Cloud Intrusion Detection Method Based on Stacked Contractive Auto-Encoder and Support Vector Machine
Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud computing. Intrusion detection is one of the technologies for protecting the cloud computing environment from malicious attacks. However, network tr...
Saved in:
| Published in | IEEE transactions on cloud computing Vol. 10; no. 3; pp. 1634 - 1646 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-7161 2372-0018 2372-0018 |
| DOI | 10.1109/TCC.2020.3001017 |
Cover
| Abstract | Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud computing. Intrusion detection is one of the technologies for protecting the cloud computing environment from malicious attacks. However, network traffic in the cloud computing environment is characterized by large scale, high dimensionality, and high redundancy, these characteristics pose serious challenges to the development of cloud intrusion detection systems. Deep learning technology has shown considerable potential for intrusion detection. Therefore, this study aims to use deep learning to extract essential feature representations automatically and realize high detection performance efficiently. An effective stacked contractive autoencoder (SCAE) method is presented for unsupervised feature extraction. By using the SCAE method, better and robust low-dimensional features can be automatically learned from raw network traffic. A novel cloud intrusion detection system is designed on the basis of the SCAE and support vector machine (SVM) classification algorithm. The SCAE+SVM approach combines both deep and shallow learning techniques, and it fully exploits their advantages to significantly reduce the analytical overhead. Experiments show that the proposed SCAE+SVM method achieves higher detection performance compared to three other state-of-the-art methods on two well-known intrusion detection evaluation datasets, namely KDD Cup 99 and NSL-KDD. |
|---|---|
| AbstractList | Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud computing. Intrusion detection is one of the technologies for protecting the cloud computing environment from malicious attacks. However, network traffic in the cloud computing environment is characterized by large scale, high dimensionality, and high redundancy, these characteristics pose serious challenges to the development of cloud intrusion detection systems. Deep learning technology has shown considerable potential for intrusion detection. Therefore, this study aims to use deep learning to extract essential feature representations automatically and realize high detection performance efficiently. An effective stacked contractive autoencoder (SCAE) method is presented for unsupervised feature extraction. By using the SCAE method, better and robust low-dimensional features can be automatically learned from raw network traffic. A novel cloud intrusion detection system is designed on the basis of the SCAE and support vector machine (SVM) classification algorithm. The SCAE+SVM approach combines both deep and shallow learning techniques, and it fully exploits their advantages to significantly reduce the analytical overhead. Experiments show that the proposed SCAE+SVM method achieves higher detection performance compared to three other state-of-the-art methods on two well-known intrusion detection evaluation datasets, namely KDD Cup 99 and NSL-KDD. |
| Author | Wang, Wenjuan Shan, Dibin Qin, Ruoxi Wang, Na Du, Xuehui |
| Author_xml | – sequence: 1 givenname: Wenjuan orcidid: 0000-0002-6849-1040 surname: Wang fullname: Wang, Wenjuan email: wwjhhx@sohu.com organization: PLA Information Engineering University, Zhengzhou, Henan, China – sequence: 2 givenname: Xuehui orcidid: 0000-0002-4923-900X surname: Du fullname: Du, Xuehui email: dxh37139@sina.com organization: PLA Information Engineering University, Zhengzhou, Henan, China – sequence: 3 givenname: Dibin surname: Shan fullname: Shan, Dibin email: officeshan@163.com organization: PLA Information Engineering University, Zhengzhou, Henan, China – sequence: 4 givenname: Ruoxi surname: Qin fullname: Qin, Ruoxi email: 18530023930@163.com organization: PLA Information Engineering University, Zhengzhou, Henan, China – sequence: 5 givenname: Na orcidid: 0000-0003-2916-4087 surname: Wang fullname: Wang, Na email: twftina_w@126.com organization: PLA Information Engineering University, Zhengzhou, Henan, China |
| BookMark | eNp9kUtPxSAUhInRxOfexA2J6145cEthqfWZaFz42DaUnsZqhUqpxn8vzTUuNJENc5KZAT62ybrzDgnZB7YAYProviwXnHG2EIwBg2KNbHFR8CxNaj1pkCorQMIm2RvHZ5aWykGD3iJY9n5q6JWLYRo77-gpRrRxVjcYn3xDT8yIDU3zXTT2JcnSJ7NJnnekx1P02ZmzvsFAjWvo3TQMPkT6mEp8oDfGPnUOd8lGa_oR9773HfJwfnZfXmbXtxdX5fF1ZoUQMatbXnNm0wuU0KYFrJe5YrBUEjU3NlcKbStyzUwN3NRL2da5NrpBhorLwogdAqveyQ3m88P0fTWE7tWEzwpYNaOqorXVjKr6RpUyh6vMEPzbhGOsnv0UXLpmxQumIZdCzi62ctngxzFg-6c4_cHvYvkrYrtoZrQJX9f_FzxYBTtE_DlHA3Apl-IL-RuTTw |
| CODEN | ITCCF6 |
| CitedBy_id | crossref_primary_10_1002_cpe_7840 crossref_primary_10_1109_TCE_2023_3331907 crossref_primary_10_1109_ACCESS_2021_3051074 crossref_primary_10_1186_s13677_023_00474_y crossref_primary_10_1371_journal_pone_0291872 crossref_primary_10_1002_acs_3386 crossref_primary_10_1155_2022_5988567 crossref_primary_10_1016_j_cose_2024_104056 crossref_primary_10_1016_j_cose_2024_104212 crossref_primary_10_1109_ACCESS_2024_3390844 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_1016_j_compeleceng_2024_109113 crossref_primary_10_1016_j_heliyon_2024_e32087 crossref_primary_10_1016_j_sysarc_2024_103281 crossref_primary_10_1109_ACCESS_2023_3321800 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1109_TIFS_2025_3539100 crossref_primary_10_1007_s11042_023_17677_9 crossref_primary_10_1109_TNSM_2023_3242270 crossref_primary_10_1007_s11042_021_10567_y crossref_primary_10_1007_s10586_022_03621_3 crossref_primary_10_1016_j_cose_2023_103251 crossref_primary_10_1186_s13677_024_00657_1 crossref_primary_10_4108_eetsis_3993 crossref_primary_10_1002_nem_2256 crossref_primary_10_1109_JIOT_2024_3384753 crossref_primary_10_1002_cpe_8088 crossref_primary_10_1016_j_cose_2024_104121 crossref_primary_10_1109_JIOT_2023_3333903 crossref_primary_10_3390_electronics12030556 crossref_primary_10_1109_TCE_2023_3326384 crossref_primary_10_1007_s11276_023_03571_7 crossref_primary_10_1016_j_cose_2024_103893 crossref_primary_10_1080_01969722_2022_2122015 crossref_primary_10_1109_TSMC_2023_3343925 crossref_primary_10_1007_s10586_023_04055_1 crossref_primary_10_1109_JIOT_2024_3360231 crossref_primary_10_1109_TCSS_2021_3063538 crossref_primary_10_1016_j_cose_2024_104081 crossref_primary_10_1109_JIOT_2021_3112159 crossref_primary_10_1109_TNNLS_2023_3335355 crossref_primary_10_3233_MGS_220360 crossref_primary_10_1016_j_eswa_2023_120894 crossref_primary_10_1142_S0219265923500081 crossref_primary_10_1007_s10489_024_05505_y crossref_primary_10_1109_ACCESS_2024_3516615 crossref_primary_10_1109_TIFS_2022_3233777 crossref_primary_10_1109_TSUSC_2024_3390003 |
| Cites_doi | 10.1109/ACCESS.2018.2883142 10.4018/ijiit.2015100101 10.4108/eai.3-12-2015.2262516 10.1109/CNSM.2014.7014181 10.1109/ACCESS.2017.2782159 10.1126/science.1127647 10.1109/TDSC.2013.8 10.1007/978-3-642-20505-7_26 10.1109/ICDMW.2012.56 10.1109/ISPA/IUCC.2017.00215 10.1155/2015/198363 10.1186/s13638-016-0623-3 10.1109/ACCESS.2019.2893871 10.1109/WINCOM.2016.7777224 10.1166/asl.2017.10045 10.1162/neco.2006.18.7.1527 10.1109/BIGCOMP.2017.7881684 10.1145/1390156.1390294 10.1007/978-3-319-67422-3_13 10.1109/CISDA.2009.5356528 10.1109/35.41400 10.1109/CSCloud.2017.39 10.6028/nist.sp.800-145 10.1155/2017/4184196 10.1038/323533a0 10.1109/TETCI.2017.2772792 10.4108/eai.28-12-2017.153515 10.1109/ICNP.2012.6459946 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/TCC.2020.3001017 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2372-0018 |
| EndPage | 1646 |
| ExternalDocumentID | 10.1109/tcc.2020.3001017 10_1109_TCC_2020_3001017 9112664 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61802436; 61702550 funderid: 10.13039/501100001809 – fundername: Natural National Key Basic Research Program of China grantid: 2016YFB050190104 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c333t-bf2b20c101839af1eb45801486e92ac588ecf3590ab12ab46fb59a9de0e8267a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2168-7161 2372-0018 |
| IngestDate | Tue Aug 19 18:27:26 EDT 2025 Wed Oct 29 02:28:31 EDT 2025 Wed Oct 01 03:34:07 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:14:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-bf2b20c101839af1eb45801486e92ac588ecf3590ab12ab46fb59a9de0e8267a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2916-4087 0000-0002-4923-900X 0000-0002-6849-1040 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6245519/9875145/09112664.pdf |
| PQID | 2709156367 |
| PQPubID | 2040413 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1109_tcc_2020_3001017 ieee_primary_9112664 crossref_primary_10_1109_TCC_2020_3001017 proquest_journals_2709156367 crossref_citationtrail_10_1109_TCC_2020_3001017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cloud computing |
| PublicationTitleAbbrev | TCC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref11 ref33 ref10 ref1 Larochelle (ref37) 2009; 1 ref16 ref19 ref18 (ref2) 2018 Weston (ref31) 2005 Rifkin (ref32) 2004; 5 Cui (ref6) 2014; 25 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Rifai (ref30) Alain (ref17) 2014; 15 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref36 doi: 10.1109/ACCESS.2018.2883142 – ident: ref10 doi: 10.4018/ijiit.2015100101 – ident: ref21 doi: 10.4108/eai.3-12-2015.2262516 – ident: ref5 doi: 10.1109/CNSM.2014.7014181 – ident: ref26 doi: 10.1109/ACCESS.2017.2782159 – ident: ref7 doi: 10.1126/science.1127647 – ident: ref4 doi: 10.1109/TDSC.2013.8 – ident: ref19 doi: 10.1007/978-3-642-20505-7_26 – volume-title: KDD CUP 1999 dataset ident: ref34 – ident: ref9 doi: 10.1109/ICDMW.2012.56 – ident: ref12 doi: 10.1109/ISPA/IUCC.2017.00215 – ident: ref8 doi: 10.1155/2015/198363 – ident: ref11 doi: 10.1186/s13638-016-0623-3 – ident: ref24 doi: 10.1109/ACCESS.2019.2893871 – start-page: 833 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Contractive auto-encoders: explicit invariance during feature extraction – ident: ref18 doi: 10.1109/WINCOM.2016.7777224 – year: 2005 ident: ref31 article-title: Multi-class support vector machines – volume: 25 start-page: 2251 issue: 10 year: 2014 ident: ref6 article-title: Establishing process-level defense-in-depth framework for software defined networks publication-title: J. Softw. – ident: ref13 doi: 10.1166/asl.2017.10045 – ident: ref15 doi: 10.1162/neco.2006.18.7.1527 – ident: ref23 doi: 10.1109/BIGCOMP.2017.7881684 – ident: ref29 doi: 10.1145/1390156.1390294 – volume: 15 start-page: 3563 issue: 1 year: 2014 ident: ref17 article-title: What regularized auto-encoders learn from the data generating distribution publication-title: J. Mach. Learn. Res. – ident: ref27 doi: 10.1007/978-3-319-67422-3_13 – ident: ref35 doi: 10.1109/CISDA.2009.5356528 – ident: ref14 doi: 10.1109/35.41400 – ident: ref20 doi: 10.1109/CSCloud.2017.39 – ident: ref1 doi: 10.6028/nist.sp.800-145 – volume: 1 start-page: 1 issue: 10 year: 2009 ident: ref37 article-title: Exploring strategies for training deep neural networks publication-title: J. Mach. Learn. Res. – year: 2018 ident: ref2 article-title: Forecast and methodology, 2016–2021 White Paper – ident: ref28 doi: 10.1155/2017/4184196 – ident: ref16 doi: 10.1038/323533a0 – ident: ref25 doi: 10.1109/TETCI.2017.2772792 – volume-title: NSL_KDD dataset ident: ref33 – ident: ref22 doi: 10.4108/eai.28-12-2017.153515 – ident: ref3 doi: 10.1109/ICNP.2012.6459946 – volume: 5 start-page: 101 issue: 1 year: 2004 ident: ref32 article-title: In defense of one-vs-all classification publication-title: Learn. Res. |
| SSID | ssj0000851919 |
| Score | 2.5190184 |
| Snippet | Security issues have resulted in severe damage to the cloud computing environment, adversely affecting the healthy and sustainable development of cloud... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1634 |
| SubjectTerms | Algorithms Cloud computing Coders Communications traffic contractive auto-encoder Deep learning Dimensionality reduction Feature extraction Intrusion detection intrusion detection system (IDS) Intrusion detection systems Machine learning Redundancy support vector machine Support vector machines Sustainable development Telecommunication traffic |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BF7gUyoe6lFY-cAGR3SSOk_gIWxAgLSdA3CLbGV9YZREkIPj1HXuTiC2o4pZItmzp2fIbe94bgH2bobYGs8BkkQoS1CKQudJBaWNUWlurvBPT5Co9v0ku78TdEhz1WhhE9MlnOHSf_i2_nJnGXZWNpNO7pMkyLGd5Otdq9fcpjjrISHYvkaEcXY_HFP_FFJZ6I7Vs4eTxpVQWWOVqUz2o1xc1nb47YM7WYdJNbZ5Xcj9saj00b_-4Nn517hvwrWWa7Hi-NL7DElabsN5VcWDtpt4CHE9nTckuKie_IJTYH6x9flbFJr68NDuhk65k9E_MlDZ9yZyllVdXPSM7bupZcFo5afwjU1XJXJ1Q4vTs1r8HsInP1sRtuDk7vR6fB23xhcBwzutA21jHoXGGXlwqG6FOhHOayVOUsTIiz9FYLmSodBQrnaRWC6lkiSFSxJIpvgMr1azCH8CIMehMaE2xGk-MkblIrYx4SbGZUEQnBzDqgClM60zuCmRMCx-hhLIgKAsHZdFCOYCDvsfD3JXjP223HBp9uxaIAex12Bfttn0q4ozok0h5Sr0O-_XwYYjamIUhdj8f4iesxU4s4ZN792CFYMRfRGFq_duv3b8-2O45 priority: 102 providerName: IEEE |
| Title | Cloud Intrusion Detection Method Based on Stacked Contractive Auto-Encoder and Support Vector Machine |
| URI | https://ieeexplore.ieee.org/document/9112664 https://www.proquest.com/docview/2709156367 https://ieeexplore.ieee.org/ielx7/6245519/9875145/09112664.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2372-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000851919 issn: 2372-0018 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagO8CFAQOtMCYfuIDkJnHiOD523aaB1InDisYpsp1nCRGl1Ug34Nfz7DoVBQkJbolky4nei9_74ve-j5DXToJxFiSzMtOsACOYqrRhjeOgjXFOByam-WV5sSjeX4vr-MMt9MIAQCg-g4m_DGf5n6H9JpOSFxjdVYIgGYO8SDDQZRhdismqcffJXikwFx-RvcXlh-knryiXlRVDMJAFdTnJmZefG84pU5X01hMYcgStgWZN7sSlILSyk3M-WHcr_f1Ot-0v4ed8n9TDg2-qTr5M1r2Z2B-_cTr-_5s9Jo9iZkqnG1d6Qu5B95TsD6oPNG4CBwRm7XLd0Hedb9dAq9JT6EM9V0fnQY6anmBkbCjeYyaLm0RDPQVW6Ma6BTpd90t21vlW-huqu4Z6XVHEAPRjOD-g81DdCc_I4vzsanbBolgDs3me98w4bnhqPQFYrrTLwBTCM9NUJSiuragqsC4XKtUm49oUpTNCadVACohwpM6fk1G37OCQUMwwjBTGILbLC2tVJUqnsrxBLCc0pp9jkgymqm1kMveCGm0dEE2q6qvZrPbGraNxx-TNdsZqw-Lxl7EH3j7bcdEYY3I0eEMdP_OvNZdoK1HmJc56u_WQP5ZAX9tZ4sW_DH5JHnLfchFKhI_ICI0LrzAR6s1x6FY8jj7_E7qD_40 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VciiXFiiIhRZ84AIiu0lsJ_GxXVptoelpi3qLbGd8YZWtSgKCr2fsTSIWEOKWSLZs6dnyG3veG4DXLkfjLOaRzRMdCTQyUoU2Ue1S1MY4p4MTU3mVLa7Fhxt5swPvRi0MIobkM5z6z_CWX69t56_KZsrrXTJxD-5LIYTcqLXGGxVPHlSihrfIWM2W8zlFgCkFpsFKLd86e0IxlS1eudc1t_r7N71a_XLEnB9AOUxuk1nyedq1Zmp__Obb-L-zfwj7PddkJ5vF8Qh2sHkMB0MdB9Zv60PA-Wrd1eyi8QIMwom9xzZkaDWsDAWm2SmddTWjf-KmtO1r5k2tgr7qK7KTrl1HZ40Xx98x3dTMVwolVs8-hRcBVoZ8TXwC1-dny_ki6ssvRJZz3kbGpSaNrbf04kq7BI2Q3mumyFCl2sqiQOu4VLE2SaqNyJyRSqsaY6SYJdf8Kew26wafASPOYHJpDEVrXFirCpk5lfCaojOpiVBOYDYAU9nem9yXyFhVIUaJVUVQVh7KqodyAm_GHrcbX45_tD30aIzteiAmcDRgX_Ub90uV5kSgZMYz6vV2XA9_DNFauzXE878P8Qr2Fsvysrq8uPr4Ah6kXjoRUn2PYJcgxWMiNK15GdbxT93x8YY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagO8BlAwaisCEfuIDkJrHjJD6WbtNA6sRhReMU2c6zNBGlFaQD9uv37DoVBQkJbolky4nei9_74ve-j5DXrgTjLJTMlplmORjJVKUNaxwHbYxzOjAxzS-K80X-4UpexR9uoRcGAELxGUz8ZTjLv4b2R5kUPMforhIEyRjkZYKBLsPokk9WjbtP9gqJufiI7C0uPk4_e0W5rKgYgoEsqMuVnHn5ueGcMlVJbz2BIUfQGmjWyp24FIRWdnLOB-tupX9-1237S_g5OyD18OCbqpMvk3VvJvb2N07H_3-zR2Q_ZqZ0unGlx-QedE_IwaD6QOMmcEhg1i7XDX3f-XYNtCo9gT7Uc3V0HuSo6TuMjA3Fe8xkcZNoqKfACt1YN0Cn637JTjvfSv-V6q6hXlcUMQD9FM4P6DxUd8JTsjg7vZydsyjWwKwQomfGccNT6wnAhNIuA5NLz0xTFaC4trKqwDohVapNxrXJC2ek0qqBFBDhlFo8I6Nu2cFzQjHDMKU0BrGdyK1VlSycykSDWE5qTD_HJBlMVdvIZO4FNdo6IJpU1ZezWe2NW0fjjsmb7YzVhsXjL2MPvX2246IxxuRo8IY6fubfal6irWQhCpz1dushfyyBvrazxIt_GfySPOS-5SKUCB-RERoXjjER6s2r6O13wmz-jA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloud+Intrusion+Detection+Method+Based+on+Stacked+Contractive+Auto-Encoder+and+Support+Vector+Machine&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Wang%2C+Wenjuan&rft.au=Du%2C+Xuehui&rft.au=Shan%2C+Dibin&rft.au=Qin%2C+Ruoxi&rft.date=2022-07-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=10&rft.issue=3&rft.spage=1634&rft.epage=1646&rft_id=info:doi/10.1109%2FTCC.2020.3001017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2020_3001017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon |