Lazy Generic Cuts
•An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the art.•The algorithm is a flow based combinatorial algorithm based on Generic Cuts.•In a typical inference problem minimum depends only on small set o...
Saved in:
| Published in | Computer vision and image understanding Vol. 143; pp. 80 - 91 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.02.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1077-3142 1090-235X |
| DOI | 10.1016/j.cviu.2015.10.016 |
Cover
| Abstract | •An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the art.•The algorithm is a flow based combinatorial algorithm based on Generic Cuts.•In a typical inference problem minimum depends only on small set of constraints.•The experiments validate the observation and show superiority over state of the art.
LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two approaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher order clique potentials. The algorithm has been shown to be significantly faster than the state of the art algorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference problems a large fraction of the constraints are never used during the course of minimization. We start with a small set of constraints (called the active constraints) which are expected to play a role during the minimization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the optimum for submodular clique potentials. Our experiments show that the number of constraints required by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision datasets show that our approach can significantly outperform the state of the art both in terms of time and memory and is scalable to clique sizes that could not be handled by existing approaches. |
|---|---|
| AbstractList | LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two approaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher order clique potentials. The algorithm has been shown to be significantly faster than the state of the art algorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference problems a large fraction of the constraints are never used during the course of minimization. We start with a small set of constraints (called the active constraints) which are expected to play a role during the minimization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the optimum for submodular clique potentials. Our experiments show that the number of constraints required by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision datasets show that our approach can significantly outperform the state of the art both in terms of time and memory and is scalable to clique sizes that could not be handled by existing approaches. •An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the art.•The algorithm is a flow based combinatorial algorithm based on Generic Cuts.•In a typical inference problem minimum depends only on small set of constraints.•The experiments validate the observation and show superiority over state of the art. LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two approaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher order clique potentials. The algorithm has been shown to be significantly faster than the state of the art algorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference problems a large fraction of the constraints are never used during the course of minimization. We start with a small set of constraints (called the active constraints) which are expected to play a role during the minimization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the optimum for submodular clique potentials. Our experiments show that the number of constraints required by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision datasets show that our approach can significantly outperform the state of the art both in terms of time and memory and is scalable to clique sizes that could not be handled by existing approaches. |
| Author | Singla, Parag Bhatia, Kush Khandelwal, Dinesh Arora, Chetan |
| Author_xml | – sequence: 1 givenname: Dinesh surname: Khandelwal fullname: Khandelwal, Dinesh email: dineshk@cse.iitd.ac.in organization: Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India – sequence: 2 givenname: Kush surname: Bhatia fullname: Bhatia, Kush organization: Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India – sequence: 3 givenname: Chetan surname: Arora fullname: Arora, Chetan organization: Indraprastha Institute of Information Technology Delhi (IIIT Delhi), New Delhi, India – sequence: 4 givenname: Parag surname: Singla fullname: Singla, Parag organization: Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India |
| BookMark | eNp9kMFLwzAUh4NMcJsevHra0UtrXpIuLXiRoVMYeFHwFtL0FVK6dibpYP71ptSTh53e4-P3PXi_BZl1fYeE3AFNgcL6oUnN0Q4po5BFkEZ0QeZAC5ownn3Nxl3KhINgV2ThfUMpgChgTm53-ue02mKHzprVZgj-mlzWuvV48zeX5PPl-WPzmuzet2-bp11iOOchkVRAWRbAtS6BoWCAQlYcMwGiriVALk1VS410XeZ1pGiyCgEMLaLGDV-S--nuwfXfA_qg9tYbbFvdYT94BbLgTIi8yGI0n6LG9d47rJWxQQfbd8Fp2yqgamxBNWpsQY0tjCyiqLJ_6sHZvXan89LjJGH8_2jRKW8sdgYr69AEVfX2nP4L_zd2Vw |
| CitedBy_id | crossref_primary_10_1088_2631_8695_ad476e crossref_primary_10_1016_j_measurement_2018_10_001 crossref_primary_10_1016_j_media_2016_06_028 crossref_primary_10_1109_JSTARS_2016_2557081 |
| Cites_doi | 10.1109/TPAMI.2014.2388218 10.1109/TPAMI.2007.1031 10.1109/34.969114 10.1109/TPAMI.2010.91 10.1111/j.2517-6161.1989.tb01764.x 10.1016/j.dam.2012.05.025 10.1109/TPAMI.2007.1128 10.1109/TPAMI.2007.70844 10.1109/TPAMI.2004.60 10.1016/j.cviu.2013.07.004 10.1016/j.dam.2012.06.009 10.1109/TPAMI.2003.1233908 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. |
| Copyright_xml | – notice: 2015 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cviu.2015.10.016 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1090-235X |
| EndPage | 91 |
| ExternalDocumentID | 10_1016_j_cviu_2015_10_016 S1077314215002362 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS SST ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-7041bb913aab12e421e47d3e5414ff71187cdf7ae06b8f541ec5de11c09bb93c3 |
| IEDL.DBID | .~1 |
| ISSN | 1077-3142 |
| IngestDate | Sat Sep 27 21:14:27 EDT 2025 Wed Oct 01 05:09:00 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Fri Feb 23 02:26:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Higher order potential Generic cuts Graphical models Optimal inference MRF-MAP Markov random fields |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-7041bb913aab12e421e47d3e5414ff71187cdf7ae06b8f541ec5de11c09bb93c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1793244895 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1793244895 crossref_citationtrail_10_1016_j_cviu_2015_10_016 crossref_primary_10_1016_j_cviu_2015_10_016 elsevier_sciencedirect_doi_10_1016_j_cviu_2015_10_016 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2016 2016-02-00 20160201 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer vision and image understanding |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Kolmogorov, Rother (bib0023) 2007; 29 Kohli, Torr (bib0024) 2007; 29 Kolmogorov (bib0012) 2012; 160 Globerson, Jaakkola (bib0005) 2007 A database containing 1400 binary shape images Wang, Komodakis, Paragios (bib0013) 2013; 117 Boykov, Veksler, Zabih (bib0025) 2001; 23 Ishikawa (bib0017) 2011; 33 Komodakis, Paragios, Tziritas (bib0006) 2007 Sontag, Choe, Li (bib0008) 2012 Ishikawa (bib0003) 2003; 25 (accessed: 2014-10-15). Fix, Gruber, Boros, Zabih (bib0018) 2011 Arora, Maheshwari (bib0004) 2014 Komodakis, Paragios (bib0015) 2009 Rother, Kohli, Feng, Jia (bib0032) 2009 Fix, Wang, Zabih (bib0011) 2014 (accessed: 2015-04-30). Sontag, Globerson, Jaakkola (bib0007) 2011 Arora, Banerjee, Kalra, Maheshwari (bib0026) 2010 Szeliski, Zabih, Scharstein, Veksler, Kolmogorov, Agarwala, Tappen, Rother (bib0016) 2008; 30 Greig, Porteous, Seheult (bib0002) 1989; 51 Arora, Banerjee, Kalra, Maheshwari (bib0001) 2015; 37 Iwata, Orlin (bib0020) 2009 Fix, Joachims, Park, Zabih (bib0010) 2013 Tarlow, Givoni, Zemel (bib0014) 2010 Sontag, Jaakkola (bib0021) 2007 Stobbe, Krause (bib0030) 2010 Riedel (bib0022) 2008 Ishikawa (bib0028) 2014 Papadimitriou, Steiglitz (bib0027) 1982 SoS-IBFS implementation Kahl, Strandmark (bib0019) 2012; 160 Boykov, Kolmogorov (bib0009) 2004; 26 Tarlow (10.1016/j.cviu.2015.10.016_bib0014) 2010 Sontag (10.1016/j.cviu.2015.10.016_bib0007) 2011 Arora (10.1016/j.cviu.2015.10.016_bib0004) 2014 Rother (10.1016/j.cviu.2015.10.016_bib0032) 2009 Ishikawa (10.1016/j.cviu.2015.10.016_bib0028) 2014 Kahl (10.1016/j.cviu.2015.10.016_bib0019) 2012; 160 Boykov (10.1016/j.cviu.2015.10.016_bib0009) 2004; 26 Sontag (10.1016/j.cviu.2015.10.016_bib0021) 2007 Komodakis (10.1016/j.cviu.2015.10.016_bib0015) 2009 Fix (10.1016/j.cviu.2015.10.016_bib0018) 2011 Stobbe (10.1016/j.cviu.2015.10.016_bib0030) 2010 Fix (10.1016/j.cviu.2015.10.016_bib0010) 2013 Greig (10.1016/j.cviu.2015.10.016_bib0002) 1989; 51 Fix (10.1016/j.cviu.2015.10.016_bib0011) 2014 Kohli (10.1016/j.cviu.2015.10.016_bib0024) 2007; 29 Kolmogorov (10.1016/j.cviu.2015.10.016_bib0023) 2007; 29 Kolmogorov (10.1016/j.cviu.2015.10.016_bib0012) 2012; 160 Sontag (10.1016/j.cviu.2015.10.016_bib0008) 2012 Papadimitriou (10.1016/j.cviu.2015.10.016_bib0027) 1982 Szeliski (10.1016/j.cviu.2015.10.016_bib0016) 2008; 30 Globerson (10.1016/j.cviu.2015.10.016_bib0005) 2007 10.1016/j.cviu.2015.10.016_bib0029 Wang (10.1016/j.cviu.2015.10.016_bib0013) 2013; 117 Arora (10.1016/j.cviu.2015.10.016_bib0001) 2015; 37 Arora (10.1016/j.cviu.2015.10.016_bib0026) 2010 Iwata (10.1016/j.cviu.2015.10.016_bib0020) 2009 Boykov (10.1016/j.cviu.2015.10.016_bib0025) 2001; 23 10.1016/j.cviu.2015.10.016_bib0031 Komodakis (10.1016/j.cviu.2015.10.016_bib0006) 2007 Ishikawa (10.1016/j.cviu.2015.10.016_bib0003) 2003; 25 Ishikawa (10.1016/j.cviu.2015.10.016_bib0017) 2011; 33 Riedel (10.1016/j.cviu.2015.10.016_bib0022) 2008 |
| References_xml | – volume: 25 start-page: 1333 year: 2003 end-page: 1336 ident: bib0003 article-title: Exact optimization for Markov random fields with convex priors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – year: 2010 ident: bib0030 article-title: Efficient minimization of decomposable submodular functions publication-title: Advances in Neural Information Processing Systems(NIPS) – year: 2008 ident: bib0022 article-title: Improving the accuracy and efficiency of MAP inference for Markov logic publication-title: Conference on Uncertainty in Artificial Intelligence (UAI) – reference: A database containing 1400 binary shape images, – year: 2013 ident: bib0010 article-title: Structured learning of sum-of-submodular higher order energy functions publication-title: IEEE International Conference on Computer Vision (ICCV) – year: 2010 ident: bib0014 article-title: Hop-map: efficient message passing with high order potentials publication-title: International Conference on Artificial Intelligence and Statistics (AISTATS) – reference: (accessed: 2015-04-30). – year: 2009 ident: bib0020 article-title: A simple combinatorial algorithm for submodular function minimization publication-title: ACM-SIAM Symposium on Discrete Algorithms (SODA) – volume: 29 start-page: 2079 year: 2007 end-page: 2088 ident: bib0024 article-title: Dynamic graph cuts for efficient inference in Markov random fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – reference: SoS-IBFS implementation, – volume: 26 start-page: 1124 year: 2004 end-page: 1137 ident: bib0009 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – year: 2007 ident: bib0005 article-title: Fixing max-product: convergent message passing algorithms for map LP-relaxations. publication-title: Advances in Neural Information Processing Systems (NIPS) – year: 2014 ident: bib0028 article-title: Higher-order clique reduction without auxiliary variables publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2010 ident: bib0026 article-title: An efficient graph cut algorithm for computer vision problems publication-title: European Conference on Computer Vision (ECCV) – volume: 51 start-page: 271 year: 1989 end-page: 279 ident: bib0002 article-title: Exact maximum a posteriori estimation for binary images publication-title: J. R. Stat. Soc. (Ser. B) – volume: 37 start-page: 1323 year: 2015 end-page: 1335 ident: bib0001 article-title: Generalized flows for optimal inference in higher order MRF-map publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – volume: 33 start-page: 1234 year: 2011 end-page: 1249 ident: bib0017 article-title: Transformation of general binary MRF minimization to the first-order case publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – year: 2014 ident: bib0011 article-title: A primal-dual algorithm for higher-order multilabel Markov random fields publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 1982 ident: bib0027 publication-title: Combinatorial Optimization – volume: 30 start-page: 1068 year: 2008 end-page: 1080 ident: bib0016 article-title: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – year: 2014 ident: bib0004 article-title: Multi label generic cuts: Optimal inference in multi label multi clique MRF-map problems publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 117 start-page: 1610 year: 2013 end-page: 1627 ident: bib0013 article-title: Markov random field modeling, inference & learning in computer vision & image understanding: a survey publication-title: Comput. Vis. Image Understand. (CVIU) – year: 2009 ident: bib0015 article-title: Beyond pairwise energies: efficient optimization for higher-order MRFS publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2007 ident: bib0006 article-title: MRF optimization via dual decomposition: message-passing revisited publication-title: IEEE International Conference on Computer Vision (ICCV) – start-page: 219 year: 2011 end-page: 254 ident: bib0007 article-title: Introduction to dual decomposition for inference publication-title: Optimization for Machine Learning – year: 2007 ident: bib0021 article-title: New outer bounds on the marginal polytope publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 23 start-page: 1222 year: 2001 end-page: 1239 ident: bib0025 article-title: Fast approximate energy minimization via graph cuts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – year: 2009 ident: bib0032 article-title: Minimizing sparse higher order energy functions of discrete variables publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: (accessed: 2014-10-15). – year: 2011 ident: bib0018 article-title: A graph cut algorithm for higher-order Markov random fields publication-title: IEEE International Conference on Computer Vision (ICCV) – year: 2012 ident: bib0008 article-title: Efficiently searching for frustrated cycles in MAP inference publication-title: Conference on Uncertainty in Artificial Intelligence (UAI) – volume: 160 start-page: 2419 year: 2012 end-page: 2434 ident: bib0019 article-title: Generalized roof duality publication-title: Discrete Appl. Math. – volume: 29 start-page: 1274 year: 2007 end-page: 1279 ident: bib0023 article-title: Minimizing nonsubmodular functions with graph cuts-a review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – volume: 160 start-page: 2246 year: 2012 end-page: 2258 ident: bib0012 article-title: Minimizing a sum of submodular functions publication-title: Discrete Appl. Math. – year: 2013 ident: 10.1016/j.cviu.2015.10.016_bib0010 article-title: Structured learning of sum-of-submodular higher order energy functions – year: 2014 ident: 10.1016/j.cviu.2015.10.016_bib0028 article-title: Higher-order clique reduction without auxiliary variables – ident: 10.1016/j.cviu.2015.10.016_bib0029 – volume: 37 start-page: 1323 issue: 7 year: 2015 ident: 10.1016/j.cviu.2015.10.016_bib0001 article-title: Generalized flows for optimal inference in higher order MRF-map publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2014.2388218 – volume: 29 start-page: 1274 issue: 7 year: 2007 ident: 10.1016/j.cviu.2015.10.016_bib0023 article-title: Minimizing nonsubmodular functions with graph cuts-a review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2007.1031 – volume: 23 start-page: 1222 issue: 11 year: 2001 ident: 10.1016/j.cviu.2015.10.016_bib0025 article-title: Fast approximate energy minimization via graph cuts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/34.969114 – volume: 33 start-page: 1234 issue: 6 year: 2011 ident: 10.1016/j.cviu.2015.10.016_bib0017 article-title: Transformation of general binary MRF minimization to the first-order case publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2010.91 – year: 2009 ident: 10.1016/j.cviu.2015.10.016_bib0015 article-title: Beyond pairwise energies: efficient optimization for higher-order MRFS – year: 2014 ident: 10.1016/j.cviu.2015.10.016_bib0004 article-title: Multi label generic cuts: Optimal inference in multi label multi clique MRF-map problems – volume: 51 start-page: 271 issue: 2 year: 1989 ident: 10.1016/j.cviu.2015.10.016_bib0002 article-title: Exact maximum a posteriori estimation for binary images publication-title: J. R. Stat. Soc. (Ser. B) doi: 10.1111/j.2517-6161.1989.tb01764.x – year: 2007 ident: 10.1016/j.cviu.2015.10.016_bib0021 article-title: New outer bounds on the marginal polytope – volume: 160 start-page: 2246 issue: 15 year: 2012 ident: 10.1016/j.cviu.2015.10.016_bib0012 article-title: Minimizing a sum of submodular functions publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2012.05.025 – year: 2010 ident: 10.1016/j.cviu.2015.10.016_bib0014 article-title: Hop-map: efficient message passing with high order potentials – volume: 29 start-page: 2079 issue: 12 year: 2007 ident: 10.1016/j.cviu.2015.10.016_bib0024 article-title: Dynamic graph cuts for efficient inference in Markov random fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2007.1128 – year: 2010 ident: 10.1016/j.cviu.2015.10.016_bib0030 article-title: Efficient minimization of decomposable submodular functions – year: 2012 ident: 10.1016/j.cviu.2015.10.016_bib0008 article-title: Efficiently searching for frustrated cycles in MAP inference – volume: 30 start-page: 1068 issue: 6 year: 2008 ident: 10.1016/j.cviu.2015.10.016_bib0016 article-title: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2007.70844 – ident: 10.1016/j.cviu.2015.10.016_bib0031 – year: 2007 ident: 10.1016/j.cviu.2015.10.016_bib0005 article-title: Fixing max-product: convergent message passing algorithms for map LP-relaxations. – volume: 26 start-page: 1124 issue: 9 year: 2004 ident: 10.1016/j.cviu.2015.10.016_bib0009 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2004.60 – year: 2014 ident: 10.1016/j.cviu.2015.10.016_bib0011 article-title: A primal-dual algorithm for higher-order multilabel Markov random fields – volume: 117 start-page: 1610 issue: 11 year: 2013 ident: 10.1016/j.cviu.2015.10.016_bib0013 article-title: Markov random field modeling, inference & learning in computer vision & image understanding: a survey publication-title: Comput. Vis. Image Understand. (CVIU) doi: 10.1016/j.cviu.2013.07.004 – year: 2007 ident: 10.1016/j.cviu.2015.10.016_bib0006 article-title: MRF optimization via dual decomposition: message-passing revisited – start-page: 219 year: 2011 ident: 10.1016/j.cviu.2015.10.016_bib0007 article-title: Introduction to dual decomposition for inference – year: 2008 ident: 10.1016/j.cviu.2015.10.016_bib0022 article-title: Improving the accuracy and efficiency of MAP inference for Markov logic – year: 2009 ident: 10.1016/j.cviu.2015.10.016_bib0032 article-title: Minimizing sparse higher order energy functions of discrete variables – volume: 160 start-page: 2419 issue: 16 year: 2012 ident: 10.1016/j.cviu.2015.10.016_bib0019 article-title: Generalized roof duality publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2012.06.009 – year: 2009 ident: 10.1016/j.cviu.2015.10.016_bib0020 article-title: A simple combinatorial algorithm for submodular function minimization – volume: 25 start-page: 1333 issue: 10 year: 2003 ident: 10.1016/j.cviu.2015.10.016_bib0003 article-title: Exact optimization for Markov random fields with convex priors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2003.1233908 – year: 1982 ident: 10.1016/j.cviu.2015.10.016_bib0027 – year: 2011 ident: 10.1016/j.cviu.2015.10.016_bib0018 article-title: A graph cut algorithm for higher-order Markov random fields – year: 2010 ident: 10.1016/j.cviu.2015.10.016_bib0026 article-title: An efficient graph cut algorithm for computer vision problems |
| SSID | ssj0011491 |
| Score | 2.1815102 |
| Snippet | •An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the... LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 80 |
| SubjectTerms | Algorithms Computer vision Convergence Generic cuts Graphical models Higher order potential Inference Markov random fields Message passing Minimization MRF-MAP Optimal inference Optimization State of the art |
| Title | Lazy Generic Cuts |
| URI | https://dx.doi.org/10.1016/j.cviu.2015.10.016 https://www.proquest.com/docview/1793244895 |
| Volume | 143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvSgcyrOH6OCN-nWLMnSHMdwzF-76GC3kKYpTKQbrhX04N_uS5sOFdnBYx95pX1pvvdCv7wPoUsBKUcTyn2merBBMUnsqxgrP2CJYlQF3BTn1h4m_fGU3s7YrIaG1VkYS6t02F9ieoHWztJ10ewu5_PuI2xcOMEUclbRBt3iMKXcqhh0Ptc0Dyj3C9U8O9i3o93BmZLjpd_muaV3sY5leFnN87-T0y-YLnLPqIF2XdHoDcrn2kc1kzbRnisgPbc8V2CqNBoqWxPtfGs4eIAa9-rj3StaTc-1N8yz1SGajq6fhmPfiSL4mhCS-TygOIoEJkpFuGfg9Q3lMTFWzjtJuFUP13HClQn6UZiA1WgWG4x1IMAN5uUI1dNFao6RR3RsiDA4ToSgJmQhUUTBKu8lPFCC6xbCVTSkdh3DrXDFi6yoYc_SRlDaCFobmFroau2zLPtlbBzNqiDLH7MuAdA3-l1UMyJhOdh_HCo1i3wlLd5AxRIKdvLPe5-ibbhyzOwzVM9ec3MOhUcWtYsvq422Bjd348kXPI_Unw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD-pB51ScPyt4k25N0yztUYZj6raLG-wW0jSBiXTDtYIe_Nt9adOhIjt4fc0r7UvzvRf65X0IXUeQciQJmEuFDxsUpRNXJFi4HtWCBsJjqji3Nhx1-pPgYUqnNdStzsIYWqXF_hLTC7S2lraNZnsxm7WfYOPCCA4gZxVt0AGHNwPqM7MDa32ueB5Q7xeyeWa0a4bbkzMlyUu-zXLD76ItQ_Eyoud_Z6dfOF0kn14d7dqq0bktH2wf1VTaQHu2gnTs-lyCqRJpqGwNtPOt4-ABqg_Ex7tT9JqeSaebZ8tDNOndjbt916oiuJIQkrnMC3AcR5gIEWNfwfurgCVEGT1vrZmRD5eJZkJ5nTjUYFWSJgpj6UXgBhNzhDbSeaqOkUNkokikcKKjKFAhDYkgApa5r5knIiabCFfR4NK2DDfKFS-84oY9cxNBbiJobGBqopuVz6JsmLF2NK2CzH9MOwdEX-t3Vc0Ih_VgfnKIVM3zJTeAAyVLGNGTf977Em31x8MBH9yPHk_RNlyxNO0ztJG95uocqpAsvii-si9S69Y0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lazy+Generic+Cuts&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Khandelwal%2C+Dinesh&rft.au=Bhatia%2C+Kush&rft.au=Arora%2C+Chetan&rft.au=Singla%2C+Parag&rft.date=2016-02-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=143&rft.spage=80&rft.epage=91&rft_id=info:doi/10.1016%2Fj.cviu.2015.10.016&rft.externalDocID=S1077314215002362 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |