Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions

In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 68; pp. 3008 - 3021
Main Authors Lotfi, Mahsa, Vidyasagar, Mathukumalli
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
1941-0476
DOI10.1109/TSP.2020.2990154

Cover

Abstract In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions for robust sparse recovery obtained using the RNSP are better by a factor of <inline-formula><tex-math notation="LaTeX">(3 \sqrt{3})/2 \approx 2.6</tex-math></inline-formula> compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal lower bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal." So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit.
AbstractList In this paper, we study the problem of compressed sensing using binary measurement matrices and [Formula Omitted]-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions for robust sparse recovery obtained using the RNSP are better by a factor of [Formula Omitted] compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal lower bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are “order-optimal.” So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit.
In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions for robust sparse recovery obtained using the RNSP are better by a factor of <inline-formula><tex-math notation="LaTeX">(3 \sqrt{3})/2 \approx 2.6</tex-math></inline-formula> compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal lower bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal." So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit.
Author Vidyasagar, Mathukumalli
Lotfi, Mahsa
Author_xml – sequence: 1
  givenname: Mahsa
  orcidid: 0000-0003-0587-0323
  surname: Lotfi
  fullname: Lotfi, Mahsa
  email: lotfi@stanford.edu
  organization: Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
– sequence: 2
  givenname: Mathukumalli
  orcidid: 0000-0003-1057-1942
  surname: Vidyasagar
  fullname: Vidyasagar, Mathukumalli
  email: m.vidyasagar@iith.ac.in
  organization: Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
BookMark eNptkM1Lw0AQxRdRsK3eBS8Bz6kz2c1m96i1fkC1QlvwtmzjRFLSJO6mSP57U1t6KF5m5vB-jzevz07LqiTGrhCGiKBv57P3YQQRDCOtAWNxwnqoBYYgEnna3RDzMFbJxznre78CQCG07LHxqFrXjrynz2BGpc_Lr2DxN-_z0ro2eLWNy1PyQZUFb2Rd0QbTusnXtgge8vWWqEp_wc4yW3i63O8BWzyO56PncDJ9ehndTcKUc96EMo4V57RE1FESpUpGPJFcLJciFYgEHJRNMYtlhpKk5CQgIq1UnCxVajnyAcOd76asbftji8LUrsviWoNgtj2Yxtdm24PZ99AxNzumdtX3hnxjVtXGlV1MEwnQXKGIoVPJnSp1lfeOMpPmjW265xpn8-Jg39V8bA9H4HGif5DrHZIT0UGuIVFKJvwXs6OGrQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1007_s00034_021_01899_z
crossref_primary_10_1109_ACCESS_2020_3043240
crossref_primary_10_1109_TIM_2023_3237848
crossref_primary_10_1016_j_dsp_2024_104405
crossref_primary_10_1109_LNET_2022_3200002
crossref_primary_10_1109_OJSP_2021_3075913
crossref_primary_10_1109_TMM_2021_3102394
crossref_primary_10_1155_2022_6489917
crossref_primary_10_1016_j_sigpro_2024_109715
crossref_primary_10_1109_TMM_2023_3327534
crossref_primary_10_1109_TSP_2021_3066777
crossref_primary_10_1016_j_ins_2025_121923
Cites_doi 10.1109/TIT.2003.820053
10.1093/imaiai/iau005
10.1109/TSP.2019.2907228
10.1137/S003614450037906X
10.1145/1538902.1538904
10.1016/j.jco.2007.04.002
10.1109/TIT.2012.2196256
10.1145/1536414.1536418
10.1109/ISIT.2011.6034170
10.1007/978-1-4615-1525-8_7
10.1137/1.9781611973075.95
10.1006/jctb.2002.2123
10.1002/cpa.20124
10.1090/S0894-0347-08-00600-0
10.1007/978-0-8176-4948-7
10.1002/cpa.20132
10.1109/ISIT.2013.6620271
10.1109/TSP.2016.2550020
10.1109/TIT.2013.2288639
10.1109/TIT.2011.2181819
10.1109/TIT.2013.2248414
10.1137/S1064827596304010
10.1073/pnas.1219540110
10.1109/TIT.2011.2173244
10.1073/pnas.0909892106
10.1214/14-AAP1010
10.1098/rsta.2009.0152
10.1109/TIT.2004.831841
10.1109/TSP.2018.2841881
10.1073/pnas.0502258102
10.1109/TIT.2009.2037043
10.1109/TIT.2017.2705741
10.1016/j.laa.2012.10.003
10.1109/ALLERTON.2008.4797608
10.2307/1967920
10.1090/S0894-0347-08-00610-3
10.1109/TIT.2005.858979
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TSP.2020.2990154
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3021
ExternalDocumentID 10.1109/tsp.2020.2990154
10_1109_TSP_2020_2990154
9078867
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: #ECCS-1306630
  funderid: 10.13039/100000001
– fundername: Department of Science and Technology, Government of India
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c333t-655833eb119272c86237634bb4c411e0308ac1f56f16e663e402e98857b8ca313
IEDL.DBID UNPAY
ISSN 1053-587X
1941-0476
IngestDate Sun Oct 26 04:07:39 EDT 2025
Mon Jun 30 10:10:33 EDT 2025
Wed Oct 01 03:34:34 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Wed Aug 27 02:39:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-655833eb119272c86237634bb4c411e0308ac1f56f16e663e402e98857b8ca313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0587-0323
0000-0003-1057-1942
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/78/8933520/09078867.pdf
PQID 2409381450
PQPubID 85478
PageCount 14
ParticipantIDs proquest_journals_2409381450
ieee_primary_9078867
crossref_citationtrail_10_1109_TSP_2020_2990154
crossref_primary_10_1109_TSP_2020_2990154
unpaywall_primary_10_1109_tsp_2020_2990154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref14
ref31
ref30
foucart (ref15) 2013
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
indyk (ref26) 0
koetter (ref37) 0
ref24
ref23
ref25
ref20
howard (ref22) 0
ref42
ref41
ref21
candès (ref12) 2008; 346
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
vontobel (ref36) 2005
References_xml – ident: ref32
  doi: 10.1109/TIT.2003.820053
– ident: ref9
  doi: 10.1093/imaiai/iau005
– ident: ref19
  doi: 10.1109/TSP.2019.2907228
– ident: ref2
  doi: 10.1137/S003614450037906X
– ident: ref28
  doi: 10.1145/1538902.1538904
– ident: ref20
  doi: 10.1016/j.jco.2007.04.002
– ident: ref21
  doi: 10.1109/TIT.2012.2196256
– ident: ref42
  doi: 10.1145/1536414.1536418
– ident: ref41
  doi: 10.1109/ISIT.2011.6034170
– ident: ref33
  doi: 10.1007/978-1-4615-1525-8_7
– ident: ref5
  doi: 10.1137/1.9781611973075.95
– ident: ref31
  doi: 10.1006/jctb.2002.2123
– ident: ref11
  doi: 10.1002/cpa.20124
– ident: ref8
  doi: 10.1090/S0894-0347-08-00600-0
– year: 2013
  ident: ref15
  publication-title: A Mathematical Introduction to Compressive Sensing
  doi: 10.1007/978-0-8176-4948-7
– ident: ref6
  doi: 10.1002/cpa.20132
– ident: ref30
  doi: 10.1109/ISIT.2013.6620271
– ident: ref23
  doi: 10.1109/TSP.2016.2550020
– ident: ref13
  doi: 10.1109/TIT.2013.2288639
– start-page: 199
  year: 0
  ident: ref26
  article-title: Near-optimal sparse recovery in the $\ell _1$-norm
  publication-title: Proc 49th Annu IEEE Symp Found Comput Sci
– ident: ref29
  doi: 10.1109/TIT.2011.2181819
– ident: ref16
  doi: 10.1109/TIT.2013.2248414
– ident: ref1
  doi: 10.1137/S1064827596304010
– ident: ref10
  doi: 10.1073/pnas.1219540110
– year: 2005
  ident: ref36
  article-title: Graph-cover decoding and finite-length analysis of message-passing iterative decoding of LDPC codes
  publication-title: arXiv cs/0512078
– ident: ref35
  doi: 10.1109/TIT.2011.2173244
– ident: ref40
  doi: 10.1073/pnas.0909892106
– ident: ref39
  doi: 10.1214/14-AAP1010
– year: 0
  ident: ref37
  article-title: Graph-covers and iterative decoding of finite-length codes
  publication-title: 3rd Intern Symp on Turbo Codes and Related Topics (Brest France)
– ident: ref38
  doi: 10.1098/rsta.2009.0152
– ident: ref34
  doi: 10.1109/TIT.2004.831841
– start-page: 11
  year: 0
  ident: ref22
  article-title: A fast reconstruction algorithm for deterministic compressive sensing using second order reedmuller codes
  publication-title: Proc Ann 42nd Conf Inf Sci Syst
– ident: ref27
  doi: 10.1109/TSP.2018.2841881
– volume: 346
  start-page: 589
  year: 2008
  ident: ref12
  article-title: The restricted isometry property and its implications for compresed sensing
  publication-title: Comptes-Rendus de l'Académie des Sci Série I
– ident: ref7
  doi: 10.1073/pnas.0502258102
– ident: ref25
  doi: 10.1109/TIT.2009.2037043
– ident: ref14
  doi: 10.1109/TIT.2017.2705741
– ident: ref18
  doi: 10.1016/j.laa.2012.10.003
– ident: ref17
  doi: 10.1109/ALLERTON.2008.4797608
– ident: ref24
  doi: 10.2307/1967920
– ident: ref4
  doi: 10.1090/S0894-0347-08-00610-3
– ident: ref3
  doi: 10.1109/TIT.2005.858979
SSID ssj0014496
Score 2.4646013
Snippet In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell...
In this paper, we study the problem of compressed sensing using binary measurement matrices and [Formula Omitted]-norm minimization (basis pursuit) as the...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3008
SubjectTerms Algorithms
array codes
Arrays
Binary codes
binary matrices
Bipartite graph
Compressed sensing
Detection
Lower bounds
Manganese
Matrices (mathematics)
Null space
Optimization
Phase measurement
phase transition
Phase transitions
Random variables
Recovery
robust null space property
Robustness
Sparse matrices
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BF-AAy0vb5SEfuLDatEltJ84RWBBCKiABUm9R7NgcKGm1TYV2f_3OOGlE2RXiloNjJzP2-Bt75huAYylMWnAlgkSLNMCVGAVamCLQkttQOyOFowTnwU189Siuh3K4BD_aXBhrrQ8-s1169Hf5xdjM6Kish46cUnGyDMuJiutcrfbGQAhfiwvhAg-kSobzK8kw7T3c36Ej2A-7ZHojKRa2IF9TZQFers7KSf77NR-N3uw0l5swmH9jHWDy3J1Vumv-vKNv_OxPfIGNBnKy03qObMGSLbdh_Q0R4Q5ckFnwNOIFu6eQ9vKJ-WACdubzddnAM_nbKRs7dmOJFJndorF5wX5_Un0AOnOb7sLj5cXD-VXQFFgIDOe8CmJJOVdorRHmJX2Dzg2ZG6FRWyKKLFHZ5CZyMnZRbBGaWHQ2baqUTLQyOY_4HqyU49J-BVY45Swx1XDnhNE85yJHdKn7SWLRhyw60JvLPDMN-zgVwRhl3gsJ0wy1lJGWskZLHThp35jUzBsftN0hQbftGhl34GCu1qxZmtMMIUyKMEXIsAPfW1X_M0Q1nSwM8e3_Q-zDGrWqD2UOYKX6NbOHCFMqfeTn518FAeEx
  priority: 102
  providerName: IEEE
Title Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions
URI https://ieeexplore.ieee.org/document/9078867
https://www.proquest.com/docview/2409381450
https://ieeexplore.ieee.org/ielx7/78/8933520/09078867.pdf
UnpaywallVersion publishedVersion
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5t5QHtgW2wiSKG_LCXTUqa1HbsPLINhCbRIUGlwksUOzaaVkJFUwH79btz06oFadL2lodLnPjs83e5u-8APkph84prESkj8gh3YhoZYavISO4S460UngqcTwfZyVB8H8nRSqsv6nASks9cTJchlv_TjR9UT-ketYaXfXTj0aPTOlPxpPIvYSOTCMM7sDEcnB1ehuim5JHUahQiygLdZaGWIcok7zVTIqrsJzGZ4lSKtSMp9FhZg5ubs3pSPt6X4_HKyXP8Gq4W7zxPOPkVzxoT299P6Bz_66PewFaLR9nhfAG9hReu3oZXKyyFO3BENiNwjFfsnPLd62sWMg3Yl1DMy04Dzb-bslvPBo4Yk9kPtEQ3-Nxv1DyAfshN38Hw-Oji60nUdl-ILOe8iTJJBVloyhEDqr5Fz4dskTCoSpGmjnhuSpt6mfk0c4hbHHqiLtdaKqNtyVP-Hjr1be12gVVee0c0Ntx7YQ0vuSgRepq-Ug4dzKoLvYUCCttSk1OHjHERXJQkLy7OzwpSWdGqrAuflndM5rQcf5HdoVlfyrXz3IX9hY6Ldt9OC8Q3OWIYIZMufF7q_dkQuILWhtj7F-F96DR3M_cBwUxjDkLF4UG7eP8AnWPtSg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8TB42IAx0THAD7yASJvU5_x4ZLCpwFqQ1kl9i2LH5oGSVjTVNP567pw0WgEh3vJgx4nPPn_nu_sO4KVCk5UyxSDRmAW0E6NAoykDraQNtTMKHSc4jyfx6Ao_ztRsB950uTDWWh98Zvv86H355cKs-apsQIZcmsbJHbirEFE12VqdzwDRV-MiwCADlSazjVMyzAbTyy9kCg7DPivfSOHWIeSrqmwBzL11tSxurov5_NZZc34A481XNiEm3_rrWvfNz98IHP_3Nx7Afgs6xdtmlTyEHVs9gvu3qAgP4YwVgycSL8UlB7VXX4UPJxCnPmNXjD2Xv12JhRMTy7TI4jOpm-_03vdcIYBv3VaP4er8bPpuFLQlFgIjpayDWHHWFelrAnrJ0JB5wwoHNckLo8gymU1hIqdiF8WWwIklc9NmaaoSnZpCRvIIdqtFZZ-AKF3qLHPVSOfQaFlILAhf6mGSWLIiyx4MNnOem5Z_nMtgzHNvh4RZTlLKWUp5K6UevOp6LBvujX-0PeSJ7tq1c9yDk41Y83ZzrnICMRkBFVRhD153ov5jiHq13Bri-O9DvIC90XR8kV98mHx6Cve4R3NFcwK79Y-1fUagpdbP_Vr9Bfpl5H4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH4a5TBxGGwM0YkhH3YBKWlS27FzBAZCk-iQoFK3SxQ7NkJ0oVpT7cdfz3tuWrWbNIndcnDixM9-_r685-8BfJDC5hXXIlJG5BGuxDQywlaRkdwlxlspPB1wvhpkl0PxaSRHK6W-qMJJSD5zMV2GWP69G_9UPaV7VBpe9pHGI6PTOlPxpPIbsJlJhOEd2BwOrk--hOim5JHUahQiygLpslDLEGWS95opCVX2k5hccSrF2pYUaqyswc2Xs3pS_vpRjscrO8_FNnxdvPM84eQhnjUmtr__kHP8r4_agVctHmUn8wn0Gl64-g1sragU7sI5-YygMV6xG8p3r-9YyDRgp-EwL7sKMv9uyh49GzhSTGaf0RN9w-d-pOIB9ENu-haGF-e3Z5dRW30hspzzJsokHchCV44YUPUtMh_yRcKgKUWaOtK5KW3qZebTzCFucchEXa61VEbbkqd8Dzr1Y-32gVVee0cyNtx7YQ0vuSgRepq-Ug4JZtWF3sIAhW2lyalCxrgIFCXJi9ub64JMVrQm68LR8o7JXJbjH213adSX7dpx7sLBwsZFu26nBeKbHDGMkEkXjpd2_6sLnEFrXbx7TuMD6DTfZ-49gpnGHLbT9gkS7exJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Sensing+Using+Binary+Matrices+of+Nearly+Optimal+Dimensions&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Lotfi%2C+Mahsa&rft.au=Vidyasagar%2C+Mathukumalli&rft.date=2020&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=3008&rft.epage=3021&rft_id=info:doi/10.1109%2FTSP.2020.2990154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_2990154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon