Bias and covariance of the least squares estimate in a structured errors-in-variables problem
A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV...
Saved in:
Published in | Computational statistics & data analysis Vol. 144; p. 106893 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 1872-7352 |
DOI | 10.1016/j.csda.2019.106893 |
Cover
Abstract | A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian, the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified. Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér–Rao lower bound of the structured EIV problem.
•A statistical analysis of a structured and correlated EIV problem is conducted.•Expressions for the bias and covariance of its least-squares solution are obtained.•The accuracy of the statistical moments estimation is numerically validated.•The expressions provide uncertainty assessment for metrology applications.•The mean-squared error of the LS solution is compared to the Cramér–Rao bound. |
---|---|
AbstractList | A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian, the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified. Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér–Rao lower bound of the structured EIV problem.
•A statistical analysis of a structured and correlated EIV problem is conducted.•Expressions for the bias and covariance of its least-squares solution are obtained.•The accuracy of the statistical moments estimation is numerically validated.•The expressions provide uncertainty assessment for metrology applications.•The mean-squared error of the LS solution is compared to the Cramér–Rao bound. A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input estimation from the transient response leads to a structured EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian, the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified. Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér–Rao lower bound of the structured EIV problem. |
ArticleNumber | 106893 |
Author | Verbeke, Dieter Pintelon, Rik Csurcsia, Péter Zoltán Markovsky, Ivan Quintana Carapia, Gustavo |
Author_xml | – sequence: 1 givenname: Gustavo orcidid: 0000-0002-3715-0796 surname: Quintana Carapia fullname: Quintana Carapia, Gustavo email: gquintan@vub.be organization: Vrije Universiteit Brussel, Department of Fundamental Electricity and Instrumentation, 1050, Brussels, Belgium – sequence: 2 givenname: Ivan surname: Markovsky fullname: Markovsky, Ivan organization: Vrije Universiteit Brussel, Department of Fundamental Electricity and Instrumentation, 1050, Brussels, Belgium – sequence: 3 givenname: Rik surname: Pintelon fullname: Pintelon, Rik organization: Vrije Universiteit Brussel, Department of Fundamental Electricity and Instrumentation, 1050, Brussels, Belgium – sequence: 4 givenname: Péter Zoltán surname: Csurcsia fullname: Csurcsia, Péter Zoltán organization: Vrije Universiteit Brussel, Department of Engineering Technology, 1050, Brussels, Belgium – sequence: 5 givenname: Dieter surname: Verbeke fullname: Verbeke, Dieter organization: Vrije Universiteit Brussel, Department of Engineering Technology, 1050, Brussels, Belgium |
BookMark | eNp9kMtKAzEUhoNUsK2-gKss3UxNJnPJgBst3qDgRpcSziRnMGU6aZNMwbc3ta5cdHXg8H_n8s3IZHADEnLN2YIzXt2uFzoYWOSMN6lRyUackSmXdZ7VoswnZJpCddYUtbggsxDWjLG8qOWUfD5YCBQGQ7Xbg7cwaKSuo_ELaY8QIg27ETwGiiHaDUSkdqBAQ_SjjqNHQ9F750Nmh-x3QNun8Na7VDeX5LyDPuDVX52Tj6fH9-VLtnp7fl3erzIthIiZllIXUIJkAjUv2tpgyQDLvAEmJKuxkFCmnjGskS2IthNVI7lB3mjNOynm5OY4N-3djelStbFBY9_DgG4MKpeyrvKyEjxF5TGqvQvBY6e0jRCtG6IH2yvO1MGoWquDUXUwqo5GE5r_Q7c-KfHfp6G7I4Tp_71Fr4K2mCwb61FHZZw9hf8A_w-S5g |
CitedBy_id | crossref_primary_10_1109_TIM_2019_2951865 crossref_primary_10_1016_j_simpa_2021_100192 |
Cites_doi | 10.1016/j.csda.2003.12.001 10.1016/j.acha.2016.02.003 10.1016/j.conengprac.2015.07.001 10.1016/j.jvcir.2017.03.001 10.1080/00207170903470666 10.1016/j.sigpro.2017.09.011 10.1016/j.csda.2007.07.001 10.1016/j.sigpro.2007.04.004 10.1016/j.automatica.2006.11.025 10.1016/j.ymssp.2015.02.001 10.1016/j.csda.2007.05.008 10.1137/S0895479891224245 10.1109/TSP.2014.2350959 10.1016/j.csda.2013.09.021 10.1016/j.ymssp.2016.04.007 10.1109/ACCESS.2018.2828799 10.1137/1032121 10.1016/j.csda.2010.07.013 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.csda.2019.106893 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-7352 |
EndPage | 106893 |
ExternalDocumentID | 10_1016_j_csda_2019_106893 S0167947319302488 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c333t-c88c4a5a803ec14b7de50ae529a03807e48a5de5dd098ba3bf36981de19cc1f83 |
IEDL.DBID | AIKHN |
ISSN | 0167-9473 |
IngestDate | Sat Sep 27 22:27:51 EDT 2025 Thu Apr 24 22:53:53 EDT 2025 Tue Jul 01 02:24:34 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cramér–Rao lower bound Least-squares estimation Uncertainty assessment Statistical analysis Structured errors-in-variables problems Monte Carlo simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-c88c4a5a803ec14b7de50ae529a03807e48a5de5dd098ba3bf36981de19cc1f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3715-0796 |
PQID | 2887625631 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2887625631 crossref_citationtrail_10_1016_j_csda_2019_106893 crossref_primary_10_1016_j_csda_2019_106893 elsevier_sciencedirect_doi_10_1016_j_csda_2019_106893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Markovsky (b8) 2015; 43 Rhode, Usevich, Markovsky, Gauterin (b15) 2014; 62 Palanthandalam-Madapusi, Van Pelt, Bernstein (b12) 2010; 83 Feiz, Rezghi (b3) 2017; 46 Vaccaro (b18) 1994; 15 Mastronardi, O’Leary (b10) 2007; 52 Azam, Chatzi, Papadimitriou (b1) 2015; 60–61 Pan, Luo, Jin, Cao (b13) 2018; 6 Stewart (b17) 1990; 32 Cai, Qu, Xu, Ye (b2) 2016; 41 Yeredor, De Moor (b21) 2004; 47 Van Huffel, Vandewalle (b20) 1991 Hammersley, Handscomb (b4) 1975 Kiviet, Phillips (b6) 2012; 56 Kiviet, Phillips (b7) 2014; 76 Van Huffel, Cheng, Mastronardi, Paige, Kukush (b19) 2007; 52 Jia, Wang, Shen, Jiang, He (b5) 2018; 143 Markovsky, Van Huffel (b9) 2007; 87 Niedźwiecki, Meller, Pietrzak (b11) 2016; 80 Pintelon, Schoukens (b14) 2012 Söderström (b16) 2007; 43 Pintelon (10.1016/j.csda.2019.106893_b14) 2012 Cai (10.1016/j.csda.2019.106893_b2) 2016; 41 Jia (10.1016/j.csda.2019.106893_b5) 2018; 143 Palanthandalam-Madapusi (10.1016/j.csda.2019.106893_b12) 2010; 83 Pan (10.1016/j.csda.2019.106893_b13) 2018; 6 Vaccaro (10.1016/j.csda.2019.106893_b18) 1994; 15 Markovsky (10.1016/j.csda.2019.106893_b8) 2015; 43 Van Huffel (10.1016/j.csda.2019.106893_b20) 1991 Hammersley (10.1016/j.csda.2019.106893_b4) 1975 Niedźwiecki (10.1016/j.csda.2019.106893_b11) 2016; 80 Rhode (10.1016/j.csda.2019.106893_b15) 2014; 62 Stewart (10.1016/j.csda.2019.106893_b17) 1990; 32 Van Huffel (10.1016/j.csda.2019.106893_b19) 2007; 52 Kiviet (10.1016/j.csda.2019.106893_b6) 2012; 56 Kiviet (10.1016/j.csda.2019.106893_b7) 2014; 76 Markovsky (10.1016/j.csda.2019.106893_b9) 2007; 87 Yeredor (10.1016/j.csda.2019.106893_b21) 2004; 47 Feiz (10.1016/j.csda.2019.106893_b3) 2017; 46 Mastronardi (10.1016/j.csda.2019.106893_b10) 2007; 52 Azam (10.1016/j.csda.2019.106893_b1) 2015; 60–61 Söderström (10.1016/j.csda.2019.106893_b16) 2007; 43 |
References_xml | – year: 2012 ident: b14 article-title: System Identification: A Frequency Domain Approach – volume: 43 start-page: 939 year: 2007 end-page: 958 ident: b16 article-title: Errors-in-variables methods in system identification publication-title: Automatica – volume: 80 start-page: 582 year: 2016 end-page: 599 ident: b11 article-title: System identification based approach to dynamic weighing revisited publication-title: Mech. Syst. Signal Process. – volume: 62 start-page: 5652 year: 2014 end-page: 5662 ident: b15 article-title: A recursive restricted total least-squares algorithm publication-title: IEEE Trans. Signal Process. – volume: 46 start-page: 48 year: 2017 end-page: 57 ident: b3 article-title: A splitting method for total least squares color image restoration problem publication-title: J. Vis. Commun. Image Represent. – volume: 15 start-page: 661 year: 1994 end-page: 671 ident: b18 article-title: A second-order perturbation expansion for the SVD publication-title: SIAM J. Matrix Anal. Appl. – volume: 56 start-page: 3705 year: 2012 end-page: 3729 ident: b6 article-title: Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models publication-title: Comput. Statist. Data Anal. – volume: 143 start-page: 211 year: 2018 end-page: 221 ident: b5 article-title: Target localization based on structured total least squares with hybrid TDOA-AOA measurements publication-title: Signal Process. – volume: 6 start-page: 23172 year: 2018 end-page: 23179 ident: b13 article-title: Direction-of-arrival estimation with ULA: a spatial annihilating filter reconstruction perspective publication-title: IEEE Access – volume: 32 start-page: 579 year: 1990 end-page: 610 ident: b17 article-title: Stochastic perturbation theory publication-title: SIAM Rev. – year: 1991 ident: b20 article-title: The Total Least Squares Problem: Computational Aspects and Analysis – volume: 43 start-page: 85 year: 2015 end-page: 93 ident: b8 article-title: An application of system identification in metrology publication-title: Control Eng. Pract. – volume: 60–61 start-page: 866 year: 2015 end-page: 886 ident: b1 article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements publication-title: Mech. Syst. Signal Process. – volume: 76 start-page: 424 year: 2014 end-page: 448 ident: b7 article-title: Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models publication-title: Comput. Statist. Data Anal. – volume: 47 start-page: 455 year: 2004 end-page: 465 ident: b21 article-title: On homogeneous least-squares problems and the inconsistency introduced by mis-constraining publication-title: Comput. Statist. Data Anal. – volume: 41 start-page: 470 year: 2016 end-page: 490 ident: b2 article-title: Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction publication-title: Appl. Comput. Harmon. Anal. – year: 1975 ident: b4 article-title: Monte–Carlo Methods – volume: 87 start-page: 2283 year: 2007 end-page: 2302 ident: b9 article-title: Overview of total least-squares methods publication-title: Signal Process. – volume: 83 start-page: 862 year: 2010 end-page: 877 ident: b12 article-title: Parameter consistency and quadratically constrained errors-in-variables least-squares identification publication-title: Internat. J. Control – volume: 52 start-page: 1076 year: 2007 end-page: 1079 ident: b19 article-title: Total least squares and errors-in-variables modeling publication-title: Comput. Statist. Data Anal. – volume: 52 start-page: 1119 year: 2007 end-page: 1131 ident: b10 article-title: Fast robust regression algorithms for problems with Toeplitz structure publication-title: Comput. Statist. Data Anal. – year: 2012 ident: 10.1016/j.csda.2019.106893_b14 – volume: 47 start-page: 455 issue: 3 year: 2004 ident: 10.1016/j.csda.2019.106893_b21 article-title: On homogeneous least-squares problems and the inconsistency introduced by mis-constraining publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2003.12.001 – volume: 41 start-page: 470 issue: 2 year: 2016 ident: 10.1016/j.csda.2019.106893_b2 article-title: Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.02.003 – volume: 43 start-page: 85 year: 2015 ident: 10.1016/j.csda.2019.106893_b8 article-title: An application of system identification in metrology publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2015.07.001 – volume: 46 start-page: 48 year: 2017 ident: 10.1016/j.csda.2019.106893_b3 article-title: A splitting method for total least squares color image restoration problem publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2017.03.001 – volume: 83 start-page: 862 issue: 4 year: 2010 ident: 10.1016/j.csda.2019.106893_b12 article-title: Parameter consistency and quadratically constrained errors-in-variables least-squares identification publication-title: Internat. J. Control doi: 10.1080/00207170903470666 – year: 1975 ident: 10.1016/j.csda.2019.106893_b4 – volume: 143 start-page: 211 year: 2018 ident: 10.1016/j.csda.2019.106893_b5 article-title: Target localization based on structured total least squares with hybrid TDOA-AOA measurements publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.09.011 – volume: 52 start-page: 1076 issue: 2 year: 2007 ident: 10.1016/j.csda.2019.106893_b19 article-title: Total least squares and errors-in-variables modeling publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2007.07.001 – year: 1991 ident: 10.1016/j.csda.2019.106893_b20 – volume: 87 start-page: 2283 issue: 10 year: 2007 ident: 10.1016/j.csda.2019.106893_b9 article-title: Overview of total least-squares methods publication-title: Signal Process. doi: 10.1016/j.sigpro.2007.04.004 – volume: 43 start-page: 939 issue: 6 year: 2007 ident: 10.1016/j.csda.2019.106893_b16 article-title: Errors-in-variables methods in system identification publication-title: Automatica doi: 10.1016/j.automatica.2006.11.025 – volume: 60–61 start-page: 866 year: 2015 ident: 10.1016/j.csda.2019.106893_b1 article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.001 – volume: 52 start-page: 1119 issue: 2 year: 2007 ident: 10.1016/j.csda.2019.106893_b10 article-title: Fast robust regression algorithms for problems with Toeplitz structure publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2007.05.008 – volume: 15 start-page: 661 issue: 2 year: 1994 ident: 10.1016/j.csda.2019.106893_b18 article-title: A second-order perturbation expansion for the SVD publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479891224245 – volume: 62 start-page: 5652 issue: 21 year: 2014 ident: 10.1016/j.csda.2019.106893_b15 article-title: A recursive restricted total least-squares algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2350959 – volume: 76 start-page: 424 year: 2014 ident: 10.1016/j.csda.2019.106893_b7 article-title: Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2013.09.021 – volume: 80 start-page: 582 year: 2016 ident: 10.1016/j.csda.2019.106893_b11 article-title: System identification based approach to dynamic weighing revisited publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.04.007 – volume: 6 start-page: 23172 year: 2018 ident: 10.1016/j.csda.2019.106893_b13 article-title: Direction-of-arrival estimation with ULA: a spatial annihilating filter reconstruction perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2828799 – volume: 32 start-page: 579 issue: 4 year: 1990 ident: 10.1016/j.csda.2019.106893_b17 article-title: Stochastic perturbation theory publication-title: SIAM Rev. doi: 10.1137/1032121 – volume: 56 start-page: 3705 issue: 11 year: 2012 ident: 10.1016/j.csda.2019.106893_b6 article-title: Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2010.07.013 |
SSID | ssj0002478 |
Score | 2.2890832 |
Snippet | A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor response are subject to perturbation. The input... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106893 |
SubjectTerms | covariance Cramér–Rao lower bound least squares Least-squares estimation metrology Monte Carlo simulation Statistical analysis Structured errors-in-variables problems uncertainty Uncertainty assessment variance |
Title | Bias and covariance of the least squares estimate in a structured errors-in-variables problem |
URI | https://dx.doi.org/10.1016/j.csda.2019.106893 https://www.proquest.com/docview/2887625631 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscEJ-iFCojcUNmkzjJ2sdSUS2s2gNQ0QuyHHsiBa2Ssun2yG9nJnFWAokeOEWyPFb0xnnjUcZvAN6EmqJmhaWkaJbJPOS1NNrn0rkSPQZT-aHZxPlFubzMP10VV3twOt2F4bLKyP0jpw9sHUfmEc35ddPMv3ABvckXtIcUC3PpfTjIKNrrGRycfFwtL3aEnOUjIbPENxvEuzNjmZfvA8sPpYYGSm3Uv-LTX0w9hJ-zh_AgnhvFyfhqj2AP28dw_3wnuto_ge_vG9cL1wbhu1tKgdmfoqsFTRFrbtEj-p9bvm4kWFmDrFA0rXBilJDdbjAI3Gy6TS-bVg4LVGuaHFvOPIXLsw9fT5cydk-QXil1I70mzF3hdKLQp3m1CFgkDovMuIRV5jHXrqCxEBKjK6eqWpWGTq-YGu_TWqtnMGu7Fp-DqHSmfDCUzFI-iKkzBRLmi6zUlFi7pDyEdMLM-igtzh0u1naqIfthGWfLONsR50N4u7O5HoU17pxdTK6wf2wPS8x_p93ryW-Wvhv-GeJa7La9zTTHgaJU6Yv_XPsI7mWcfA9lPC9hRs7CV3RCuamOYf_dr_Q47kN-rj5_W_0Gr0rm3w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SzaHtIfSTpk1bFXoLYm1L9krHJDRsmuxemkAuQciSDC6Lna6z_f2dseWFBJJDr0IjzBvpjQaP3gB89xVGzTIUHKNZxqWXFdfKSW5tEVzwunR9s4nFsphfyZ_X-fUOnIxvYaisMnL_wOk9W8eRaURzelvX019UQK_lDPeQIGEu9Qx2JTW1nsDu0dn5fLkl5EwOhEwS32QQ384MZV6u8yQ_lGocKJQWj8WnB0zdh5_TV7AX743saPi017ATmjfwcrEVXe3ews1xbTtmG89c-xdTYPInayuGU9iKWvSw7s-GnhsxUtZAq8Dqhlk2SMhu1sGzsF63647XDe8XKFc4ObaceQdXpz8uT-Y8dk_gTghxx51CzG1uVSKCS2U58yFPbMgzbRNSmQ9S2RzHvE-0Kq0oK1FovL2GVDuXVkq8h0nTNuEDsFJlwnmNySzmgyG1Og-I-SwrFCbWNin2IR0xMy5Ki1OHi5UZa8h-G8LZEM5mwHkfDrc2t4OwxpOz89EV5t72MMj8T9p9G_1m8NzQzxDbhHbTmUxRHMgLkX78z7W_wvP55eLCXJwtzz_Bi4wS8b6k5wAm6LjwGW8rd-WXuBv_Aejm5yI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+and+covariance+of+the+least+squares+estimate+in+a+structured+errors-in-variables+problem&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Quintana%C2%A0Carapia%2C+Gustavo&rft.au=Markovsky%2C+Ivan&rft.au=Pintelon%2C+Rik&rft.au=Csurcsia%2C+P%C3%A9ter+Zolt%C3%A1n&rft.date=2020-04-01&rft.issn=0167-9473&rft.volume=144&rft.spage=106893&rft_id=info:doi/10.1016%2Fj.csda.2019.106893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2019_106893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |