Cloud Intrusion Detection Method Based on Stacked Contractive Auto-Encoder and Support Vector Machine

Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud computing. Intrusion detection is one of the technologies for protecting the cloud computing environment from malicious attacks. However, network tr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cloud computing Vol. 10; no. 3; pp. 1634 - 1646
Main Authors Wang, Wenjuan, Du, Xuehui, Shan, Dibin, Qin, Ruoxi, Wang, Na
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-7161
2372-0018
2372-0018
DOI10.1109/TCC.2020.3001017

Cover

Abstract Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud computing. Intrusion detection is one of the technologies for protecting the cloud computing environment from malicious attacks. However, network traffic in the cloud computing environment is characterized by large scale, high dimensionality, and high redundancy, these characteristics pose serious challenges to the development of cloud intrusion detection systems. Deep learning technology has shown considerable potential for intrusion detection. Therefore, this study aims to use deep learning to extract essential feature representations automatically and realize high detection performance efficiently. An effective stacked contractive autoencoder (SCAE) method is presented for unsupervised feature extraction. By using the SCAE method, better and robust low-dimensional features can be automatically learned from raw network traffic. A novel cloud intrusion detection system is designed on the basis of the SCAE and support vector machine (SVM) classification algorithm. The SCAE+SVM approach combines both deep and shallow learning techniques, and it fully exploits their advantages to significantly reduce the analytical overhead. Experiments show that the proposed SCAE+SVM method achieves higher detection performance compared to three other state-of-the-art methods on two well-known intrusion detection evaluation datasets, namely KDD Cup 99 and NSL-KDD.
AbstractList Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud computing. Intrusion detection is one of the technologies for protecting the cloud computing environment from malicious attacks. However, network traffic in the cloud computing environment is characterized by large scale, high dimensionality, and high redundancy, these characteristics pose serious challenges to the development of cloud intrusion detection systems. Deep learning technology has shown considerable potential for intrusion detection. Therefore, this study aims to use deep learning to extract essential feature representations automatically and realize high detection performance efficiently. An effective stacked contractive autoencoder (SCAE) method is presented for unsupervised feature extraction. By using the SCAE method, better and robust low-dimensional features can be automatically learned from raw network traffic. A novel cloud intrusion detection system is designed on the basis of the SCAE and support vector machine (SVM) classification algorithm. The SCAE+SVM approach combines both deep and shallow learning techniques, and it fully exploits their advantages to significantly reduce the analytical overhead. Experiments show that the proposed SCAE+SVM method achieves higher detection performance compared to three other state-of-the-art methods on two well-known intrusion detection evaluation datasets, namely KDD Cup 99 and NSL-KDD.
Author Wang, Wenjuan
Shan, Dibin
Qin, Ruoxi
Wang, Na
Du, Xuehui
Author_xml – sequence: 1
  givenname: Wenjuan
  orcidid: 0000-0002-6849-1040
  surname: Wang
  fullname: Wang, Wenjuan
  email: wwjhhx@sohu.com
  organization: PLA Information Engineering University, Zhengzhou, Henan, China
– sequence: 2
  givenname: Xuehui
  orcidid: 0000-0002-4923-900X
  surname: Du
  fullname: Du, Xuehui
  email: dxh37139@sina.com
  organization: PLA Information Engineering University, Zhengzhou, Henan, China
– sequence: 3
  givenname: Dibin
  surname: Shan
  fullname: Shan, Dibin
  email: officeshan@163.com
  organization: PLA Information Engineering University, Zhengzhou, Henan, China
– sequence: 4
  givenname: Ruoxi
  surname: Qin
  fullname: Qin, Ruoxi
  email: 18530023930@163.com
  organization: PLA Information Engineering University, Zhengzhou, Henan, China
– sequence: 5
  givenname: Na
  orcidid: 0000-0003-2916-4087
  surname: Wang
  fullname: Wang, Na
  email: twftina_w@126.com
  organization: PLA Information Engineering University, Zhengzhou, Henan, China
BookMark eNp9kUtPxSAUhInRxOfexA2J6145cEthqfWZaFz42DaUnsZqhUqpxn8vzTUuNJENc5KZAT62ybrzDgnZB7YAYProviwXnHG2EIwBg2KNbHFR8CxNaj1pkCorQMIm2RvHZ5aWykGD3iJY9n5q6JWLYRo77-gpRrRxVjcYn3xDT8yIDU3zXTT2JcnSJ7NJnnekx1P02ZmzvsFAjWvo3TQMPkT6mEp8oDfGPnUOd8lGa_oR9773HfJwfnZfXmbXtxdX5fF1ZoUQMatbXnNm0wuU0KYFrJe5YrBUEjU3NlcKbStyzUwN3NRL2da5NrpBhorLwogdAqveyQ3m88P0fTWE7tWEzwpYNaOqorXVjKr6RpUyh6vMEPzbhGOsnv0UXLpmxQumIZdCzi62ctngxzFg-6c4_cHvYvkrYrtoZrQJX9f_FzxYBTtE_DlHA3Apl-IL-RuTTw
CODEN ITCCF6
CitedBy_id crossref_primary_10_1002_cpe_7840
crossref_primary_10_1109_TCE_2023_3331907
crossref_primary_10_1109_ACCESS_2021_3051074
crossref_primary_10_1186_s13677_023_00474_y
crossref_primary_10_1371_journal_pone_0291872
crossref_primary_10_1002_acs_3386
crossref_primary_10_1155_2022_5988567
crossref_primary_10_1016_j_cose_2024_104056
crossref_primary_10_1016_j_cose_2024_104212
crossref_primary_10_1109_ACCESS_2024_3390844
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_1016_j_compeleceng_2024_109113
crossref_primary_10_1016_j_heliyon_2024_e32087
crossref_primary_10_1016_j_sysarc_2024_103281
crossref_primary_10_1109_ACCESS_2023_3321800
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_TIFS_2025_3539100
crossref_primary_10_1007_s11042_023_17677_9
crossref_primary_10_1109_TNSM_2023_3242270
crossref_primary_10_1007_s11042_021_10567_y
crossref_primary_10_1007_s10586_022_03621_3
crossref_primary_10_1016_j_cose_2023_103251
crossref_primary_10_1186_s13677_024_00657_1
crossref_primary_10_4108_eetsis_3993
crossref_primary_10_1002_nem_2256
crossref_primary_10_1109_JIOT_2024_3384753
crossref_primary_10_1002_cpe_8088
crossref_primary_10_1016_j_cose_2024_104121
crossref_primary_10_1109_JIOT_2023_3333903
crossref_primary_10_3390_electronics12030556
crossref_primary_10_1109_TCE_2023_3326384
crossref_primary_10_1007_s11276_023_03571_7
crossref_primary_10_1016_j_cose_2024_103893
crossref_primary_10_1080_01969722_2022_2122015
crossref_primary_10_1109_TSMC_2023_3343925
crossref_primary_10_1007_s10586_023_04055_1
crossref_primary_10_1109_JIOT_2024_3360231
crossref_primary_10_1109_TCSS_2021_3063538
crossref_primary_10_1016_j_cose_2024_104081
crossref_primary_10_1109_JIOT_2021_3112159
crossref_primary_10_1109_TNNLS_2023_3335355
crossref_primary_10_3233_MGS_220360
crossref_primary_10_1016_j_eswa_2023_120894
crossref_primary_10_1142_S0219265923500081
crossref_primary_10_1007_s10489_024_05505_y
crossref_primary_10_1109_ACCESS_2024_3516615
crossref_primary_10_1109_TIFS_2022_3233777
crossref_primary_10_1109_TSUSC_2024_3390003
Cites_doi 10.1109/ACCESS.2018.2883142
10.4018/ijiit.2015100101
10.4108/eai.3-12-2015.2262516
10.1109/CNSM.2014.7014181
10.1109/ACCESS.2017.2782159
10.1126/science.1127647
10.1109/TDSC.2013.8
10.1007/978-3-642-20505-7_26
10.1109/ICDMW.2012.56
10.1109/ISPA/IUCC.2017.00215
10.1155/2015/198363
10.1186/s13638-016-0623-3
10.1109/ACCESS.2019.2893871
10.1109/WINCOM.2016.7777224
10.1166/asl.2017.10045
10.1162/neco.2006.18.7.1527
10.1109/BIGCOMP.2017.7881684
10.1145/1390156.1390294
10.1007/978-3-319-67422-3_13
10.1109/CISDA.2009.5356528
10.1109/35.41400
10.1109/CSCloud.2017.39
10.6028/nist.sp.800-145
10.1155/2017/4184196
10.1038/323533a0
10.1109/TETCI.2017.2772792
10.4108/eai.28-12-2017.153515
10.1109/ICNP.2012.6459946
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TCC.2020.3001017
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-0018
EndPage 1646
ExternalDocumentID 10.1109/tcc.2020.3001017
10_1109_TCC_2020_3001017
9112664
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61802436; 61702550
  funderid: 10.13039/501100001809
– fundername: Natural National Key Basic Research Program of China
  grantid: 2016YFB050190104
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c333t-bf2b20c101839af1eb45801486e92ac588ecf3590ab12ab46fb59a9de0e8267a3
IEDL.DBID UNPAY
ISSN 2168-7161
2372-0018
IngestDate Tue Aug 19 18:27:26 EDT 2025
Wed Oct 29 02:28:31 EDT 2025
Wed Oct 01 03:34:07 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 02:14:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-bf2b20c101839af1eb45801486e92ac588ecf3590ab12ab46fb59a9de0e8267a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2916-4087
0000-0002-4923-900X
0000-0002-6849-1040
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6245519/9875145/09112664.pdf
PQID 2709156367
PQPubID 2040413
PageCount 13
ParticipantIDs unpaywall_primary_10_1109_tcc_2020_3001017
ieee_primary_9112664
crossref_primary_10_1109_TCC_2020_3001017
proquest_journals_2709156367
crossref_citationtrail_10_1109_TCC_2020_3001017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cloud computing
PublicationTitleAbbrev TCC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref11
ref33
ref10
ref1
Larochelle (ref37) 2009; 1
ref16
ref19
ref18
(ref2) 2018
Weston (ref31) 2005
Rifkin (ref32) 2004; 5
Cui (ref6) 2014; 25
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Rifai (ref30)
Alain (ref17) 2014; 15
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref36
  doi: 10.1109/ACCESS.2018.2883142
– ident: ref10
  doi: 10.4018/ijiit.2015100101
– ident: ref21
  doi: 10.4108/eai.3-12-2015.2262516
– ident: ref5
  doi: 10.1109/CNSM.2014.7014181
– ident: ref26
  doi: 10.1109/ACCESS.2017.2782159
– ident: ref7
  doi: 10.1126/science.1127647
– ident: ref4
  doi: 10.1109/TDSC.2013.8
– ident: ref19
  doi: 10.1007/978-3-642-20505-7_26
– volume-title: KDD CUP 1999 dataset
  ident: ref34
– ident: ref9
  doi: 10.1109/ICDMW.2012.56
– ident: ref12
  doi: 10.1109/ISPA/IUCC.2017.00215
– ident: ref8
  doi: 10.1155/2015/198363
– ident: ref11
  doi: 10.1186/s13638-016-0623-3
– ident: ref24
  doi: 10.1109/ACCESS.2019.2893871
– start-page: 833
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
– ident: ref18
  doi: 10.1109/WINCOM.2016.7777224
– year: 2005
  ident: ref31
  article-title: Multi-class support vector machines
– volume: 25
  start-page: 2251
  issue: 10
  year: 2014
  ident: ref6
  article-title: Establishing process-level defense-in-depth framework for software defined networks
  publication-title: J. Softw.
– ident: ref13
  doi: 10.1166/asl.2017.10045
– ident: ref15
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref23
  doi: 10.1109/BIGCOMP.2017.7881684
– ident: ref29
  doi: 10.1145/1390156.1390294
– volume: 15
  start-page: 3563
  issue: 1
  year: 2014
  ident: ref17
  article-title: What regularized auto-encoders learn from the data generating distribution
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.1007/978-3-319-67422-3_13
– ident: ref35
  doi: 10.1109/CISDA.2009.5356528
– ident: ref14
  doi: 10.1109/35.41400
– ident: ref20
  doi: 10.1109/CSCloud.2017.39
– ident: ref1
  doi: 10.6028/nist.sp.800-145
– volume: 1
  start-page: 1
  issue: 10
  year: 2009
  ident: ref37
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: ref2
  article-title: Forecast and methodology, 2016–2021 White Paper
– ident: ref28
  doi: 10.1155/2017/4184196
– ident: ref16
  doi: 10.1038/323533a0
– ident: ref25
  doi: 10.1109/TETCI.2017.2772792
– volume-title: NSL_KDD dataset
  ident: ref33
– ident: ref22
  doi: 10.4108/eai.28-12-2017.153515
– ident: ref3
  doi: 10.1109/ICNP.2012.6459946
– volume: 5
  start-page: 101
  issue: 1
  year: 2004
  ident: ref32
  article-title: In defense of one-vs-all classification
  publication-title: Learn. Res.
SSID ssj0000851919
Score 2.5190184
Snippet Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1634
SubjectTerms Algorithms
Cloud computing
Coders
Communications traffic
contractive auto-encoder
Deep learning
Dimensionality reduction
Feature extraction
Intrusion detection
intrusion detection system (IDS)
Intrusion detection systems
Machine learning
Redundancy
support vector machine
Support vector machines
Sustainable development
Telecommunication traffic
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BF7gUyoe6lFY-cAGR3SSOk_gIWxAgLSdA3CLbGV9YZREkIPj1HXuTiC2o4pZItmzp2fIbe94bgH2bobYGs8BkkQoS1CKQudJBaWNUWlurvBPT5Co9v0ku78TdEhz1WhhE9MlnOHSf_i2_nJnGXZWNpNO7pMkyLGd5Otdq9fcpjjrISHYvkaEcXY_HFP_FFJZ6I7Vs4eTxpVQWWOVqUz2o1xc1nb47YM7WYdJNbZ5Xcj9saj00b_-4Nn517hvwrWWa7Hi-NL7DElabsN5VcWDtpt4CHE9nTckuKie_IJTYH6x9flbFJr68NDuhk65k9E_MlDZ9yZyllVdXPSM7bupZcFo5afwjU1XJXJ1Q4vTs1r8HsInP1sRtuDk7vR6fB23xhcBwzutA21jHoXGGXlwqG6FOhHOayVOUsTIiz9FYLmSodBQrnaRWC6lkiSFSxJIpvgMr1azCH8CIMehMaE2xGk-MkblIrYx4SbGZUEQnBzDqgClM60zuCmRMCx-hhLIgKAsHZdFCOYCDvsfD3JXjP223HBp9uxaIAex12Bfttn0q4ozok0h5Sr0O-_XwYYjamIUhdj8f4iesxU4s4ZN792CFYMRfRGFq_duv3b8-2O45
  priority: 102
  providerName: IEEE
Title Cloud Intrusion Detection Method Based on Stacked Contractive Auto-Encoder and Support Vector Machine
URI https://ieeexplore.ieee.org/document/9112664
https://www.proquest.com/docview/2709156367
https://ieeexplore.ieee.org/ielx7/6245519/9875145/09112664.pdf
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2372-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000851919
  issn: 2372-0018
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagO8CFAQOtMCYfuIDkJnHiOD523aaB1InDisYpsp1nCRGl1Ug34Nfz7DoVBQkJbolky4nei9_74ve-j5DXToJxFiSzMtOsACOYqrRhjeOgjXFOByam-WV5sSjeX4vr-MMt9MIAQCg-g4m_DGf5n6H9JpOSFxjdVYIgGYO8SDDQZRhdismqcffJXikwFx-RvcXlh-knryiXlRVDMJAFdTnJmZefG84pU5X01hMYcgStgWZN7sSlILSyk3M-WHcr_f1Ot-0v4ed8n9TDg2-qTr5M1r2Z2B-_cTr-_5s9Jo9iZkqnG1d6Qu5B95TsD6oPNG4CBwRm7XLd0Hedb9dAq9JT6EM9V0fnQY6anmBkbCjeYyaLm0RDPQVW6Ma6BTpd90t21vlW-huqu4Z6XVHEAPRjOD-g81DdCc_I4vzsanbBolgDs3me98w4bnhqPQFYrrTLwBTCM9NUJSiuragqsC4XKtUm49oUpTNCadVACohwpM6fk1G37OCQUMwwjBTGILbLC2tVJUqnsrxBLCc0pp9jkgymqm1kMveCGm0dEE2q6qvZrPbGraNxx-TNdsZqw-Lxl7EH3j7bcdEYY3I0eEMdP_OvNZdoK1HmJc56u_WQP5ZAX9tZ4sW_DH5JHnLfchFKhI_ICI0LrzAR6s1x6FY8jj7_E7qD_40
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VciiXFiiIhRZ84AIiu0lsJ_GxXVptoelpi3qLbGd8YZWtSgKCr2fsTSIWEOKWSLZs6dnyG3veG4DXLkfjLOaRzRMdCTQyUoU2Ue1S1MY4p4MTU3mVLa7Fhxt5swPvRi0MIobkM5z6z_CWX69t56_KZsrrXTJxD-5LIYTcqLXGGxVPHlSihrfIWM2W8zlFgCkFpsFKLd86e0IxlS1eudc1t_r7N71a_XLEnB9AOUxuk1nyedq1Zmp__Obb-L-zfwj7PddkJ5vF8Qh2sHkMB0MdB9Zv60PA-Wrd1eyi8QIMwom9xzZkaDWsDAWm2SmddTWjf-KmtO1r5k2tgr7qK7KTrl1HZ40Xx98x3dTMVwolVs8-hRcBVoZ8TXwC1-dny_ki6ssvRJZz3kbGpSaNrbf04kq7BI2Q3mumyFCl2sqiQOu4VLE2SaqNyJyRSqsaY6SYJdf8Kew26wafASPOYHJpDEVrXFirCpk5lfCaojOpiVBOYDYAU9nem9yXyFhVIUaJVUVQVh7KqodyAm_GHrcbX45_tD30aIzteiAmcDRgX_Ub90uV5kSgZMYz6vV2XA9_DNFauzXE878P8Qr2Fsvysrq8uPr4Ah6kXjoRUn2PYJcgxWMiNK15GdbxT93x8YY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagO8BlAwaisCEfuIDkJrHjJD6WbtNA6sRhReMU2c6zNBGlFaQD9uv37DoVBQkJbolky4nei9_74ve-j5DXrgTjLJTMlplmORjJVKUNaxwHbYxzOjAxzS-K80X-4UpexR9uoRcGAELxGUz8ZTjLv4b2R5kUPMforhIEyRjkZYKBLsPokk9WjbtP9gqJufiI7C0uPk4_e0W5rKgYgoEsqMuVnHn5ueGcMlVJbz2BIUfQGmjWyp24FIRWdnLOB-tupX9-1237S_g5OyD18OCbqpMvk3VvJvb2N07H_3-zR2Q_ZqZ0unGlx-QedE_IwaD6QOMmcEhg1i7XDX3f-XYNtCo9gT7Uc3V0HuSo6TuMjA3Fe8xkcZNoqKfACt1YN0Cn637JTjvfSv-V6q6hXlcUMQD9FM4P6DxUd8JTsjg7vZydsyjWwKwQomfGccNT6wnAhNIuA5NLz0xTFaC4trKqwDohVapNxrXJC2ek0qqBFBDhlFo8I6Nu2cFzQjHDMKU0BrGdyK1VlSycykSDWE5qTD_HJBlMVdvIZO4FNdo6IJpU1ZezWe2NW0fjjsmb7YzVhsXjL2MPvX2246IxxuRo8IY6fubfal6irWQhCpz1dushfyyBvrazxIt_GfySPOS-5SKUCB-RERoXjjER6s2r6O13wmz-jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloud+Intrusion+Detection+Method+Based+on+Stacked+Contractive+Auto-Encoder+and+Support+Vector+Machine&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Wang%2C+Wenjuan&rft.au=Du%2C+Xuehui&rft.au=Shan%2C+Dibin&rft.au=Qin%2C+Ruoxi&rft.date=2022-07-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=10&rft.issue=3&rft.spage=1634&rft.epage=1646&rft_id=info:doi/10.1109%2FTCC.2020.3001017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2020_3001017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon