
ArticleNumber 106893
Author Verbeke, Dieter
Pintelon, Rik
Csurcsia, Péter Zoltán
Markovsky, Ivan
Quintana Carapia, Gustavo
Author_xml – sequence: 1
  givenname: Gustavo
  orcidid: 0000-0002-3715-0796
  surname: Quintana Carapia
  fullname: Quintana Carapia, Gustavo
  email: gquintan@vub.be
  organization: Vrije Universiteit Brussel, Department of Fundamental Electricity and Instrumentation, 1050, Brussels, Belgium
– sequence: 2
  givenname: Ivan
  surname: Markovsky
  fullname: Markovsky, Ivan
  organization: Vrije Universiteit Brussel, Department of Fundamental Electricity and Instrumentation, 1050, Brussels, Belgium
– sequence: 3
  givenname: Rik
  surname: Pintelon
  fullname: Pintelon, Rik
  organization: Vrije Universiteit Brussel, Department of Fundamental Electricity and Instrumentation, 1050, Brussels, Belgium
– sequence: 4
  givenname: Péter Zoltán
  surname: Csurcsia
  fullname: Csurcsia, Péter Zoltán
  organization: Vrije Universiteit Brussel, Department of Engineering Technology, 1050, Brussels, Belgium
– sequence: 5
  givenname: Dieter
  surname: Verbeke
  fullname: Verbeke, Dieter
  organization: Vrije Universiteit Brussel, Department of Engineering Technology, 1050, Brussels, Belgium
BookMark eNp9kMtKAzEUhoNUsK2-gKss3UxNJnPJgBst3qDgRpcSziRnMGU6aZNMwbc3ta5cdHXg8H_n8s3IZHADEnLN2YIzXt2uFzoYWOSMN6lRyUackSmXdZ7VoswnZJpCddYUtbggsxDWjLG8qOWUfD5YCBQGQ7Xbg7cwaKSuo_ELaY8QIg27ETwGiiHaDUSkdqBAQ_SjjqNHQ9F750Nmh-x3QNun8Na7VDeX5LyDPuDVX52Tj6fH9-VLtnp7fl3erzIthIiZllIXUIJkAjUv2tpgyQDLvAEmJKuxkFCmnjGskS2IthNVI7lB3mjNOynm5OY4N-3djelStbFBY9_DgG4MKpeyrvKyEjxF5TGqvQvBY6e0jRCtG6IH2yvO1MGoWquDUXUwqo5GE5r_Q7c-KfHfp6G7I4Tp_71Fr4K2mCwb61FHZZw9hf8A_w-S5g
CitedBy_id crossref_primary_10_1109_TIM_2019_2951865
crossref_primary_10_1016_j_simpa_2021_100192
Cites_doi 10.1016/j.csda.2003.12.001
10.1016/j.acha.2016.02.003
10.1016/j.conengprac.2015.07.001
10.1016/j.jvcir.2017.03.001
10.1080/00207170903470666
10.1016/j.sigpro.2017.09.011
10.1016/j.csda.2007.07.001
10.1016/j.sigpro.2007.04.004
10.1016/j.automatica.2006.11.025
10.1016/j.ymssp.2015.02.001
10.1016/j.csda.2007.05.008
10.1137/S0895479891224245
10.1109/TSP.2014.2350959
10.1016/j.csda.2013.09.021
10.1016/j.ymssp.2016.04.007
10.1109/ACCESS.2018.2828799
10.1137/1032121
10.1016/j.csda.2010.07.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2019.106893
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 106893
ExternalDocumentID 10_1016_j_csda_2019_106893
S0167947319302488
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
ACLOT
EFKBS
L.6
~HD
ID FETCH-LOGICAL-c333t-c88c4a5a803ec14b7de50ae529a03807e48a5de5dd098ba3bf36981de19cc1f83
IEDL.DBID AIKHN
ISSN 0167-9473
IngestDate Sat Sep 27 22:27:51 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Tue Jul 01 02:24:34 EDT 2025
Fri Feb 23 02:49:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cramér–Rao lower bound
Least-squares estimation
Uncertainty assessment
Statistical analysis
Structured errors-in-variables problems
Monte Carlo simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-c88c4a5a803ec14b7de50ae529a03807e48a5de5dd098ba3bf36981de19cc1f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3715-0796
PQID 2887625631
PQPubID 24069
PageCount 1
ParticipantIDs proquest_miscellaneous_2887625631
crossref_citationtrail_10_1016_j_csda_2019_106893
crossref_primary_10_1016_j_csda_2019_106893
elsevier_sciencedirect_doi_10_1016_j_csda_2019_106893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Markovsky (b8) 2015; 43
Rhode, Usevich, Markovsky, Gauterin (b15) 2014; 62
Palanthandalam-Madapusi, Van Pelt, Bernstein (b12) 2010; 83
Feiz, Rezghi (b3) 2017; 46
Vaccaro (b18) 1994; 15
Mastronardi, O’Leary (b10) 2007; 52
Azam, Chatzi, Papadimitriou (b1) 2015; 60–61
Pan, Luo, Jin, Cao (b13) 2018; 6
Stewart (b17) 1990; 32
Cai, Qu, Xu, Ye (b2) 2016; 41
Yeredor, De Moor (b21) 2004; 47
Van Huffel, Vandewalle (b20) 1991
Hammersley, Handscomb (b4) 1975
Kiviet, Phillips (b6) 2012; 56
Kiviet, Phillips (b7) 2014; 76
Van Huffel, Cheng, Mastronardi, Paige, Kukush (b19) 2007; 52
Jia, Wang, Shen, Jiang, He (b5) 2018; 143
Markovsky, Van Huffel (b9) 2007; 87
Niedźwiecki, Meller, Pietrzak (b11) 2016; 80
Pintelon, Schoukens (b14) 2012
Söderström (b16) 2007; 43
Pintelon (10.1016/j.csda.2019.106893_b14) 2012
Cai (10.1016/j.csda.2019.106893_b2) 2016; 41
Jia (10.1016/j.csda.2019.106893_b5) 2018; 143
Palanthandalam-Madapusi (10.1016/j.csda.2019.106893_b12) 2010; 83
Pan (10.1016/j.csda.2019.106893_b13) 2018; 6
Vaccaro (10.1016/j.csda.2019.106893_b18) 1994; 15
Markovsky (10.1016/j.csda.2019.106893_b8) 2015; 43
Van Huffel (10.1016/j.csda.2019.106893_b20) 1991
Hammersley (10.1016/j.csda.2019.106893_b4) 1975
Niedźwiecki (10.1016/j.csda.2019.106893_b11) 2016; 80
Rhode (10.1016/j.csda.2019.106893_b15) 2014; 62
Stewart (10.1016/j.csda.2019.106893_b17) 1990; 32
Van Huffel (10.1016/j.csda.2019.106893_b19) 2007; 52
Kiviet (10.1016/j.csda.2019.106893_b6) 2012; 56
Kiviet (10.1016/j.csda.2019.106893_b7) 2014; 76
Markovsky (10.1016/j.csda.2019.106893_b9) 2007; 87
Yeredor (10.1016/j.csda.2019.106893_b21) 2004; 47
Feiz (10.1016/j.csda.2019.106893_b3) 2017; 46
Mastronardi (10.1016/j.csda.2019.106893_b10) 2007; 52
Azam (10.1016/j.csda.2019.106893_b1) 2015; 60–61
Söderström (10.1016/j.csda.2019.106893_b16) 2007; 43
References_xml – year: 2012
  ident: b14
  article-title: System Identification: A Frequency Domain Approach
– volume: 43
  start-page: 939
  year: 2007
  end-page: 958
  ident: b16
  article-title: Errors-in-variables methods in system identification
  publication-title: Automatica
– volume: 80
  start-page: 582
  year: 2016
  end-page: 599
  ident: b11
  article-title: System identification based approach to dynamic weighing revisited
  publication-title: Mech. Syst. Signal Process.
– volume: 62
  start-page: 5652
  year: 2014
  end-page: 5662
  ident: b15
  article-title: A recursive restricted total least-squares algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 46
  start-page: 48
  year: 2017
  end-page: 57
  ident: b3
  article-title: A splitting method for total least squares color image restoration problem
  publication-title: J. Vis. Commun. Image Represent.
– volume: 15
  start-page: 661
  year: 1994
  end-page: 671
  ident: b18
  article-title: A second-order perturbation expansion for the SVD
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 56
  start-page: 3705
  year: 2012
  end-page: 3729
  ident: b6
  article-title: Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models
  publication-title: Comput. Statist. Data Anal.
– volume: 143
  start-page: 211
  year: 2018
  end-page: 221
  ident: b5
  article-title: Target localization based on structured total least squares with hybrid TDOA-AOA measurements
  publication-title: Signal Process.
– volume: 6
  start-page: 23172
  year: 2018
  end-page: 23179
  ident: b13
  article-title: Direction-of-arrival estimation with ULA: a spatial annihilating filter reconstruction perspective
  publication-title: IEEE Access
– volume: 32
  start-page: 579
  year: 1990
  end-page: 610
  ident: b17
  article-title: Stochastic perturbation theory
  publication-title: SIAM Rev.
– year: 1991
  ident: b20
  article-title: The Total Least Squares Problem: Computational Aspects and Analysis
– volume: 43
  start-page: 85
  year: 2015
  end-page: 93
  ident: b8
  article-title: An application of system identification in metrology
  publication-title: Control Eng. Pract.
– volume: 60–61
  start-page: 866
  year: 2015
  end-page: 886
  ident: b1
  article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements
  publication-title: Mech. Syst. Signal Process.
– volume: 76
  start-page: 424
  year: 2014
  end-page: 448
  ident: b7
  article-title: Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models
  publication-title: Comput. Statist. Data Anal.
– volume: 47
  start-page: 455
  year: 2004
  end-page: 465
  ident: b21
  article-title: On homogeneous least-squares problems and the inconsistency introduced by mis-constraining
  publication-title: Comput. Statist. Data Anal.
– volume: 41
  start-page: 470
  year: 2016
  end-page: 490
  ident: b2
  article-title: Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction
  publication-title: Appl. Comput. Harmon. Anal.
– year: 1975
  ident: b4
  article-title: Monte–Carlo Methods
– volume: 87
  start-page: 2283
  year: 2007
  end-page: 2302
  ident: b9
  article-title: Overview of total least-squares methods
  publication-title: Signal Process.
– volume: 83
  start-page: 862
  year: 2010
  end-page: 877
  ident: b12
  article-title: Parameter consistency and quadratically constrained errors-in-variables least-squares identification
  publication-title: Internat. J. Control
– volume: 52
  start-page: 1076
  year: 2007
  end-page: 1079
  ident: b19
  article-title: Total least squares and errors-in-variables modeling
  publication-title: Comput. Statist. Data Anal.
– volume: 52
  start-page: 1119
  year: 2007
  end-page: 1131
  ident: b10
  article-title: Fast robust regression algorithms for problems with Toeplitz structure
  publication-title: Comput. Statist. Data Anal.
– year: 2012
  ident: 10.1016/j.csda.2019.106893_b14
– volume: 47
  start-page: 455
  issue: 3
  year: 2004
  ident: 10.1016/j.csda.2019.106893_b21
  article-title: On homogeneous least-squares problems and the inconsistency introduced by mis-constraining
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2003.12.001
– volume: 41
  start-page: 470
  issue: 2
  year: 2016
  ident: 10.1016/j.csda.2019.106893_b2
  article-title: Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.02.003
– volume: 43
  start-page: 85
  year: 2015
  ident: 10.1016/j.csda.2019.106893_b8
  article-title: An application of system identification in metrology
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2015.07.001
– volume: 46
  start-page: 48
  year: 2017
  ident: 10.1016/j.csda.2019.106893_b3
  article-title: A splitting method for total least squares color image restoration problem
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2017.03.001
– volume: 83
  start-page: 862
  issue: 4
  year: 2010
  ident: 10.1016/j.csda.2019.106893_b12
  article-title: Parameter consistency and quadratically constrained errors-in-variables least-squares identification
  publication-title: Internat. J. Control
  doi: 10.1080/00207170903470666
– year: 1975
  ident: 10.1016/j.csda.2019.106893_b4
– volume: 143
  start-page: 211
  year: 2018
  ident: 10.1016/j.csda.2019.106893_b5
  article-title: Target localization based on structured total least squares with hybrid TDOA-AOA measurements
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.09.011
– volume: 52
  start-page: 1076
  issue: 2
  year: 2007
  ident: 10.1016/j.csda.2019.106893_b19
  article-title: Total least squares and errors-in-variables modeling
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2007.07.001
– year: 1991
  ident: 10.1016/j.csda.2019.106893_b20
– volume: 87
  start-page: 2283
  issue: 10
  year: 2007
  ident: 10.1016/j.csda.2019.106893_b9
  article-title: Overview of total least-squares methods
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2007.04.004
– volume: 43
  start-page: 939
  issue: 6
  year: 2007
  ident: 10.1016/j.csda.2019.106893_b16
  article-title: Errors-in-variables methods in system identification
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.11.025
– volume: 60–61
  start-page: 866
  year: 2015
  ident: 10.1016/j.csda.2019.106893_b1
  article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.02.001
– volume: 52
  start-page: 1119
  issue: 2
  year: 2007
  ident: 10.1016/j.csda.2019.106893_b10
  article-title: Fast robust regression algorithms for problems with Toeplitz structure
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2007.05.008
– volume: 15
  start-page: 661
  issue: 2
  year: 1994
  ident: 10.1016/j.csda.2019.106893_b18
  article-title: A second-order perturbation expansion for the SVD
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479891224245
– volume: 62
  start-page: 5652
  issue: 21
  year: 2014
  ident: 10.1016/j.csda.2019.106893_b15
  article-title: A recursive restricted total least-squares algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2350959
– volume: 76
  start-page: 424
  year: 2014
  ident: 10.1016/j.csda.2019.106893_b7
  article-title: Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2013.09.021
– volume: 80
  start-page: 582
  year: 2016
  ident: 10.1016/j.csda.2019.106893_b11
  article-title: System identification based approach to dynamic weighing revisited
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.04.007
– volume: 6
  start-page: 23172
  year: 2018
  ident: 10.1016/j.csda.2019.106893_b13
  article-title: Direction-of-arrival estimation with ULA: a spatial annihilating filter reconstruction perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2828799
– volume: 32
  start-page: 579
  issue: 4
  year: 1990
  ident: 10.1016/j.csda.2019.106893_b17
  article-title: Stochastic perturbation theory
  publication-title: SIAM Rev.
  doi: 10.1137/1032121
– volume: 56
  start-page: 3705
  issue: 11
  year: 2012
  ident: 10.1016/j.csda.2019.106893_b6
  article-title: Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.07.013
SSID ssj0002478
Score 2.2890832
Snippet A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106893
SubjectTerms covariance
Cramér–Rao lower bound
least squares
Least-squares estimation
metrology
Monte Carlo simulation
Statistical analysis
Structured errors-in-variables problems
uncertainty
Uncertainty assessment
variance
Title Bias and covariance of the least squares estimate in a structured errors-in-variables problem
URI https://dx.doi.org/10.1016/j.csda.2019.106893
https://www.proquest.com/docview/2887625631
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscEJ-iFCojcUNmkzjJ2sdSUS2s2gNQ0QuyHHsiBa2Ssun2yG9nJnFWAokeOEWyPFb0xnnjUcZvAN6EmqJmhaWkaJbJPOS1NNrn0rkSPQZT-aHZxPlFubzMP10VV3twOt2F4bLKyP0jpw9sHUfmEc35ddPMv3ABvckXtIcUC3PpfTjIKNrrGRycfFwtL3aEnOUjIbPENxvEuzNjmZfvA8sPpYYGSm3Uv-LTX0w9hJ-zh_AgnhvFyfhqj2AP28dw_3wnuto_ge_vG9cL1wbhu1tKgdmfoqsFTRFrbtEj-p9bvm4kWFmDrFA0rXBilJDdbjAI3Gy6TS-bVg4LVGuaHFvOPIXLsw9fT5cydk-QXil1I70mzF3hdKLQp3m1CFgkDovMuIRV5jHXrqCxEBKjK6eqWpWGTq-YGu_TWqtnMGu7Fp-DqHSmfDCUzFI-iKkzBRLmi6zUlFi7pDyEdMLM-igtzh0u1naqIfthGWfLONsR50N4u7O5HoU17pxdTK6wf2wPS8x_p93ryW-Wvhv-GeJa7La9zTTHgaJU6Yv_XPsI7mWcfA9lPC9hRs7CV3RCuamOYf_dr_Q47kN-rj5_W_0Gr0rm3w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SzaHtIfSTpk1bFXoLYm1L9krHJDRsmuxemkAuQciSDC6Lna6z_f2dseWFBJJDr0IjzBvpjQaP3gB89xVGzTIUHKNZxqWXFdfKSW5tEVzwunR9s4nFsphfyZ_X-fUOnIxvYaisMnL_wOk9W8eRaURzelvX019UQK_lDPeQIGEu9Qx2JTW1nsDu0dn5fLkl5EwOhEwS32QQ384MZV6u8yQ_lGocKJQWj8WnB0zdh5_TV7AX743saPi017ATmjfwcrEVXe3ews1xbTtmG89c-xdTYPInayuGU9iKWvSw7s-GnhsxUtZAq8Dqhlk2SMhu1sGzsF63647XDe8XKFc4ObaceQdXpz8uT-Y8dk_gTghxx51CzG1uVSKCS2U58yFPbMgzbRNSmQ9S2RzHvE-0Kq0oK1FovL2GVDuXVkq8h0nTNuEDsFJlwnmNySzmgyG1Og-I-SwrFCbWNin2IR0xMy5Ki1OHi5UZa8h-G8LZEM5mwHkfDrc2t4OwxpOz89EV5t72MMj8T9p9G_1m8NzQzxDbhHbTmUxRHMgLkX78z7W_wvP55eLCXJwtzz_Bi4wS8b6k5wAm6LjwGW8rd-WXuBv_Aejm5yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+and+covariance+of+the+least+squares+estimate+in+a+structured+errors-in-variables+problem&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Quintana%C2%A0Carapia%2C+Gustavo&rft.au=Markovsky%2C+Ivan&rft.au=Pintelon%2C+Rik&rft.au=Csurcsia%2C+P%C3%A9ter+Zolt%C3%A1n&rft.date=2020-04-01&rft.issn=0167-9473&rft.volume=144&rft.spage=106893&rft_id=info:doi/10.1016%2Fj.csda.2019.106893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2019_106893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon