Ovarian Cancer Detection in Ascites Cytology with Weakly Supervised Model on Nationwide Data Set

Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learnin...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of pathology Vol. 195; no. 7; pp. 1254 - 1263
Main Authors Lee, Jiwon, Choi, Seonggyeong, Shin, Seoyeon, Alam, Mohammad Rizwan, Abdul-Ghafar, Jamshid, Seo, Kyung Jin, Hwang, Gisu, Jeong, Daeky, Gong, Gyungyub, Cho, Nam Hoon, Yoo, Chong Woo, Kim, Hyung Kyung, Chong, Yosep, Yim, Kwangil
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2025
Subjects
Online AccessGet full text
ISSN0002-9440
1525-2191
DOI10.1016/j.ajpath.2025.04.004

Cover

Abstract Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model. [Display omitted]
AbstractList Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model. [Display omitted]
Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model.
Author Cho, Nam Hoon
Lee, Jiwon
Hwang, Gisu
Shin, Seoyeon
Abdul-Ghafar, Jamshid
Yim, Kwangil
Choi, Seonggyeong
Kim, Hyung Kyung
Alam, Mohammad Rizwan
Jeong, Daeky
Chong, Yosep
Yoo, Chong Woo
Gong, Gyungyub
Seo, Kyung Jin
Author_xml – sequence: 1
  givenname: Jiwon
  orcidid: 0009-0003-1470-5829
  surname: Lee
  fullname: Lee, Jiwon
  organization: College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 2
  givenname: Seonggyeong
  surname: Choi
  fullname: Choi, Seonggyeong
  organization: College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 3
  givenname: Seoyeon
  orcidid: 0009-0005-6318-8367
  surname: Shin
  fullname: Shin, Seoyeon
  organization: College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 4
  givenname: Mohammad Rizwan
  orcidid: 0000-0003-0147-4446
  surname: Alam
  fullname: Alam, Mohammad Rizwan
  organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 5
  givenname: Jamshid
  orcidid: 0000-0002-6575-8870
  surname: Abdul-Ghafar
  fullname: Abdul-Ghafar, Jamshid
  organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 6
  givenname: Kyung Jin
  orcidid: 0000-0002-1908-9696
  surname: Seo
  fullname: Seo, Kyung Jin
  organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 7
  givenname: Gisu
  surname: Hwang
  fullname: Hwang, Gisu
  organization: AI Team, DeepNoid Inc., Seoul, Republic of Korea
– sequence: 8
  givenname: Daeky
  orcidid: 0009-0007-4705-6086
  surname: Jeong
  fullname: Jeong, Daeky
  organization: AI Team, DeepNoid Inc., Seoul, Republic of Korea
– sequence: 9
  givenname: Gyungyub
  surname: Gong
  fullname: Gong, Gyungyub
  organization: Department of Pathology, Asan Medical Center, Seoul, Republic of Korea
– sequence: 10
  givenname: Nam Hoon
  surname: Cho
  fullname: Cho, Nam Hoon
  organization: Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
– sequence: 11
  givenname: Chong Woo
  surname: Yoo
  fullname: Yoo, Chong Woo
  organization: Department of Pathology, National Cancer Center, Ilsan, Republic of Korea
– sequence: 12
  givenname: Hyung Kyung
  orcidid: 0000-0003-0271-2493
  surname: Kim
  fullname: Kim, Hyung Kyung
  organization: Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
– sequence: 13
  givenname: Yosep
  orcidid: 0000-0001-8615-3064
  surname: Chong
  fullname: Chong, Yosep
  email: ychong@catholic.ac.kr
  organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
– sequence: 14
  givenname: Kwangil
  orcidid: 0000-0001-8767-9033
  surname: Yim
  fullname: Yim, Kwangil
  email: kangse_manse@catholic.ac.kr
  organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40311756$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS0Eog_4A4T8Awm247wkhIRaXlKhi4JYmkkyoS4hqRy3Vf4eVwEWbFhZ47nnyj4jclg3NRJyxpnPGY8uVj6s1mCXvmAi9Jn0GZMHZMhDEXqCp_yQDBljwkulZAMyatuVG6MgYcdkIFnAeRxGQ_I234LRUNMJ1DkaOkWLudVNTXVNr9tcW2zppLNN1bx3dKftkr4ifFQdXWzWaLa6xYI-NgVW1DFPsEd3ukA6BQt0gfaEHJVQtXj6fY7Jy-3N8-Tem83vHibXMy8PgsB6EEcl8DJAkSRJGrKkCONSxLLMIMjiKMs4uGsRxtytk5TzTKYoOIoyiwooIRiT8753vck-sVBroz_BdOrnqy4g-0BumrY1WP5GOFN7o2qleqNqb1QxqZxRh131GLrHbzUa5aSgc1Vo40ypotH_FVz-KcgrXescqg_s_se_AHFulH0
Cites_doi 10.1002/(SICI)1097-0142(20000225)90:1<55::AID-CNCR8>3.0.CO;2-P
10.1038/s41698-023-00432-6
10.3390/cells12141847
10.1007/s10120-020-01093-1
10.1109/RBME.2017.2651164
10.3390/cancers16051064
10.1158/1940-6207.CAPR-19-0184
10.1016/j.artmed.2021.102164
10.1016/j.media.2023.102763
10.1016/j.engappai.2024.109250
10.1038/s41551-020-00682-w
10.1097/OGX.0000000000000902
10.1016/j.semcancer.2023.09.005
10.1136/ijgc-2018-000016
10.1038/s41591-019-0508-1
10.3322/caac.21763
10.1038/s41379-022-01146-z
10.3322/caac.21456
10.1016/j.ebiom.2022.104001
10.3390/cancers14143529
10.22543/2392-7674.1531
10.1016/j.media.2017.04.008
10.3390/cancers16020422
10.1089/thy.2023.0384
10.2147/IJWH.S197604
10.3390/cancers14112590
10.1016/S0377-1237(11)60005-1
10.4103/2153-3539.124015
10.1159/000495571
10.3389/fonc.2022.851367
10.1002/dc.23569
ContentType Journal Article
Copyright 2025 American Society for Investigative Pathology
Copyright © 2025 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 American Society for Investigative Pathology
– notice: Copyright © 2025 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.ajpath.2025.04.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1525-2191
EndPage 1263
ExternalDocumentID 40311756
10_1016_j_ajpath_2025_04_004
S0002944025001439
Genre Multicenter Study
Journal Article
GroupedDBID ---
--K
-~X
.1-
.55
.FO
.GJ
0R~
1P~
23M
2WC
34R
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
7X7
88E
88I
8AF
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQXK
AAXUO
AAYWO
ABCQX
ABJNI
ABLJU
ABMAC
ABOCM
ABUWG
ABWVN
ACGFO
ACGOD
ACPRK
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHJS
ADMUD
ADNMO
ADVLN
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AGHFR
AGQPQ
AHDRD
AHMBA
AI.
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
AZQEC
BAWUL
BBNVY
BELOY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
DIK
DWQXO
E3Z
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
FYUFA
GBLVA
GNUQQ
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
IH2
IXB
J5H
KOM
KQ8
L7B
LID
LK8
M1P
M2P
M41
M7P
MVM
N9A
O9-
OG~
OHT
OK1
OS.
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
R2-
ROL
RPM
SEL
SES
SJN
SSZ
TIP
TR2
UKHRP
VH1
WH7
WOQ
X7M
XH2
Y6R
YHG
YNH
Z5R
ZGI
ZXP
AFCTW
AGCQF
ALIPV
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c333t-a76fa1f3e28889508d57f274fba3b76bb1a89525718898911b49e21e2fb6dafa3
ISSN 0002-9440
IngestDate Tue Jul 01 05:31:15 EDT 2025
Wed Oct 01 06:00:02 EDT 2025
Sat Jul 05 17:10:58 EDT 2025
Tue Oct 14 19:27:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright © 2025 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-a76fa1f3e28889508d57f274fba3b76bb1a89525718898911b49e21e2fb6dafa3
ORCID 0009-0007-4705-6086
0000-0003-0271-2493
0009-0003-1470-5829
0000-0003-0147-4446
0000-0002-6575-8870
0000-0001-8615-3064
0009-0005-6318-8367
0000-0002-1908-9696
0000-0001-8767-9033
PMID 40311756
PageCount 10
ParticipantIDs pubmed_primary_40311756
crossref_primary_10_1016_j_ajpath_2025_04_004
elsevier_sciencedirect_doi_10_1016_j_ajpath_2025_04_004
elsevier_clinicalkey_doi_10_1016_j_ajpath_2025_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-Jul
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The American journal of pathology
PublicationTitleAlternate Am J Pathol
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gupta, Gupta, Naumann (bib5) 2019; 29
Kitazume, Kitamura, Mukai, Inayama, Kawano, Nakamura, Sano, Mitsui, Yoshida, Nakatani (bib38) 2000; 90
Breen, Allen, Zucker, Adusumilli, Scarsbrook, Hall, Orsi, Ravikumar (bib15) 2023; 7
Bucur, Balescu, Petrea, Gaspar, Pop, Varlas, Stoian, Balalau, Bacalbasa (bib17) 2024; 11
Kim, Chang, Kim, Yang, Koo, Lee, Chang, Hwang, Gong, Cho, Yoo, Pyo, Chong (bib22) 2023; 13
Farahani, Boschman, Farnell, Darbandsari, Zhang, Ahmadvand, Jones, Huntsman, Köbel, Gilks, Singh, Bashashati (bib28) 2022; 35
Ilse, Tomczak, Welling (bib31) 2018; 80
Lu, Williamson, Chen, Chen, Barbieri, Mahmood (bib32) 2021; 5
Xiao, Bi, Guo, Li (bib11) 2022; 79
Thakur, Alam, Abdul-Ghafar, Chong (bib12) 2022; 14
Alam, Abdul-Ghafar, Yim, Thakur, Lee, Jang, Jung, Chong (bib14) 2022; 14
Hira, Razzaque, Sarker (bib18) 2024; 138
Torre, Trabert, DeSantis, Miller, Samimi, Runowicz, Gaudet, Jemal, Siegel (bib3) 2018; 68
Mitchell, Nikolopoulos, El-Zarka, Al-Karawi, Al-Zaidi, Ghai, Gaughran, Sayasneh (bib16) 2024; 16
Trinidad, Tetlow, Bantis, Godwin (bib7) 2020; 13
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib36) 2017
Siegel, Miller, Wagle, Jemal (bib1) 2023; 73
BenTaieb, Li-Chang, Huntsman, Hamarneh (bib27) 2017; 39
Mysona, Kapp, Rohatgi, Lee, Mann, Tran, Tran, She, Chan (bib25) 2021; 76
Khalbuss, Pantanowitz, Parwani (bib35) 2011; 2011
Živadinović, Petrić, Krtinić, Stevanović Milosević, Pop Trajković Dinić (bib10) 2015; 64
Tourniaire, Ilie, Hofman, Ayache, Delingette (bib33) 2023; 85
Quellec, Cazuguel, Cochener, Lamard (bib37) 2017; 10
Schulte, Lastra (bib4) 2016; 44
Lee, Alam, Park, Yim, Seo, Hwang, Kim, Chung, Gong, Cho, Yoo, Chong, Choi (bib21) 2024; 34
(bib6) 2023
Hou, Shen, Zhou, Li, Wang, Ma (bib19) 2022; 12
Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (bib30) 2019; 25
Banerjee, Singh, Arora, Srinivas, Basannar, Patrikar (bib9) 2011; 67
Wu, Yan, Liu, Liu (bib29) 2018; 38
Donnelly, Mukherjee, Lyden, Bridge, Lele, Wright, McGaughey, Culberson, Horn, Wedel, Radio (bib34) 2013; 4
Momenimovahed, Tiznobaik, Taheri, Salehiniya (bib2) 2019; 11
Kim, Han, Lee, Yim, Abdul-Ghafar, Seo, Seo, Gong, Cho, Kim (bib20) 2024; 16
Akazawa, Hashimoto (bib24) 2021; 120
Jiang, Wang, Zhou (bib26) 2023; 96
Park, Chong, Lee, Yim, Seo, Hwang, Kim, Gong, Cho, Yoo, Choi (bib23) 2023; 12
Su, Sun, Hu, Yuan, Wang, Wang, Li, Ji (bib13) 2020; 23
Amiri, Momtahan, Mokhtari (bib8) 2019; 63
Živadinović (10.1016/j.ajpath.2025.04.004_bib10) 2015; 64
Amiri (10.1016/j.ajpath.2025.04.004_bib8) 2019; 63
Xiao (10.1016/j.ajpath.2025.04.004_bib11) 2022; 79
Lee (10.1016/j.ajpath.2025.04.004_bib21) 2024; 34
Lu (10.1016/j.ajpath.2025.04.004_bib32) 2021; 5
Farahani (10.1016/j.ajpath.2025.04.004_bib28) 2022; 35
Kim (10.1016/j.ajpath.2025.04.004_bib22) 2023; 13
Gupta (10.1016/j.ajpath.2025.04.004_bib5) 2019; 29
Trinidad (10.1016/j.ajpath.2025.04.004_bib7) 2020; 13
Breen (10.1016/j.ajpath.2025.04.004_bib15) 2023; 7
Park (10.1016/j.ajpath.2025.04.004_bib23) 2023; 12
Banerjee (10.1016/j.ajpath.2025.04.004_bib9) 2011; 67
Khalbuss (10.1016/j.ajpath.2025.04.004_bib35) 2011; 2011
Quellec (10.1016/j.ajpath.2025.04.004_bib37) 2017; 10
Kim (10.1016/j.ajpath.2025.04.004_bib20) 2024; 16
Wu (10.1016/j.ajpath.2025.04.004_bib29) 2018; 38
Torre (10.1016/j.ajpath.2025.04.004_bib3) 2018; 68
Selvaraju (10.1016/j.ajpath.2025.04.004_bib36) 2017
Alam (10.1016/j.ajpath.2025.04.004_bib14) 2022; 14
Bucur (10.1016/j.ajpath.2025.04.004_bib17) 2024; 11
Mitchell (10.1016/j.ajpath.2025.04.004_bib16) 2024; 16
Jiang (10.1016/j.ajpath.2025.04.004_bib26) 2023; 96
Ilse (10.1016/j.ajpath.2025.04.004_bib31) 2018; 80
Donnelly (10.1016/j.ajpath.2025.04.004_bib34) 2013; 4
Kitazume (10.1016/j.ajpath.2025.04.004_bib38) 2000; 90
Akazawa (10.1016/j.ajpath.2025.04.004_bib24) 2021; 120
(10.1016/j.ajpath.2025.04.004_bib6) 2023
Thakur (10.1016/j.ajpath.2025.04.004_bib12) 2022; 14
Campanella (10.1016/j.ajpath.2025.04.004_bib30) 2019; 25
Hou (10.1016/j.ajpath.2025.04.004_bib19) 2022; 12
Momenimovahed (10.1016/j.ajpath.2025.04.004_bib2) 2019; 11
BenTaieb (10.1016/j.ajpath.2025.04.004_bib27) 2017; 39
Tourniaire (10.1016/j.ajpath.2025.04.004_bib33) 2023; 85
Su (10.1016/j.ajpath.2025.04.004_bib13) 2020; 23
Schulte (10.1016/j.ajpath.2025.04.004_bib4) 2016; 44
Siegel (10.1016/j.ajpath.2025.04.004_bib1) 2023; 73
Mysona (10.1016/j.ajpath.2025.04.004_bib25) 2021; 76
Hira (10.1016/j.ajpath.2025.04.004_bib18) 2024; 138
References_xml – volume: 64
  start-page: 236
  year: 2015
  end-page: 240
  ident: bib10
  article-title: Ascites in ovarian carcinoma - reliability and limitations of cytological analysis
  publication-title: West Indian Med J
– volume: 39
  start-page: 194
  year: 2017
  end-page: 205
  ident: bib27
  article-title: A structured latent model for ovarian carcinoma subtyping from histopathology slides
  publication-title: Med Image Anal
– volume: 13
  start-page: 5493
  year: 2023
  end-page: 5503
  ident: bib22
  article-title: Deep learning-based diagnosis of lung cancer using a nationwide respiratory cytology image set: improving accuracy and inter-observer variability
  publication-title: Am J Cancer Res
– volume: 5
  start-page: 555
  year: 2021
  end-page: 570
  ident: bib32
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat Biomed Eng
– volume: 68
  start-page: 284
  year: 2018
  end-page: 296
  ident: bib3
  article-title: Ovarian cancer statistics, 2018
  publication-title: CA Cancer J Clin
– volume: 14
  start-page: 2590
  year: 2022
  ident: bib14
  article-title: Recent applications of artificial intelligence from histopathologic image-based prediction of microsatellite instability in solid cancers: a systematic review
  publication-title: Cancers
– volume: 16
  year: 2024
  ident: bib16
  article-title: Artificial intelligence in ultrasound diagnoses of ovarian cancer: a systematic review and meta-analysis
  publication-title: Cancers (Basel)
– volume: 10
  start-page: 213
  year: 2017
  end-page: 234
  ident: bib37
  article-title: Multiple-instance learning for medical image and video analysis
  publication-title: IEEE Rev Biomed Eng
– year: 2023
  ident: bib6
  article-title: NCCN Clinical Practice Guidelines in Oncology: Ovarian Cancer Including Fallopian Tube Cancer and Primary Peritoneal Cancer. Version 1.2023
– volume: 96
  start-page: 82
  year: 2023
  end-page: 99
  ident: bib26
  article-title: Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology
  publication-title: Semin Cancer Biol
– volume: 90
  start-page: 55
  year: 2000
  end-page: 60
  ident: bib38
  article-title: Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining
  publication-title: Cancer
– volume: 63
  start-page: 63
  year: 2019
  end-page: 72
  ident: bib8
  article-title: Comparison of conventional cytology, liquid-based cytology, and cell block in the evaluation of peritoneal fluid in gynecology malignancies
  publication-title: Acta Cytol
– volume: 12
  year: 2022
  ident: bib19
  article-title: Artificial intelligence in cervical cancer screening and diagnosis
  publication-title: Front Oncol
– volume: 120
  year: 2021
  ident: bib24
  article-title: Artificial intelligence in gynecologic cancers: current status and future challenges - a systematic review
  publication-title: Artif Intell Med
– volume: 34
  start-page: 723
  year: 2024
  end-page: 734
  ident: bib21
  article-title: Improved diagnostic accuracy of thyroid fine-needle aspiration cytology with artificial intelligence technology
  publication-title: Thyroid
– volume: 25
  start-page: 1301
  year: 2019
  end-page: 1309
  ident: bib30
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat Med
– volume: 35
  start-page: 1983
  year: 2022
  end-page: 1990
  ident: bib28
  article-title: Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images
  publication-title: Mod Pathol
– volume: 14
  year: 2022
  ident: bib12
  article-title: Recent application of artificial intelligence in non-gynecological cancer cytopathology: a systematic review
  publication-title: Cancers (Basel)
– volume: 76
  start-page: 292
  year: 2021
  end-page: 301
  ident: bib25
  article-title: Applying artificial intelligence to gynecologic oncology: a review
  publication-title: Obstet Gynecol Surv
– volume: 29
  start-page: 195
  year: 2019
  end-page: 200
  ident: bib5
  article-title: Ovarian cancer: screening and future directions
  publication-title: Int J Gynecol Cancer
– volume: 138
  year: 2024
  ident: bib18
  article-title: Ovarian cancer data analysis using deep learning: A systematic review
  publication-title: Eng Appl Artif Intelligence
– volume: 38
  year: 2018
  ident: bib29
  article-title: Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks
  publication-title: Biosci Rep
– volume: 12
  year: 2023
  ident: bib23
  article-title: Deep learning-based computational cytopathologic diagnosis of metastatic breast carcinoma in pleural fluid
  publication-title: Cells
– volume: 4
  start-page: 38
  year: 2013
  ident: bib34
  article-title: Optimal z-axis scanning parameters for gynecologic cytology specimens
  publication-title: J Pathol Inform
– volume: 67
  start-page: 108
  year: 2011
  end-page: 112
  ident: bib9
  article-title: Biomarkers of malignant ascites-a myth or reality
  publication-title: Med J Armed Forces India
– volume: 80
  start-page: 2127
  year: 2018
  end-page: 2136
  ident: bib31
  article-title: Attention-based deep multiple instance learning
  publication-title: Proceedings of the 35th International Conference on Machine Learning
– volume: 85
  year: 2023
  ident: bib33
  article-title: MS-CLAM: mixed supervision for the classification and localization of tumors in Whole Slide Images
  publication-title: Med Image Anal
– volume: 73
  start-page: 17
  year: 2023
  end-page: 48
  ident: bib1
  article-title: Cancer statistics, 2023
  publication-title: CA Cancer J Clin
– volume: 13
  start-page: 241
  year: 2020
  end-page: 252
  ident: bib7
  article-title: Reducing ovarian cancer mortality through early detection: approaches using circulating biomarkers
  publication-title: Cancer Prev Res (Phila)
– volume: 79
  year: 2022
  ident: bib11
  article-title: Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis
  publication-title: EBioMedicine
– volume: 11
  start-page: 287
  year: 2019
  end-page: 299
  ident: bib2
  article-title: Ovarian cancer in the world: epidemiology and risk factors
  publication-title: Int J Womens Health
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib36
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 7
  start-page: 83
  year: 2023
  ident: bib15
  article-title: Artificial intelligence in ovarian cancer histopathology: a systematic review
  publication-title: NPJ Precis Oncol
– volume: 16
  start-page: 1064
  year: 2024
  ident: bib20
  article-title: Artificial-intelligence-assisted detection of metastatic colorectal cancer cells in ascitic fluid
  publication-title: Cancers
– volume: 2011
  year: 2011
  ident: bib35
  article-title: Digital imaging in cytopathology
  publication-title: Patholog Res Int
– volume: 11
  start-page: 277
  year: 2024
  end-page: 284
  ident: bib17
  article-title: Artificial intelligence in ovarian cancers—from diagnosis to treatment; a literature review
  publication-title: J Mind Med Sci
– volume: 44
  start-page: 1039
  year: 2016
  end-page: 1057
  ident: bib4
  article-title: Abdominopelvic washings in gynecologic pathology: a comprehensive review
  publication-title: Diagn Cytopathol
– volume: 23
  start-page: 1041
  year: 2020
  end-page: 1050
  ident: bib13
  article-title: Development and validation of a deep learning system for ascites cytopathology interpretation
  publication-title: Gastric Cancer
– volume: 90
  start-page: 55
  year: 2000
  ident: 10.1016/j.ajpath.2025.04.004_bib38
  article-title: Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(20000225)90:1<55::AID-CNCR8>3.0.CO;2-P
– volume: 7
  start-page: 83
  year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib15
  article-title: Artificial intelligence in ovarian cancer histopathology: a systematic review
  publication-title: NPJ Precis Oncol
  doi: 10.1038/s41698-023-00432-6
– start-page: 618
  year: 2017
  ident: 10.1016/j.ajpath.2025.04.004_bib36
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– volume: 64
  start-page: 236
  year: 2015
  ident: 10.1016/j.ajpath.2025.04.004_bib10
  article-title: Ascites in ovarian carcinoma - reliability and limitations of cytological analysis
  publication-title: West Indian Med J
– volume: 12
  year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib23
  article-title: Deep learning-based computational cytopathologic diagnosis of metastatic breast carcinoma in pleural fluid
  publication-title: Cells
  doi: 10.3390/cells12141847
– year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib6
– volume: 23
  start-page: 1041
  year: 2020
  ident: 10.1016/j.ajpath.2025.04.004_bib13
  article-title: Development and validation of a deep learning system for ascites cytopathology interpretation
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-020-01093-1
– volume: 10
  start-page: 213
  year: 2017
  ident: 10.1016/j.ajpath.2025.04.004_bib37
  article-title: Multiple-instance learning for medical image and video analysis
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2017.2651164
– volume: 16
  start-page: 1064
  year: 2024
  ident: 10.1016/j.ajpath.2025.04.004_bib20
  article-title: Artificial-intelligence-assisted detection of metastatic colorectal cancer cells in ascitic fluid
  publication-title: Cancers
  doi: 10.3390/cancers16051064
– volume: 13
  start-page: 241
  year: 2020
  ident: 10.1016/j.ajpath.2025.04.004_bib7
  article-title: Reducing ovarian cancer mortality through early detection: approaches using circulating biomarkers
  publication-title: Cancer Prev Res (Phila)
  doi: 10.1158/1940-6207.CAPR-19-0184
– volume: 120
  year: 2021
  ident: 10.1016/j.ajpath.2025.04.004_bib24
  article-title: Artificial intelligence in gynecologic cancers: current status and future challenges - a systematic review
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102164
– volume: 13
  start-page: 5493
  year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib22
  article-title: Deep learning-based diagnosis of lung cancer using a nationwide respiratory cytology image set: improving accuracy and inter-observer variability
  publication-title: Am J Cancer Res
– volume: 38
  year: 2018
  ident: 10.1016/j.ajpath.2025.04.004_bib29
  article-title: Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks
  publication-title: Biosci Rep
– volume: 85
  year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib33
  article-title: MS-CLAM: mixed supervision for the classification and localization of tumors in Whole Slide Images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102763
– volume: 138
  year: 2024
  ident: 10.1016/j.ajpath.2025.04.004_bib18
  article-title: Ovarian cancer data analysis using deep learning: A systematic review
  publication-title: Eng Appl Artif Intelligence
  doi: 10.1016/j.engappai.2024.109250
– volume: 5
  start-page: 555
  year: 2021
  ident: 10.1016/j.ajpath.2025.04.004_bib32
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00682-w
– volume: 76
  start-page: 292
  year: 2021
  ident: 10.1016/j.ajpath.2025.04.004_bib25
  article-title: Applying artificial intelligence to gynecologic oncology: a review
  publication-title: Obstet Gynecol Surv
  doi: 10.1097/OGX.0000000000000902
– volume: 96
  start-page: 82
  year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib26
  article-title: Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2023.09.005
– volume: 29
  start-page: 195
  year: 2019
  ident: 10.1016/j.ajpath.2025.04.004_bib5
  article-title: Ovarian cancer: screening and future directions
  publication-title: Int J Gynecol Cancer
  doi: 10.1136/ijgc-2018-000016
– volume: 25
  start-page: 1301
  year: 2019
  ident: 10.1016/j.ajpath.2025.04.004_bib30
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0508-1
– volume: 73
  start-page: 17
  year: 2023
  ident: 10.1016/j.ajpath.2025.04.004_bib1
  article-title: Cancer statistics, 2023
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21763
– volume: 35
  start-page: 1983
  year: 2022
  ident: 10.1016/j.ajpath.2025.04.004_bib28
  article-title: Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images
  publication-title: Mod Pathol
  doi: 10.1038/s41379-022-01146-z
– volume: 68
  start-page: 284
  year: 2018
  ident: 10.1016/j.ajpath.2025.04.004_bib3
  article-title: Ovarian cancer statistics, 2018
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21456
– volume: 79
  year: 2022
  ident: 10.1016/j.ajpath.2025.04.004_bib11
  article-title: Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.104001
– volume: 14
  year: 2022
  ident: 10.1016/j.ajpath.2025.04.004_bib12
  article-title: Recent application of artificial intelligence in non-gynecological cancer cytopathology: a systematic review
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14143529
– volume: 11
  start-page: 277
  year: 2024
  ident: 10.1016/j.ajpath.2025.04.004_bib17
  article-title: Artificial intelligence in ovarian cancers—from diagnosis to treatment; a literature review
  publication-title: J Mind Med Sci
  doi: 10.22543/2392-7674.1531
– volume: 39
  start-page: 194
  year: 2017
  ident: 10.1016/j.ajpath.2025.04.004_bib27
  article-title: A structured latent model for ovarian carcinoma subtyping from histopathology slides
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.04.008
– volume: 2011
  year: 2011
  ident: 10.1016/j.ajpath.2025.04.004_bib35
  article-title: Digital imaging in cytopathology
  publication-title: Patholog Res Int
– volume: 16
  year: 2024
  ident: 10.1016/j.ajpath.2025.04.004_bib16
  article-title: Artificial intelligence in ultrasound diagnoses of ovarian cancer: a systematic review and meta-analysis
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers16020422
– volume: 80
  start-page: 2127
  year: 2018
  ident: 10.1016/j.ajpath.2025.04.004_bib31
  article-title: Attention-based deep multiple instance learning
– volume: 34
  start-page: 723
  year: 2024
  ident: 10.1016/j.ajpath.2025.04.004_bib21
  article-title: Improved diagnostic accuracy of thyroid fine-needle aspiration cytology with artificial intelligence technology
  publication-title: Thyroid
  doi: 10.1089/thy.2023.0384
– volume: 11
  start-page: 287
  year: 2019
  ident: 10.1016/j.ajpath.2025.04.004_bib2
  article-title: Ovarian cancer in the world: epidemiology and risk factors
  publication-title: Int J Womens Health
  doi: 10.2147/IJWH.S197604
– volume: 14
  start-page: 2590
  year: 2022
  ident: 10.1016/j.ajpath.2025.04.004_bib14
  article-title: Recent applications of artificial intelligence from histopathologic image-based prediction of microsatellite instability in solid cancers: a systematic review
  publication-title: Cancers
  doi: 10.3390/cancers14112590
– volume: 67
  start-page: 108
  year: 2011
  ident: 10.1016/j.ajpath.2025.04.004_bib9
  article-title: Biomarkers of malignant ascites-a myth or reality
  publication-title: Med J Armed Forces India
  doi: 10.1016/S0377-1237(11)60005-1
– volume: 4
  start-page: 38
  year: 2013
  ident: 10.1016/j.ajpath.2025.04.004_bib34
  article-title: Optimal z-axis scanning parameters for gynecologic cytology specimens
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.124015
– volume: 63
  start-page: 63
  year: 2019
  ident: 10.1016/j.ajpath.2025.04.004_bib8
  article-title: Comparison of conventional cytology, liquid-based cytology, and cell block in the evaluation of peritoneal fluid in gynecology malignancies
  publication-title: Acta Cytol
  doi: 10.1159/000495571
– volume: 12
  year: 2022
  ident: 10.1016/j.ajpath.2025.04.004_bib19
  article-title: Artificial intelligence in cervical cancer screening and diagnosis
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.851367
– volume: 44
  start-page: 1039
  year: 2016
  ident: 10.1016/j.ajpath.2025.04.004_bib4
  article-title: Abdominopelvic washings in gynecologic pathology: a comprehensive review
  publication-title: Diagn Cytopathol
  doi: 10.1002/dc.23569
SSID ssj0006380
Score 2.484333
Snippet Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Publisher
StartPage 1254
SubjectTerms Algorithms
Ascites - diagnosis
Ascites - pathology
Ascitic Fluid - pathology
Cytodiagnosis - methods
Female
Humans
Neural Networks, Computer
Ovarian Neoplasms - diagnosis
Ovarian Neoplasms - pathology
Title Ovarian Cancer Detection in Ascites Cytology with Weakly Supervised Model on Nationwide Data Set
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002944025001439
https://dx.doi.org/10.1016/j.ajpath.2025.04.004
https://www.ncbi.nlm.nih.gov/pubmed/40311756
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1525-2191
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006380
  issn: 0002-9440
  databaseCode: KQ8
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1525-2191
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006380
  issn: 0002-9440
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1525-2191
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006380
  issn: 0002-9440
  databaseCode: AKRWK
  dateStart: 19980701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG_Gl_zAG0oVx87X41SBJlBBsE7sLdiJs7bb0mlkVNt_wH_NXfyRVEPa2ItVuXVq3f18d77cByHvsiRnXNZguSmVB0LpPJC6rIK4gtMV6jLjEnOHp1-S3X3x6SA-GI3-DKKWzls1Li__mVdyG67CHPAVs2T_g7P-oTABn4G_MAKHYbwRj7_-hpsuHNAJsu4MZEerSxe8uAO6DX2qk4vWlFnqPK4_tDw6RnFxijLiF1ib2AztGF8ZmArZ60WlAQqtBCmy4baf9SkozbDeBLY03nDNu9Cexbp_wz-Zr7qogT29ag4PL3D0rp25qWIAX-G8B6BF6nQ1lycnsnr_fXG5tki2Tooo9gGt1nPmsmc2gjs7aZwLU67JS2PTc9PCLh3IVjDFxEBPs8hIxis6wLgjlmO5RAqMcTtdNdtQ9DrPRyLu4SZwD2AKYqnD_A65G4GCwC4gn7_1hedBTIXuJoU_d1mYXajg1X-6xsoZmDCzh-SBvXvQHQOkR2Skm8fk3tRGVzwhPy2eqMET9Xiii4ZaPFGHJ4p4ogZPtMcT7fBEYU2PJ4p4ooCnp2T_44fZZDewHTiCknPeBjJNaslqrqMsy7BfcBWndZSKWkmu0kQpJmEapD7LsA0pY0rkOmI6qlVSyVryZ2SrWTX6BaGVBFrB5T6WQgoeZkqFqY5rFpY1z4WMt0ngKFacmkIrhYtAXBaGwgVSuAhFARTeJrEja-GSiEHtFYCCa9alfp01Mo3xeIOVzw33_P4EaEQwv5OXt37mK3K_Py6vyVZ7dq7fgJXbqrcd_v4CaxOpNA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ovarian+Cancer+Detection+in+Ascites+Cytology+with+Weakly+Supervised+Model+on+Nationwide+Data+Set&rft.jtitle=The+American+journal+of+pathology&rft.au=Lee%2C+Jiwon&rft.au=Choi%2C+Seonggyeong&rft.au=Shin%2C+Seoyeon&rft.au=Alam%2C+Mohammad+Rizwan&rft.date=2025-07-01&rft.pub=Elsevier+Inc&rft.issn=0002-9440&rft.volume=195&rft.issue=7&rft.spage=1254&rft.epage=1263&rft_id=info:doi/10.1016%2Fj.ajpath.2025.04.004&rft.externalDocID=S0002944025001439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9440&client=summon