Ovarian Cancer Detection in Ascites Cytology with Weakly Supervised Model on Nationwide Data Set
Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learnin...
Saved in:
| Published in | The American journal of pathology Vol. 195; no. 7; pp. 1254 - 1263 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0002-9440 1525-2191 |
| DOI | 10.1016/j.ajpath.2025.04.004 |
Cover
| Abstract | Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model.
[Display omitted] |
|---|---|
| AbstractList | Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model.
[Display omitted] Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed patch image (PI)-based fully supervised convolutional neural network (CNN) models and clustering-constrained attention multiple-instance learning (CLAM) algorithms for detecting ovarian cancer using ascitic fluid cytology. Whole-slide images (WSIs), 356 benign and 147 cancer, were collected, from which 14,699 benign and 8025 cancer PIs were extracted. Additionally, 131 WSIs (44 benign and 87 cancer) were used for external validation. Six CNN algorithms were developed for cancer detection using PIs. Subsequently, two CLAM algorithms, single branch (CLAM-SB) and multiple branch (CLAM-MB), were developed. ResNet50 demonstrated the best performance, achieving an accuracy of 0.973. The performance when interpreting internal WSIs was an area under the curve (AUC) of 0.982. CLAM-SB outperformed CLAM-MB with an AUC of 0.944 for internal WSIs. Notably, in the external test, CLAM-SB exhibited superior performance with an AUC of 0.866 compared with ResNet50's AUC of 0.804. Analysis of the heatmap revealed that cases frequently misinterpreted by AI were easily interpreted by humans, and vice versa. Because AI and humans were found to function complementarily, implementing computer-aided diagnosis is expected to significantly enhance diagnostic accuracy and reproducibility. Furthermore, the WSI-based learning in CLAM, eliminating the need for patch-by-patch annotation, offers an advantage over the CNN model. |
| Author | Cho, Nam Hoon Lee, Jiwon Hwang, Gisu Shin, Seoyeon Abdul-Ghafar, Jamshid Yim, Kwangil Choi, Seonggyeong Kim, Hyung Kyung Alam, Mohammad Rizwan Jeong, Daeky Chong, Yosep Yoo, Chong Woo Gong, Gyungyub Seo, Kyung Jin |
| Author_xml | – sequence: 1 givenname: Jiwon orcidid: 0009-0003-1470-5829 surname: Lee fullname: Lee, Jiwon organization: College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 2 givenname: Seonggyeong surname: Choi fullname: Choi, Seonggyeong organization: College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 3 givenname: Seoyeon orcidid: 0009-0005-6318-8367 surname: Shin fullname: Shin, Seoyeon organization: College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 4 givenname: Mohammad Rizwan orcidid: 0000-0003-0147-4446 surname: Alam fullname: Alam, Mohammad Rizwan organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 5 givenname: Jamshid orcidid: 0000-0002-6575-8870 surname: Abdul-Ghafar fullname: Abdul-Ghafar, Jamshid organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 6 givenname: Kyung Jin orcidid: 0000-0002-1908-9696 surname: Seo fullname: Seo, Kyung Jin organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 7 givenname: Gisu surname: Hwang fullname: Hwang, Gisu organization: AI Team, DeepNoid Inc., Seoul, Republic of Korea – sequence: 8 givenname: Daeky orcidid: 0009-0007-4705-6086 surname: Jeong fullname: Jeong, Daeky organization: AI Team, DeepNoid Inc., Seoul, Republic of Korea – sequence: 9 givenname: Gyungyub surname: Gong fullname: Gong, Gyungyub organization: Department of Pathology, Asan Medical Center, Seoul, Republic of Korea – sequence: 10 givenname: Nam Hoon surname: Cho fullname: Cho, Nam Hoon organization: Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea – sequence: 11 givenname: Chong Woo surname: Yoo fullname: Yoo, Chong Woo organization: Department of Pathology, National Cancer Center, Ilsan, Republic of Korea – sequence: 12 givenname: Hyung Kyung orcidid: 0000-0003-0271-2493 surname: Kim fullname: Kim, Hyung Kyung organization: Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea – sequence: 13 givenname: Yosep orcidid: 0000-0001-8615-3064 surname: Chong fullname: Chong, Yosep email: ychong@catholic.ac.kr organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea – sequence: 14 givenname: Kwangil orcidid: 0000-0001-8767-9033 surname: Yim fullname: Yim, Kwangil email: kangse_manse@catholic.ac.kr organization: Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40311756$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtOwzAQRS0Eog_4A4T8Awm247wkhIRaXlKhi4JYmkkyoS4hqRy3Vf4eVwEWbFhZ47nnyj4jclg3NRJyxpnPGY8uVj6s1mCXvmAi9Jn0GZMHZMhDEXqCp_yQDBljwkulZAMyatuVG6MgYcdkIFnAeRxGQ_I234LRUNMJ1DkaOkWLudVNTXVNr9tcW2zppLNN1bx3dKftkr4ifFQdXWzWaLa6xYI-NgVW1DFPsEd3ukA6BQt0gfaEHJVQtXj6fY7Jy-3N8-Tem83vHibXMy8PgsB6EEcl8DJAkSRJGrKkCONSxLLMIMjiKMs4uGsRxtytk5TzTKYoOIoyiwooIRiT8753vck-sVBroz_BdOrnqy4g-0BumrY1WP5GOFN7o2qleqNqb1QxqZxRh131GLrHbzUa5aSgc1Vo40ypotH_FVz-KcgrXescqg_s_se_AHFulH0 |
| Cites_doi | 10.1002/(SICI)1097-0142(20000225)90:1<55::AID-CNCR8>3.0.CO;2-P 10.1038/s41698-023-00432-6 10.3390/cells12141847 10.1007/s10120-020-01093-1 10.1109/RBME.2017.2651164 10.3390/cancers16051064 10.1158/1940-6207.CAPR-19-0184 10.1016/j.artmed.2021.102164 10.1016/j.media.2023.102763 10.1016/j.engappai.2024.109250 10.1038/s41551-020-00682-w 10.1097/OGX.0000000000000902 10.1016/j.semcancer.2023.09.005 10.1136/ijgc-2018-000016 10.1038/s41591-019-0508-1 10.3322/caac.21763 10.1038/s41379-022-01146-z 10.3322/caac.21456 10.1016/j.ebiom.2022.104001 10.3390/cancers14143529 10.22543/2392-7674.1531 10.1016/j.media.2017.04.008 10.3390/cancers16020422 10.1089/thy.2023.0384 10.2147/IJWH.S197604 10.3390/cancers14112590 10.1016/S0377-1237(11)60005-1 10.4103/2153-3539.124015 10.1159/000495571 10.3389/fonc.2022.851367 10.1002/dc.23569 |
| ContentType | Journal Article |
| Copyright | 2025 American Society for Investigative Pathology Copyright © 2025 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 American Society for Investigative Pathology – notice: Copyright © 2025 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
| DOI | 10.1016/j.ajpath.2025.04.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1525-2191 |
| EndPage | 1263 |
| ExternalDocumentID | 40311756 10_1016_j_ajpath_2025_04_004 S0002944025001439 |
| Genre | Multicenter Study Journal Article |
| GroupedDBID | --- --K -~X .1- .55 .FO .GJ 0R~ 1P~ 23M 2WC 34R 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 7X7 88E 88I 8AF 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEDT AAEDW AAFWJ AAIKJ AALRI AAQFI AAQXK AAXUO AAYWO ABCQX ABJNI ABLJU ABMAC ABOCM ABUWG ABWVN ACGFO ACGOD ACPRK ACRPL ACVFH ADBBV ADCNI ADEZE ADHJS ADMUD ADNMO ADVLN AENEX AEUPX AEVXI AFFNX AFJKZ AFKRA AFPUW AFRHN AFTJW AGHFR AGQPQ AHDRD AHMBA AI. AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN AZQEC BAWUL BBNVY BELOY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CS3 DIK DWQXO E3Z EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB FYUFA GBLVA GNUQQ GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ IH2 IXB J5H KOM KQ8 L7B LID LK8 M1P M2P M41 M7P MVM N9A O9- OG~ OHT OK1 OS. P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X R2- ROL RPM SEL SES SJN SSZ TIP TR2 UKHRP VH1 WH7 WOQ X7M XH2 Y6R YHG YNH Z5R ZGI ZXP AFCTW AGCQF ALIPV AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM |
| ID | FETCH-LOGICAL-c333t-a76fa1f3e28889508d57f274fba3b76bb1a89525718898911b49e21e2fb6dafa3 |
| ISSN | 0002-9440 |
| IngestDate | Tue Jul 01 05:31:15 EDT 2025 Wed Oct 01 06:00:02 EDT 2025 Sat Jul 05 17:10:58 EDT 2025 Tue Oct 14 19:27:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Copyright © 2025 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-a76fa1f3e28889508d57f274fba3b76bb1a89525718898911b49e21e2fb6dafa3 |
| ORCID | 0009-0007-4705-6086 0000-0003-0271-2493 0009-0003-1470-5829 0000-0003-0147-4446 0000-0002-6575-8870 0000-0001-8615-3064 0009-0005-6318-8367 0000-0002-1908-9696 0000-0001-8767-9033 |
| PMID | 40311756 |
| PageCount | 10 |
| ParticipantIDs | pubmed_primary_40311756 crossref_primary_10_1016_j_ajpath_2025_04_004 elsevier_sciencedirect_doi_10_1016_j_ajpath_2025_04_004 elsevier_clinicalkey_doi_10_1016_j_ajpath_2025_04_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 2025-Jul |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The American journal of pathology |
| PublicationTitleAlternate | Am J Pathol |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Gupta, Gupta, Naumann (bib5) 2019; 29 Kitazume, Kitamura, Mukai, Inayama, Kawano, Nakamura, Sano, Mitsui, Yoshida, Nakatani (bib38) 2000; 90 Breen, Allen, Zucker, Adusumilli, Scarsbrook, Hall, Orsi, Ravikumar (bib15) 2023; 7 Bucur, Balescu, Petrea, Gaspar, Pop, Varlas, Stoian, Balalau, Bacalbasa (bib17) 2024; 11 Kim, Chang, Kim, Yang, Koo, Lee, Chang, Hwang, Gong, Cho, Yoo, Pyo, Chong (bib22) 2023; 13 Farahani, Boschman, Farnell, Darbandsari, Zhang, Ahmadvand, Jones, Huntsman, Köbel, Gilks, Singh, Bashashati (bib28) 2022; 35 Ilse, Tomczak, Welling (bib31) 2018; 80 Lu, Williamson, Chen, Chen, Barbieri, Mahmood (bib32) 2021; 5 Xiao, Bi, Guo, Li (bib11) 2022; 79 Thakur, Alam, Abdul-Ghafar, Chong (bib12) 2022; 14 Alam, Abdul-Ghafar, Yim, Thakur, Lee, Jang, Jung, Chong (bib14) 2022; 14 Hira, Razzaque, Sarker (bib18) 2024; 138 Torre, Trabert, DeSantis, Miller, Samimi, Runowicz, Gaudet, Jemal, Siegel (bib3) 2018; 68 Mitchell, Nikolopoulos, El-Zarka, Al-Karawi, Al-Zaidi, Ghai, Gaughran, Sayasneh (bib16) 2024; 16 Trinidad, Tetlow, Bantis, Godwin (bib7) 2020; 13 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib36) 2017 Siegel, Miller, Wagle, Jemal (bib1) 2023; 73 BenTaieb, Li-Chang, Huntsman, Hamarneh (bib27) 2017; 39 Mysona, Kapp, Rohatgi, Lee, Mann, Tran, Tran, She, Chan (bib25) 2021; 76 Khalbuss, Pantanowitz, Parwani (bib35) 2011; 2011 Živadinović, Petrić, Krtinić, Stevanović Milosević, Pop Trajković Dinić (bib10) 2015; 64 Tourniaire, Ilie, Hofman, Ayache, Delingette (bib33) 2023; 85 Quellec, Cazuguel, Cochener, Lamard (bib37) 2017; 10 Schulte, Lastra (bib4) 2016; 44 Lee, Alam, Park, Yim, Seo, Hwang, Kim, Chung, Gong, Cho, Yoo, Chong, Choi (bib21) 2024; 34 (bib6) 2023 Hou, Shen, Zhou, Li, Wang, Ma (bib19) 2022; 12 Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (bib30) 2019; 25 Banerjee, Singh, Arora, Srinivas, Basannar, Patrikar (bib9) 2011; 67 Wu, Yan, Liu, Liu (bib29) 2018; 38 Donnelly, Mukherjee, Lyden, Bridge, Lele, Wright, McGaughey, Culberson, Horn, Wedel, Radio (bib34) 2013; 4 Momenimovahed, Tiznobaik, Taheri, Salehiniya (bib2) 2019; 11 Kim, Han, Lee, Yim, Abdul-Ghafar, Seo, Seo, Gong, Cho, Kim (bib20) 2024; 16 Akazawa, Hashimoto (bib24) 2021; 120 Jiang, Wang, Zhou (bib26) 2023; 96 Park, Chong, Lee, Yim, Seo, Hwang, Kim, Gong, Cho, Yoo, Choi (bib23) 2023; 12 Su, Sun, Hu, Yuan, Wang, Wang, Li, Ji (bib13) 2020; 23 Amiri, Momtahan, Mokhtari (bib8) 2019; 63 Živadinović (10.1016/j.ajpath.2025.04.004_bib10) 2015; 64 Amiri (10.1016/j.ajpath.2025.04.004_bib8) 2019; 63 Xiao (10.1016/j.ajpath.2025.04.004_bib11) 2022; 79 Lee (10.1016/j.ajpath.2025.04.004_bib21) 2024; 34 Lu (10.1016/j.ajpath.2025.04.004_bib32) 2021; 5 Farahani (10.1016/j.ajpath.2025.04.004_bib28) 2022; 35 Kim (10.1016/j.ajpath.2025.04.004_bib22) 2023; 13 Gupta (10.1016/j.ajpath.2025.04.004_bib5) 2019; 29 Trinidad (10.1016/j.ajpath.2025.04.004_bib7) 2020; 13 Breen (10.1016/j.ajpath.2025.04.004_bib15) 2023; 7 Park (10.1016/j.ajpath.2025.04.004_bib23) 2023; 12 Banerjee (10.1016/j.ajpath.2025.04.004_bib9) 2011; 67 Khalbuss (10.1016/j.ajpath.2025.04.004_bib35) 2011; 2011 Quellec (10.1016/j.ajpath.2025.04.004_bib37) 2017; 10 Kim (10.1016/j.ajpath.2025.04.004_bib20) 2024; 16 Wu (10.1016/j.ajpath.2025.04.004_bib29) 2018; 38 Torre (10.1016/j.ajpath.2025.04.004_bib3) 2018; 68 Selvaraju (10.1016/j.ajpath.2025.04.004_bib36) 2017 Alam (10.1016/j.ajpath.2025.04.004_bib14) 2022; 14 Bucur (10.1016/j.ajpath.2025.04.004_bib17) 2024; 11 Mitchell (10.1016/j.ajpath.2025.04.004_bib16) 2024; 16 Jiang (10.1016/j.ajpath.2025.04.004_bib26) 2023; 96 Ilse (10.1016/j.ajpath.2025.04.004_bib31) 2018; 80 Donnelly (10.1016/j.ajpath.2025.04.004_bib34) 2013; 4 Kitazume (10.1016/j.ajpath.2025.04.004_bib38) 2000; 90 Akazawa (10.1016/j.ajpath.2025.04.004_bib24) 2021; 120 (10.1016/j.ajpath.2025.04.004_bib6) 2023 Thakur (10.1016/j.ajpath.2025.04.004_bib12) 2022; 14 Campanella (10.1016/j.ajpath.2025.04.004_bib30) 2019; 25 Hou (10.1016/j.ajpath.2025.04.004_bib19) 2022; 12 Momenimovahed (10.1016/j.ajpath.2025.04.004_bib2) 2019; 11 BenTaieb (10.1016/j.ajpath.2025.04.004_bib27) 2017; 39 Tourniaire (10.1016/j.ajpath.2025.04.004_bib33) 2023; 85 Su (10.1016/j.ajpath.2025.04.004_bib13) 2020; 23 Schulte (10.1016/j.ajpath.2025.04.004_bib4) 2016; 44 Siegel (10.1016/j.ajpath.2025.04.004_bib1) 2023; 73 Mysona (10.1016/j.ajpath.2025.04.004_bib25) 2021; 76 Hira (10.1016/j.ajpath.2025.04.004_bib18) 2024; 138 |
| References_xml | – volume: 64 start-page: 236 year: 2015 end-page: 240 ident: bib10 article-title: Ascites in ovarian carcinoma - reliability and limitations of cytological analysis publication-title: West Indian Med J – volume: 39 start-page: 194 year: 2017 end-page: 205 ident: bib27 article-title: A structured latent model for ovarian carcinoma subtyping from histopathology slides publication-title: Med Image Anal – volume: 13 start-page: 5493 year: 2023 end-page: 5503 ident: bib22 article-title: Deep learning-based diagnosis of lung cancer using a nationwide respiratory cytology image set: improving accuracy and inter-observer variability publication-title: Am J Cancer Res – volume: 5 start-page: 555 year: 2021 end-page: 570 ident: bib32 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat Biomed Eng – volume: 68 start-page: 284 year: 2018 end-page: 296 ident: bib3 article-title: Ovarian cancer statistics, 2018 publication-title: CA Cancer J Clin – volume: 14 start-page: 2590 year: 2022 ident: bib14 article-title: Recent applications of artificial intelligence from histopathologic image-based prediction of microsatellite instability in solid cancers: a systematic review publication-title: Cancers – volume: 16 year: 2024 ident: bib16 article-title: Artificial intelligence in ultrasound diagnoses of ovarian cancer: a systematic review and meta-analysis publication-title: Cancers (Basel) – volume: 10 start-page: 213 year: 2017 end-page: 234 ident: bib37 article-title: Multiple-instance learning for medical image and video analysis publication-title: IEEE Rev Biomed Eng – year: 2023 ident: bib6 article-title: NCCN Clinical Practice Guidelines in Oncology: Ovarian Cancer Including Fallopian Tube Cancer and Primary Peritoneal Cancer. Version 1.2023 – volume: 96 start-page: 82 year: 2023 end-page: 99 ident: bib26 article-title: Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology publication-title: Semin Cancer Biol – volume: 90 start-page: 55 year: 2000 end-page: 60 ident: bib38 article-title: Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining publication-title: Cancer – volume: 63 start-page: 63 year: 2019 end-page: 72 ident: bib8 article-title: Comparison of conventional cytology, liquid-based cytology, and cell block in the evaluation of peritoneal fluid in gynecology malignancies publication-title: Acta Cytol – volume: 12 year: 2022 ident: bib19 article-title: Artificial intelligence in cervical cancer screening and diagnosis publication-title: Front Oncol – volume: 120 year: 2021 ident: bib24 article-title: Artificial intelligence in gynecologic cancers: current status and future challenges - a systematic review publication-title: Artif Intell Med – volume: 34 start-page: 723 year: 2024 end-page: 734 ident: bib21 article-title: Improved diagnostic accuracy of thyroid fine-needle aspiration cytology with artificial intelligence technology publication-title: Thyroid – volume: 25 start-page: 1301 year: 2019 end-page: 1309 ident: bib30 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat Med – volume: 35 start-page: 1983 year: 2022 end-page: 1990 ident: bib28 article-title: Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images publication-title: Mod Pathol – volume: 14 year: 2022 ident: bib12 article-title: Recent application of artificial intelligence in non-gynecological cancer cytopathology: a systematic review publication-title: Cancers (Basel) – volume: 76 start-page: 292 year: 2021 end-page: 301 ident: bib25 article-title: Applying artificial intelligence to gynecologic oncology: a review publication-title: Obstet Gynecol Surv – volume: 29 start-page: 195 year: 2019 end-page: 200 ident: bib5 article-title: Ovarian cancer: screening and future directions publication-title: Int J Gynecol Cancer – volume: 138 year: 2024 ident: bib18 article-title: Ovarian cancer data analysis using deep learning: A systematic review publication-title: Eng Appl Artif Intelligence – volume: 38 year: 2018 ident: bib29 article-title: Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks publication-title: Biosci Rep – volume: 12 year: 2023 ident: bib23 article-title: Deep learning-based computational cytopathologic diagnosis of metastatic breast carcinoma in pleural fluid publication-title: Cells – volume: 4 start-page: 38 year: 2013 ident: bib34 article-title: Optimal z-axis scanning parameters for gynecologic cytology specimens publication-title: J Pathol Inform – volume: 67 start-page: 108 year: 2011 end-page: 112 ident: bib9 article-title: Biomarkers of malignant ascites-a myth or reality publication-title: Med J Armed Forces India – volume: 80 start-page: 2127 year: 2018 end-page: 2136 ident: bib31 article-title: Attention-based deep multiple instance learning publication-title: Proceedings of the 35th International Conference on Machine Learning – volume: 85 year: 2023 ident: bib33 article-title: MS-CLAM: mixed supervision for the classification and localization of tumors in Whole Slide Images publication-title: Med Image Anal – volume: 73 start-page: 17 year: 2023 end-page: 48 ident: bib1 article-title: Cancer statistics, 2023 publication-title: CA Cancer J Clin – volume: 13 start-page: 241 year: 2020 end-page: 252 ident: bib7 article-title: Reducing ovarian cancer mortality through early detection: approaches using circulating biomarkers publication-title: Cancer Prev Res (Phila) – volume: 79 year: 2022 ident: bib11 article-title: Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis publication-title: EBioMedicine – volume: 11 start-page: 287 year: 2019 end-page: 299 ident: bib2 article-title: Ovarian cancer in the world: epidemiology and risk factors publication-title: Int J Womens Health – start-page: 618 year: 2017 end-page: 626 ident: bib36 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 7 start-page: 83 year: 2023 ident: bib15 article-title: Artificial intelligence in ovarian cancer histopathology: a systematic review publication-title: NPJ Precis Oncol – volume: 16 start-page: 1064 year: 2024 ident: bib20 article-title: Artificial-intelligence-assisted detection of metastatic colorectal cancer cells in ascitic fluid publication-title: Cancers – volume: 2011 year: 2011 ident: bib35 article-title: Digital imaging in cytopathology publication-title: Patholog Res Int – volume: 11 start-page: 277 year: 2024 end-page: 284 ident: bib17 article-title: Artificial intelligence in ovarian cancers—from diagnosis to treatment; a literature review publication-title: J Mind Med Sci – volume: 44 start-page: 1039 year: 2016 end-page: 1057 ident: bib4 article-title: Abdominopelvic washings in gynecologic pathology: a comprehensive review publication-title: Diagn Cytopathol – volume: 23 start-page: 1041 year: 2020 end-page: 1050 ident: bib13 article-title: Development and validation of a deep learning system for ascites cytopathology interpretation publication-title: Gastric Cancer – volume: 90 start-page: 55 year: 2000 ident: 10.1016/j.ajpath.2025.04.004_bib38 article-title: Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining publication-title: Cancer doi: 10.1002/(SICI)1097-0142(20000225)90:1<55::AID-CNCR8>3.0.CO;2-P – volume: 7 start-page: 83 year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib15 article-title: Artificial intelligence in ovarian cancer histopathology: a systematic review publication-title: NPJ Precis Oncol doi: 10.1038/s41698-023-00432-6 – start-page: 618 year: 2017 ident: 10.1016/j.ajpath.2025.04.004_bib36 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization – volume: 64 start-page: 236 year: 2015 ident: 10.1016/j.ajpath.2025.04.004_bib10 article-title: Ascites in ovarian carcinoma - reliability and limitations of cytological analysis publication-title: West Indian Med J – volume: 12 year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib23 article-title: Deep learning-based computational cytopathologic diagnosis of metastatic breast carcinoma in pleural fluid publication-title: Cells doi: 10.3390/cells12141847 – year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib6 – volume: 23 start-page: 1041 year: 2020 ident: 10.1016/j.ajpath.2025.04.004_bib13 article-title: Development and validation of a deep learning system for ascites cytopathology interpretation publication-title: Gastric Cancer doi: 10.1007/s10120-020-01093-1 – volume: 10 start-page: 213 year: 2017 ident: 10.1016/j.ajpath.2025.04.004_bib37 article-title: Multiple-instance learning for medical image and video analysis publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2017.2651164 – volume: 16 start-page: 1064 year: 2024 ident: 10.1016/j.ajpath.2025.04.004_bib20 article-title: Artificial-intelligence-assisted detection of metastatic colorectal cancer cells in ascitic fluid publication-title: Cancers doi: 10.3390/cancers16051064 – volume: 13 start-page: 241 year: 2020 ident: 10.1016/j.ajpath.2025.04.004_bib7 article-title: Reducing ovarian cancer mortality through early detection: approaches using circulating biomarkers publication-title: Cancer Prev Res (Phila) doi: 10.1158/1940-6207.CAPR-19-0184 – volume: 120 year: 2021 ident: 10.1016/j.ajpath.2025.04.004_bib24 article-title: Artificial intelligence in gynecologic cancers: current status and future challenges - a systematic review publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102164 – volume: 13 start-page: 5493 year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib22 article-title: Deep learning-based diagnosis of lung cancer using a nationwide respiratory cytology image set: improving accuracy and inter-observer variability publication-title: Am J Cancer Res – volume: 38 year: 2018 ident: 10.1016/j.ajpath.2025.04.004_bib29 article-title: Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks publication-title: Biosci Rep – volume: 85 year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib33 article-title: MS-CLAM: mixed supervision for the classification and localization of tumors in Whole Slide Images publication-title: Med Image Anal doi: 10.1016/j.media.2023.102763 – volume: 138 year: 2024 ident: 10.1016/j.ajpath.2025.04.004_bib18 article-title: Ovarian cancer data analysis using deep learning: A systematic review publication-title: Eng Appl Artif Intelligence doi: 10.1016/j.engappai.2024.109250 – volume: 5 start-page: 555 year: 2021 ident: 10.1016/j.ajpath.2025.04.004_bib32 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00682-w – volume: 76 start-page: 292 year: 2021 ident: 10.1016/j.ajpath.2025.04.004_bib25 article-title: Applying artificial intelligence to gynecologic oncology: a review publication-title: Obstet Gynecol Surv doi: 10.1097/OGX.0000000000000902 – volume: 96 start-page: 82 year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib26 article-title: Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2023.09.005 – volume: 29 start-page: 195 year: 2019 ident: 10.1016/j.ajpath.2025.04.004_bib5 article-title: Ovarian cancer: screening and future directions publication-title: Int J Gynecol Cancer doi: 10.1136/ijgc-2018-000016 – volume: 25 start-page: 1301 year: 2019 ident: 10.1016/j.ajpath.2025.04.004_bib30 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat Med doi: 10.1038/s41591-019-0508-1 – volume: 73 start-page: 17 year: 2023 ident: 10.1016/j.ajpath.2025.04.004_bib1 article-title: Cancer statistics, 2023 publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – volume: 35 start-page: 1983 year: 2022 ident: 10.1016/j.ajpath.2025.04.004_bib28 article-title: Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images publication-title: Mod Pathol doi: 10.1038/s41379-022-01146-z – volume: 68 start-page: 284 year: 2018 ident: 10.1016/j.ajpath.2025.04.004_bib3 article-title: Ovarian cancer statistics, 2018 publication-title: CA Cancer J Clin doi: 10.3322/caac.21456 – volume: 79 year: 2022 ident: 10.1016/j.ajpath.2025.04.004_bib11 article-title: Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.104001 – volume: 14 year: 2022 ident: 10.1016/j.ajpath.2025.04.004_bib12 article-title: Recent application of artificial intelligence in non-gynecological cancer cytopathology: a systematic review publication-title: Cancers (Basel) doi: 10.3390/cancers14143529 – volume: 11 start-page: 277 year: 2024 ident: 10.1016/j.ajpath.2025.04.004_bib17 article-title: Artificial intelligence in ovarian cancers—from diagnosis to treatment; a literature review publication-title: J Mind Med Sci doi: 10.22543/2392-7674.1531 – volume: 39 start-page: 194 year: 2017 ident: 10.1016/j.ajpath.2025.04.004_bib27 article-title: A structured latent model for ovarian carcinoma subtyping from histopathology slides publication-title: Med Image Anal doi: 10.1016/j.media.2017.04.008 – volume: 2011 year: 2011 ident: 10.1016/j.ajpath.2025.04.004_bib35 article-title: Digital imaging in cytopathology publication-title: Patholog Res Int – volume: 16 year: 2024 ident: 10.1016/j.ajpath.2025.04.004_bib16 article-title: Artificial intelligence in ultrasound diagnoses of ovarian cancer: a systematic review and meta-analysis publication-title: Cancers (Basel) doi: 10.3390/cancers16020422 – volume: 80 start-page: 2127 year: 2018 ident: 10.1016/j.ajpath.2025.04.004_bib31 article-title: Attention-based deep multiple instance learning – volume: 34 start-page: 723 year: 2024 ident: 10.1016/j.ajpath.2025.04.004_bib21 article-title: Improved diagnostic accuracy of thyroid fine-needle aspiration cytology with artificial intelligence technology publication-title: Thyroid doi: 10.1089/thy.2023.0384 – volume: 11 start-page: 287 year: 2019 ident: 10.1016/j.ajpath.2025.04.004_bib2 article-title: Ovarian cancer in the world: epidemiology and risk factors publication-title: Int J Womens Health doi: 10.2147/IJWH.S197604 – volume: 14 start-page: 2590 year: 2022 ident: 10.1016/j.ajpath.2025.04.004_bib14 article-title: Recent applications of artificial intelligence from histopathologic image-based prediction of microsatellite instability in solid cancers: a systematic review publication-title: Cancers doi: 10.3390/cancers14112590 – volume: 67 start-page: 108 year: 2011 ident: 10.1016/j.ajpath.2025.04.004_bib9 article-title: Biomarkers of malignant ascites-a myth or reality publication-title: Med J Armed Forces India doi: 10.1016/S0377-1237(11)60005-1 – volume: 4 start-page: 38 year: 2013 ident: 10.1016/j.ajpath.2025.04.004_bib34 article-title: Optimal z-axis scanning parameters for gynecologic cytology specimens publication-title: J Pathol Inform doi: 10.4103/2153-3539.124015 – volume: 63 start-page: 63 year: 2019 ident: 10.1016/j.ajpath.2025.04.004_bib8 article-title: Comparison of conventional cytology, liquid-based cytology, and cell block in the evaluation of peritoneal fluid in gynecology malignancies publication-title: Acta Cytol doi: 10.1159/000495571 – volume: 12 year: 2022 ident: 10.1016/j.ajpath.2025.04.004_bib19 article-title: Artificial intelligence in cervical cancer screening and diagnosis publication-title: Front Oncol doi: 10.3389/fonc.2022.851367 – volume: 44 start-page: 1039 year: 2016 ident: 10.1016/j.ajpath.2025.04.004_bib4 article-title: Abdominopelvic washings in gynecologic pathology: a comprehensive review publication-title: Diagn Cytopathol doi: 10.1002/dc.23569 |
| SSID | ssj0006380 |
| Score | 2.484333 |
| Snippet | Conventional ascitic fluid cytology for detecting ovarian cancer is limited by its low sensitivity. To address this issue, this multicenter study developed... |
| SourceID | pubmed crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 1254 |
| SubjectTerms | Algorithms Ascites - diagnosis Ascites - pathology Ascitic Fluid - pathology Cytodiagnosis - methods Female Humans Neural Networks, Computer Ovarian Neoplasms - diagnosis Ovarian Neoplasms - pathology |
| Title | Ovarian Cancer Detection in Ascites Cytology with Weakly Supervised Model on Nationwide Data Set |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002944025001439 https://dx.doi.org/10.1016/j.ajpath.2025.04.004 https://www.ncbi.nlm.nih.gov/pubmed/40311756 |
| Volume | 195 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1525-2191 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006380 issn: 0002-9440 databaseCode: KQ8 dateStart: 19980701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1525-2191 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006380 issn: 0002-9440 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1525-2191 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006380 issn: 0002-9440 databaseCode: AKRWK dateStart: 19980701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG_Gl_zAG0oVx87X41SBJlBBsE7sLdiJs7bb0mlkVNt_wH_NXfyRVEPa2ItVuXVq3f18d77cByHvsiRnXNZguSmVB0LpPJC6rIK4gtMV6jLjEnOHp1-S3X3x6SA-GI3-DKKWzls1Li__mVdyG67CHPAVs2T_g7P-oTABn4G_MAKHYbwRj7_-hpsuHNAJsu4MZEerSxe8uAO6DX2qk4vWlFnqPK4_tDw6RnFxijLiF1ib2AztGF8ZmArZ60WlAQqtBCmy4baf9SkozbDeBLY03nDNu9Cexbp_wz-Zr7qogT29ag4PL3D0rp25qWIAX-G8B6BF6nQ1lycnsnr_fXG5tki2Tooo9gGt1nPmsmc2gjs7aZwLU67JS2PTc9PCLh3IVjDFxEBPs8hIxis6wLgjlmO5RAqMcTtdNdtQ9DrPRyLu4SZwD2AKYqnD_A65G4GCwC4gn7_1hedBTIXuJoU_d1mYXajg1X-6xsoZmDCzh-SBvXvQHQOkR2Skm8fk3tRGVzwhPy2eqMET9Xiii4ZaPFGHJ4p4ogZPtMcT7fBEYU2PJ4p4ooCnp2T_44fZZDewHTiCknPeBjJNaslqrqMsy7BfcBWndZSKWkmu0kQpJmEapD7LsA0pY0rkOmI6qlVSyVryZ2SrWTX6BaGVBFrB5T6WQgoeZkqFqY5rFpY1z4WMt0ngKFacmkIrhYtAXBaGwgVSuAhFARTeJrEja-GSiEHtFYCCa9alfp01Mo3xeIOVzw33_P4EaEQwv5OXt37mK3K_Py6vyVZ7dq7fgJXbqrcd_v4CaxOpNA |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ovarian+Cancer+Detection+in+Ascites+Cytology+with+Weakly+Supervised+Model+on+Nationwide+Data+Set&rft.jtitle=The+American+journal+of+pathology&rft.au=Lee%2C+Jiwon&rft.au=Choi%2C+Seonggyeong&rft.au=Shin%2C+Seoyeon&rft.au=Alam%2C+Mohammad+Rizwan&rft.date=2025-07-01&rft.pub=Elsevier+Inc&rft.issn=0002-9440&rft.volume=195&rft.issue=7&rft.spage=1254&rft.epage=1263&rft_id=info:doi/10.1016%2Fj.ajpath.2025.04.004&rft.externalDocID=S0002944025001439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9440&client=summon |