Lazy Generic Cuts

•An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the art.•The algorithm is a flow based combinatorial algorithm based on Generic Cuts.•In a typical inference problem minimum depends only on small set o...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 143; pp. 80 - 91
Main Authors Khandelwal, Dinesh, Bhatia, Kush, Arora, Chetan, Singla, Parag
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2016
Subjects
Online AccessGet full text
ISSN1077-3142
1090-235X
DOI10.1016/j.cviu.2015.10.016

Cover

Abstract •An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the art.•The algorithm is a flow based combinatorial algorithm based on Generic Cuts.•In a typical inference problem minimum depends only on small set of constraints.•The experiments validate the observation and show superiority over state of the art. LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two approaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher order clique potentials. The algorithm has been shown to be significantly faster than the state of the art algorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference problems a large fraction of the constraints are never used during the course of minimization. We start with a small set of constraints (called the active constraints) which are expected to play a role during the minimization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the optimum for submodular clique potentials. Our experiments show that the number of constraints required by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision datasets show that our approach can significantly outperform the state of the art both in terms of time and memory and is scalable to clique sizes that could not be handled by existing approaches.
AbstractList LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two approaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher order clique potentials. The algorithm has been shown to be significantly faster than the state of the art algorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference problems a large fraction of the constraints are never used during the course of minimization. We start with a small set of constraints (called the active constraints) which are expected to play a role during the minimization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the optimum for submodular clique potentials. Our experiments show that the number of constraints required by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision datasets show that our approach can significantly outperform the state of the art both in terms of time and memory and is scalable to clique sizes that could not be handled by existing approaches.
•An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the art.•The algorithm is a flow based combinatorial algorithm based on Generic Cuts.•In a typical inference problem minimum depends only on small set of constraints.•The experiments validate the observation and show superiority over state of the art. LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two approaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher order clique potentials. The algorithm has been shown to be significantly faster than the state of the art algorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference problems a large fraction of the constraints are never used during the course of minimization. We start with a small set of constraints (called the active constraints) which are expected to play a role during the minimization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the optimum for submodular clique potentials. Our experiments show that the number of constraints required by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision datasets show that our approach can significantly outperform the state of the art both in terms of time and memory and is scalable to clique sizes that could not be handled by existing approaches.
Author Singla, Parag
Bhatia, Kush
Khandelwal, Dinesh
Arora, Chetan
Author_xml – sequence: 1
  givenname: Dinesh
  surname: Khandelwal
  fullname: Khandelwal, Dinesh
  email: dineshk@cse.iitd.ac.in
  organization: Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India
– sequence: 2
  givenname: Kush
  surname: Bhatia
  fullname: Bhatia, Kush
  organization: Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India
– sequence: 3
  givenname: Chetan
  surname: Arora
  fullname: Arora, Chetan
  organization: Indraprastha Institute of Information Technology Delhi (IIIT Delhi), New Delhi, India
– sequence: 4
  givenname: Parag
  surname: Singla
  fullname: Singla, Parag
  organization: Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India
BookMark eNp9kMFLwzAUh4NMcJsevHra0UtrXpIuLXiRoVMYeFHwFtL0FVK6dibpYP71ptSTh53e4-P3PXi_BZl1fYeE3AFNgcL6oUnN0Q4po5BFkEZ0QeZAC5ownn3Nxl3KhINgV2ThfUMpgChgTm53-ue02mKHzprVZgj-mlzWuvV48zeX5PPl-WPzmuzet2-bp11iOOchkVRAWRbAtS6BoWCAQlYcMwGiriVALk1VS410XeZ1pGiyCgEMLaLGDV-S--nuwfXfA_qg9tYbbFvdYT94BbLgTIi8yGI0n6LG9d47rJWxQQfbd8Fp2yqgamxBNWpsQY0tjCyiqLJ_6sHZvXan89LjJGH8_2jRKW8sdgYr69AEVfX2nP4L_zd2Vw
CitedBy_id crossref_primary_10_1088_2631_8695_ad476e
crossref_primary_10_1016_j_measurement_2018_10_001
crossref_primary_10_1016_j_media_2016_06_028
crossref_primary_10_1109_JSTARS_2016_2557081
Cites_doi 10.1109/TPAMI.2014.2388218
10.1109/TPAMI.2007.1031
10.1109/34.969114
10.1109/TPAMI.2010.91
10.1111/j.2517-6161.1989.tb01764.x
10.1016/j.dam.2012.05.025
10.1109/TPAMI.2007.1128
10.1109/TPAMI.2007.70844
10.1109/TPAMI.2004.60
10.1016/j.cviu.2013.07.004
10.1016/j.dam.2012.06.009
10.1109/TPAMI.2003.1233908
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cviu.2015.10.016
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 91
ExternalDocumentID 10_1016_j_cviu_2015_10_016
S1077314215002362
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-7041bb913aab12e421e47d3e5414ff71187cdf7ae06b8f541ec5de11c09bb93c3
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Sat Sep 27 21:14:27 EDT 2025
Wed Oct 01 05:09:00 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Fri Feb 23 02:26:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Higher order potential
Generic cuts
Graphical models
Optimal inference
MRF-MAP
Markov random fields
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-7041bb913aab12e421e47d3e5414ff71187cdf7ae06b8f541ec5de11c09bb93c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793244895
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1793244895
crossref_citationtrail_10_1016_j_cviu_2015_10_016
crossref_primary_10_1016_j_cviu_2015_10_016
elsevier_sciencedirect_doi_10_1016_j_cviu_2015_10_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
2016-02-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationTitle Computer vision and image understanding
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kolmogorov, Rother (bib0023) 2007; 29
Kohli, Torr (bib0024) 2007; 29
Kolmogorov (bib0012) 2012; 160
Globerson, Jaakkola (bib0005) 2007
A database containing 1400 binary shape images
Wang, Komodakis, Paragios (bib0013) 2013; 117
Boykov, Veksler, Zabih (bib0025) 2001; 23
Ishikawa (bib0017) 2011; 33
Komodakis, Paragios, Tziritas (bib0006) 2007
Sontag, Choe, Li (bib0008) 2012
Ishikawa (bib0003) 2003; 25
(accessed: 2014-10-15).
Fix, Gruber, Boros, Zabih (bib0018) 2011
Arora, Maheshwari (bib0004) 2014
Komodakis, Paragios (bib0015) 2009
Rother, Kohli, Feng, Jia (bib0032) 2009
Fix, Wang, Zabih (bib0011) 2014
(accessed: 2015-04-30).
Sontag, Globerson, Jaakkola (bib0007) 2011
Arora, Banerjee, Kalra, Maheshwari (bib0026) 2010
Szeliski, Zabih, Scharstein, Veksler, Kolmogorov, Agarwala, Tappen, Rother (bib0016) 2008; 30
Greig, Porteous, Seheult (bib0002) 1989; 51
Arora, Banerjee, Kalra, Maheshwari (bib0001) 2015; 37
Iwata, Orlin (bib0020) 2009
Fix, Joachims, Park, Zabih (bib0010) 2013
Tarlow, Givoni, Zemel (bib0014) 2010
Sontag, Jaakkola (bib0021) 2007
Stobbe, Krause (bib0030) 2010
Riedel (bib0022) 2008
Ishikawa (bib0028) 2014
Papadimitriou, Steiglitz (bib0027) 1982
SoS-IBFS implementation
Kahl, Strandmark (bib0019) 2012; 160
Boykov, Kolmogorov (bib0009) 2004; 26
Tarlow (10.1016/j.cviu.2015.10.016_bib0014) 2010
Sontag (10.1016/j.cviu.2015.10.016_bib0007) 2011
Arora (10.1016/j.cviu.2015.10.016_bib0004) 2014
Rother (10.1016/j.cviu.2015.10.016_bib0032) 2009
Ishikawa (10.1016/j.cviu.2015.10.016_bib0028) 2014
Kahl (10.1016/j.cviu.2015.10.016_bib0019) 2012; 160
Boykov (10.1016/j.cviu.2015.10.016_bib0009) 2004; 26
Sontag (10.1016/j.cviu.2015.10.016_bib0021) 2007
Komodakis (10.1016/j.cviu.2015.10.016_bib0015) 2009
Fix (10.1016/j.cviu.2015.10.016_bib0018) 2011
Stobbe (10.1016/j.cviu.2015.10.016_bib0030) 2010
Fix (10.1016/j.cviu.2015.10.016_bib0010) 2013
Greig (10.1016/j.cviu.2015.10.016_bib0002) 1989; 51
Fix (10.1016/j.cviu.2015.10.016_bib0011) 2014
Kohli (10.1016/j.cviu.2015.10.016_bib0024) 2007; 29
Kolmogorov (10.1016/j.cviu.2015.10.016_bib0023) 2007; 29
Kolmogorov (10.1016/j.cviu.2015.10.016_bib0012) 2012; 160
Sontag (10.1016/j.cviu.2015.10.016_bib0008) 2012
Papadimitriou (10.1016/j.cviu.2015.10.016_bib0027) 1982
Szeliski (10.1016/j.cviu.2015.10.016_bib0016) 2008; 30
Globerson (10.1016/j.cviu.2015.10.016_bib0005) 2007
10.1016/j.cviu.2015.10.016_bib0029
Wang (10.1016/j.cviu.2015.10.016_bib0013) 2013; 117
Arora (10.1016/j.cviu.2015.10.016_bib0001) 2015; 37
Arora (10.1016/j.cviu.2015.10.016_bib0026) 2010
Iwata (10.1016/j.cviu.2015.10.016_bib0020) 2009
Boykov (10.1016/j.cviu.2015.10.016_bib0025) 2001; 23
10.1016/j.cviu.2015.10.016_bib0031
Komodakis (10.1016/j.cviu.2015.10.016_bib0006) 2007
Ishikawa (10.1016/j.cviu.2015.10.016_bib0003) 2003; 25
Ishikawa (10.1016/j.cviu.2015.10.016_bib0017) 2011; 33
Riedel (10.1016/j.cviu.2015.10.016_bib0022) 2008
References_xml – volume: 25
  start-page: 1333
  year: 2003
  end-page: 1336
  ident: bib0003
  article-title: Exact optimization for Markov random fields with convex priors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– year: 2010
  ident: bib0030
  article-title: Efficient minimization of decomposable submodular functions
  publication-title: Advances in Neural Information Processing Systems(NIPS)
– year: 2008
  ident: bib0022
  article-title: Improving the accuracy and efficiency of MAP inference for Markov logic
  publication-title: Conference on Uncertainty in Artificial Intelligence (UAI)
– reference: A database containing 1400 binary shape images,
– year: 2013
  ident: bib0010
  article-title: Structured learning of sum-of-submodular higher order energy functions
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– year: 2010
  ident: bib0014
  article-title: Hop-map: efficient message passing with high order potentials
  publication-title: International Conference on Artificial Intelligence and Statistics (AISTATS)
– reference: (accessed: 2015-04-30).
– year: 2009
  ident: bib0020
  article-title: A simple combinatorial algorithm for submodular function minimization
  publication-title: ACM-SIAM Symposium on Discrete Algorithms (SODA)
– volume: 29
  start-page: 2079
  year: 2007
  end-page: 2088
  ident: bib0024
  article-title: Dynamic graph cuts for efficient inference in Markov random fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– reference: SoS-IBFS implementation,
– volume: 26
  start-page: 1124
  year: 2004
  end-page: 1137
  ident: bib0009
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– year: 2007
  ident: bib0005
  article-title: Fixing max-product: convergent message passing algorithms for map LP-relaxations.
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– year: 2014
  ident: bib0028
  article-title: Higher-order clique reduction without auxiliary variables
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2010
  ident: bib0026
  article-title: An efficient graph cut algorithm for computer vision problems
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 51
  start-page: 271
  year: 1989
  end-page: 279
  ident: bib0002
  article-title: Exact maximum a posteriori estimation for binary images
  publication-title: J. R. Stat. Soc. (Ser. B)
– volume: 37
  start-page: 1323
  year: 2015
  end-page: 1335
  ident: bib0001
  article-title: Generalized flows for optimal inference in higher order MRF-map
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– volume: 33
  start-page: 1234
  year: 2011
  end-page: 1249
  ident: bib0017
  article-title: Transformation of general binary MRF minimization to the first-order case
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– year: 2014
  ident: bib0011
  article-title: A primal-dual algorithm for higher-order multilabel Markov random fields
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 1982
  ident: bib0027
  publication-title: Combinatorial Optimization
– volume: 30
  start-page: 1068
  year: 2008
  end-page: 1080
  ident: bib0016
  article-title: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– year: 2014
  ident: bib0004
  article-title: Multi label generic cuts: Optimal inference in multi label multi clique MRF-map problems
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 117
  start-page: 1610
  year: 2013
  end-page: 1627
  ident: bib0013
  article-title: Markov random field modeling, inference & learning in computer vision & image understanding: a survey
  publication-title: Comput. Vis. Image Understand. (CVIU)
– year: 2009
  ident: bib0015
  article-title: Beyond pairwise energies: efficient optimization for higher-order MRFS
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2007
  ident: bib0006
  article-title: MRF optimization via dual decomposition: message-passing revisited
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– start-page: 219
  year: 2011
  end-page: 254
  ident: bib0007
  article-title: Introduction to dual decomposition for inference
  publication-title: Optimization for Machine Learning
– year: 2007
  ident: bib0021
  article-title: New outer bounds on the marginal polytope
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 23
  start-page: 1222
  year: 2001
  end-page: 1239
  ident: bib0025
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– year: 2009
  ident: bib0032
  article-title: Minimizing sparse higher order energy functions of discrete variables
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: (accessed: 2014-10-15).
– year: 2011
  ident: bib0018
  article-title: A graph cut algorithm for higher-order Markov random fields
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– year: 2012
  ident: bib0008
  article-title: Efficiently searching for frustrated cycles in MAP inference
  publication-title: Conference on Uncertainty in Artificial Intelligence (UAI)
– volume: 160
  start-page: 2419
  year: 2012
  end-page: 2434
  ident: bib0019
  article-title: Generalized roof duality
  publication-title: Discrete Appl. Math.
– volume: 29
  start-page: 1274
  year: 2007
  end-page: 1279
  ident: bib0023
  article-title: Minimizing nonsubmodular functions with graph cuts-a review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– volume: 160
  start-page: 2246
  year: 2012
  end-page: 2258
  ident: bib0012
  article-title: Minimizing a sum of submodular functions
  publication-title: Discrete Appl. Math.
– year: 2013
  ident: 10.1016/j.cviu.2015.10.016_bib0010
  article-title: Structured learning of sum-of-submodular higher order energy functions
– year: 2014
  ident: 10.1016/j.cviu.2015.10.016_bib0028
  article-title: Higher-order clique reduction without auxiliary variables
– ident: 10.1016/j.cviu.2015.10.016_bib0029
– volume: 37
  start-page: 1323
  issue: 7
  year: 2015
  ident: 10.1016/j.cviu.2015.10.016_bib0001
  article-title: Generalized flows for optimal inference in higher order MRF-map
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2014.2388218
– volume: 29
  start-page: 1274
  issue: 7
  year: 2007
  ident: 10.1016/j.cviu.2015.10.016_bib0023
  article-title: Minimizing nonsubmodular functions with graph cuts-a review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2007.1031
– volume: 23
  start-page: 1222
  issue: 11
  year: 2001
  ident: 10.1016/j.cviu.2015.10.016_bib0025
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/34.969114
– volume: 33
  start-page: 1234
  issue: 6
  year: 2011
  ident: 10.1016/j.cviu.2015.10.016_bib0017
  article-title: Transformation of general binary MRF minimization to the first-order case
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2010.91
– year: 2009
  ident: 10.1016/j.cviu.2015.10.016_bib0015
  article-title: Beyond pairwise energies: efficient optimization for higher-order MRFS
– year: 2014
  ident: 10.1016/j.cviu.2015.10.016_bib0004
  article-title: Multi label generic cuts: Optimal inference in multi label multi clique MRF-map problems
– volume: 51
  start-page: 271
  issue: 2
  year: 1989
  ident: 10.1016/j.cviu.2015.10.016_bib0002
  article-title: Exact maximum a posteriori estimation for binary images
  publication-title: J. R. Stat. Soc. (Ser. B)
  doi: 10.1111/j.2517-6161.1989.tb01764.x
– year: 2007
  ident: 10.1016/j.cviu.2015.10.016_bib0021
  article-title: New outer bounds on the marginal polytope
– volume: 160
  start-page: 2246
  issue: 15
  year: 2012
  ident: 10.1016/j.cviu.2015.10.016_bib0012
  article-title: Minimizing a sum of submodular functions
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2012.05.025
– year: 2010
  ident: 10.1016/j.cviu.2015.10.016_bib0014
  article-title: Hop-map: efficient message passing with high order potentials
– volume: 29
  start-page: 2079
  issue: 12
  year: 2007
  ident: 10.1016/j.cviu.2015.10.016_bib0024
  article-title: Dynamic graph cuts for efficient inference in Markov random fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2007.1128
– year: 2010
  ident: 10.1016/j.cviu.2015.10.016_bib0030
  article-title: Efficient minimization of decomposable submodular functions
– year: 2012
  ident: 10.1016/j.cviu.2015.10.016_bib0008
  article-title: Efficiently searching for frustrated cycles in MAP inference
– volume: 30
  start-page: 1068
  issue: 6
  year: 2008
  ident: 10.1016/j.cviu.2015.10.016_bib0016
  article-title: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2007.70844
– ident: 10.1016/j.cviu.2015.10.016_bib0031
– year: 2007
  ident: 10.1016/j.cviu.2015.10.016_bib0005
  article-title: Fixing max-product: convergent message passing algorithms for map LP-relaxations.
– volume: 26
  start-page: 1124
  issue: 9
  year: 2004
  ident: 10.1016/j.cviu.2015.10.016_bib0009
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2004.60
– year: 2014
  ident: 10.1016/j.cviu.2015.10.016_bib0011
  article-title: A primal-dual algorithm for higher-order multilabel Markov random fields
– volume: 117
  start-page: 1610
  issue: 11
  year: 2013
  ident: 10.1016/j.cviu.2015.10.016_bib0013
  article-title: Markov random field modeling, inference & learning in computer vision & image understanding: a survey
  publication-title: Comput. Vis. Image Understand. (CVIU)
  doi: 10.1016/j.cviu.2013.07.004
– year: 2007
  ident: 10.1016/j.cviu.2015.10.016_bib0006
  article-title: MRF optimization via dual decomposition: message-passing revisited
– start-page: 219
  year: 2011
  ident: 10.1016/j.cviu.2015.10.016_bib0007
  article-title: Introduction to dual decomposition for inference
– year: 2008
  ident: 10.1016/j.cviu.2015.10.016_bib0022
  article-title: Improving the accuracy and efficiency of MAP inference for Markov logic
– year: 2009
  ident: 10.1016/j.cviu.2015.10.016_bib0032
  article-title: Minimizing sparse higher order energy functions of discrete variables
– volume: 160
  start-page: 2419
  issue: 16
  year: 2012
  ident: 10.1016/j.cviu.2015.10.016_bib0019
  article-title: Generalized roof duality
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2012.06.009
– year: 2009
  ident: 10.1016/j.cviu.2015.10.016_bib0020
  article-title: A simple combinatorial algorithm for submodular function minimization
– volume: 25
  start-page: 1333
  issue: 10
  year: 2003
  ident: 10.1016/j.cviu.2015.10.016_bib0003
  article-title: Exact optimization for Markov random fields with convex priors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2003.1233908
– year: 1982
  ident: 10.1016/j.cviu.2015.10.016_bib0027
– year: 2011
  ident: 10.1016/j.cviu.2015.10.016_bib0018
  article-title: A graph cut algorithm for higher-order Markov random fields
– year: 2010
  ident: 10.1016/j.cviu.2015.10.016_bib0026
  article-title: An efficient graph cut algorithm for computer vision problems
SSID ssj0011491
Score 2.1815102
Snippet •An efficient algorithm for inference in binary higher order MRF–MAP is proposed.•Scalable to mid sized cliques which could not be done by state of the...
LP relaxation based message passing and flow-based algorithms are two of the popular techniques for performing MAP inference in graphical models. Generic Cuts...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 80
SubjectTerms Algorithms
Computer vision
Convergence
Generic cuts
Graphical models
Higher order potential
Inference
Markov random fields
Message passing
Minimization
MRF-MAP
Optimal inference
Optimization
State of the art
Title Lazy Generic Cuts
URI https://dx.doi.org/10.1016/j.cviu.2015.10.016
https://www.proquest.com/docview/1793244895
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvSgcyrOH6OCN-nWLMnSHMdwzF-76GC3kKYpTKQbrhX04N_uS5sOFdnBYx95pX1pvvdCv7wPoUsBKUcTyn2merBBMUnsqxgrP2CJYlQF3BTn1h4m_fGU3s7YrIaG1VkYS6t02F9ieoHWztJ10ewu5_PuI2xcOMEUclbRBt3iMKXcqhh0Ptc0Dyj3C9U8O9i3o93BmZLjpd_muaV3sY5leFnN87-T0y-YLnLPqIF2XdHoDcrn2kc1kzbRnisgPbc8V2CqNBoqWxPtfGs4eIAa9-rj3StaTc-1N8yz1SGajq6fhmPfiSL4mhCS-TygOIoEJkpFuGfg9Q3lMTFWzjtJuFUP13HClQn6UZiA1WgWG4x1IMAN5uUI1dNFao6RR3RsiDA4ToSgJmQhUUTBKu8lPFCC6xbCVTSkdh3DrXDFi6yoYc_SRlDaCFobmFroau2zLPtlbBzNqiDLH7MuAdA3-l1UMyJhOdh_HCo1i3wlLd5AxRIKdvLPe5-ibbhyzOwzVM9ec3MOhUcWtYsvq422Bjd348kXPI_Unw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD-pB51ScPyt4k25N0yztUYZj6raLG-wW0jSBiXTDtYIe_Nt9adOhIjt4fc0r7UvzvRf65X0IXUeQciQJmEuFDxsUpRNXJFi4HtWCBsJjqji3Nhx1-pPgYUqnNdStzsIYWqXF_hLTC7S2lraNZnsxm7WfYOPCCA4gZxVt0AGHNwPqM7MDa32ueB5Q7xeyeWa0a4bbkzMlyUu-zXLD76ItQ_Eyoud_Z6dfOF0kn14d7dqq0bktH2wf1VTaQHu2gnTs-lyCqRJpqGwNtPOt4-ABqg_Ex7tT9JqeSaebZ8tDNOndjbt916oiuJIQkrnMC3AcR5gIEWNfwfurgCVEGT1vrZmRD5eJZkJ5nTjUYFWSJgpj6UXgBhNzhDbSeaqOkUNkokikcKKjKFAhDYkgApa5r5knIiabCFfR4NK2DDfKFS-84oY9cxNBbiJobGBqopuVz6JsmLF2NK2CzH9MOwdEX-t3Vc0Ih_VgfnKIVM3zJTeAAyVLGNGTf977Em31x8MBH9yPHk_RNlyxNO0ztJG95uocqpAsvii-si9S69Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lazy+Generic+Cuts&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Khandelwal%2C+Dinesh&rft.au=Bhatia%2C+Kush&rft.au=Arora%2C+Chetan&rft.au=Singla%2C+Parag&rft.date=2016-02-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=143&rft.spage=80&rft.epage=91&rft_id=info:doi/10.1016%2Fj.cviu.2015.10.016&rft.externalDocID=S1077314215002362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon