Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions
In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 68; pp. 3008 - 3021 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476 1941-0476  | 
| DOI | 10.1109/TSP.2020.2990154 | 
Cover
| Abstract | In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions for robust sparse recovery obtained using the RNSP are better by a factor of <inline-formula><tex-math notation="LaTeX">(3 \sqrt{3})/2 \approx 2.6</tex-math></inline-formula> compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal lower bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal." So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit. | 
    
|---|---|
| AbstractList | In this paper, we study the problem of compressed sensing using binary measurement matrices and [Formula Omitted]-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions for robust sparse recovery obtained using the RNSP are better by a factor of [Formula Omitted] compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal lower bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are “order-optimal.” So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit. In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions for robust sparse recovery obtained using the RNSP are better by a factor of <inline-formula><tex-math notation="LaTeX">(3 \sqrt{3})/2 \approx 2.6</tex-math></inline-formula> compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal lower bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal." So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit.  | 
    
| Author | Vidyasagar, Mathukumalli Lotfi, Mahsa  | 
    
| Author_xml | – sequence: 1 givenname: Mahsa orcidid: 0000-0003-0587-0323 surname: Lotfi fullname: Lotfi, Mahsa email: lotfi@stanford.edu organization: Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA – sequence: 2 givenname: Mathukumalli orcidid: 0000-0003-1057-1942 surname: Vidyasagar fullname: Vidyasagar, Mathukumalli email: m.vidyasagar@iith.ac.in organization: Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA  | 
    
| BookMark | eNptkM1Lw0AQxRdRsK3eBS8Bz6kz2c1m96i1fkC1QlvwtmzjRFLSJO6mSP57U1t6KF5m5vB-jzevz07LqiTGrhCGiKBv57P3YQQRDCOtAWNxwnqoBYYgEnna3RDzMFbJxznre78CQCG07LHxqFrXjrynz2BGpc_Lr2DxN-_z0ro2eLWNy1PyQZUFb2Rd0QbTusnXtgge8vWWqEp_wc4yW3i63O8BWzyO56PncDJ9ehndTcKUc96EMo4V57RE1FESpUpGPJFcLJciFYgEHJRNMYtlhpKk5CQgIq1UnCxVajnyAcOd76asbftji8LUrsviWoNgtj2Yxtdm24PZ99AxNzumdtX3hnxjVtXGlV1MEwnQXKGIoVPJnSp1lfeOMpPmjW265xpn8-Jg39V8bA9H4HGif5DrHZIT0UGuIVFKJvwXs6OGrQ | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1007_s00034_021_01899_z crossref_primary_10_1109_ACCESS_2020_3043240 crossref_primary_10_1109_TIM_2023_3237848 crossref_primary_10_1016_j_dsp_2024_104405 crossref_primary_10_1109_LNET_2022_3200002 crossref_primary_10_1109_OJSP_2021_3075913 crossref_primary_10_1109_TMM_2021_3102394 crossref_primary_10_1155_2022_6489917 crossref_primary_10_1016_j_sigpro_2024_109715 crossref_primary_10_1109_TMM_2023_3327534 crossref_primary_10_1109_TSP_2021_3066777 crossref_primary_10_1016_j_ins_2025_121923  | 
    
| Cites_doi | 10.1109/TIT.2003.820053 10.1093/imaiai/iau005 10.1109/TSP.2019.2907228 10.1137/S003614450037906X 10.1145/1538902.1538904 10.1016/j.jco.2007.04.002 10.1109/TIT.2012.2196256 10.1145/1536414.1536418 10.1109/ISIT.2011.6034170 10.1007/978-1-4615-1525-8_7 10.1137/1.9781611973075.95 10.1006/jctb.2002.2123 10.1002/cpa.20124 10.1090/S0894-0347-08-00600-0 10.1007/978-0-8176-4948-7 10.1002/cpa.20132 10.1109/ISIT.2013.6620271 10.1109/TSP.2016.2550020 10.1109/TIT.2013.2288639 10.1109/TIT.2011.2181819 10.1109/TIT.2013.2248414 10.1137/S1064827596304010 10.1073/pnas.1219540110 10.1109/TIT.2011.2173244 10.1073/pnas.0909892106 10.1214/14-AAP1010 10.1098/rsta.2009.0152 10.1109/TIT.2004.831841 10.1109/TSP.2018.2841881 10.1073/pnas.0502258102 10.1109/TIT.2009.2037043 10.1109/TIT.2017.2705741 10.1016/j.laa.2012.10.003 10.1109/ALLERTON.2008.4797608 10.2307/1967920 10.1090/S0894-0347-08-00610-3 10.1109/TIT.2005.858979  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1109/TSP.2020.2990154 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 3021 | 
    
| ExternalDocumentID | 10.1109/tsp.2020.2990154 10_1109_TSP_2020_2990154 9078867  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Science Foundation grantid: #ECCS-1306630 funderid: 10.13039/100000001 – fundername: Department of Science and Technology, Government of India  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD ESBDL F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c333t-655833eb119272c86237634bb4c411e0308ac1f56f16e663e402e98857b8ca313 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1053-587X 1941-0476  | 
    
| IngestDate | Sun Oct 26 04:07:39 EDT 2025 Mon Jun 30 10:10:33 EDT 2025 Wed Oct 01 03:34:34 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Wed Aug 27 02:39:03 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c333t-655833eb119272c86237634bb4c411e0308ac1f56f16e663e402e98857b8ca313 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0587-0323 0000-0003-1057-1942  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/78/8933520/09078867.pdf | 
    
| PQID | 2409381450 | 
    
| PQPubID | 85478 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_2409381450 ieee_primary_9078867 crossref_citationtrail_10_1109_TSP_2020_2990154 crossref_primary_10_1109_TSP_2020_2990154 unpaywall_primary_10_1109_tsp_2020_2990154  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200000 2020-00-00 20200101  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – year: 2020 text: 20200000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref14 ref31 ref30 foucart (ref15) 2013 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 indyk (ref26) 0 koetter (ref37) 0 ref24 ref23 ref25 ref20 howard (ref22) 0 ref42 ref41 ref21 candès (ref12) 2008; 346 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 vontobel (ref36) 2005  | 
    
| References_xml | – ident: ref32 doi: 10.1109/TIT.2003.820053 – ident: ref9 doi: 10.1093/imaiai/iau005 – ident: ref19 doi: 10.1109/TSP.2019.2907228 – ident: ref2 doi: 10.1137/S003614450037906X – ident: ref28 doi: 10.1145/1538902.1538904 – ident: ref20 doi: 10.1016/j.jco.2007.04.002 – ident: ref21 doi: 10.1109/TIT.2012.2196256 – ident: ref42 doi: 10.1145/1536414.1536418 – ident: ref41 doi: 10.1109/ISIT.2011.6034170 – ident: ref33 doi: 10.1007/978-1-4615-1525-8_7 – ident: ref5 doi: 10.1137/1.9781611973075.95 – ident: ref31 doi: 10.1006/jctb.2002.2123 – ident: ref11 doi: 10.1002/cpa.20124 – ident: ref8 doi: 10.1090/S0894-0347-08-00600-0 – year: 2013 ident: ref15 publication-title: A Mathematical Introduction to Compressive Sensing doi: 10.1007/978-0-8176-4948-7 – ident: ref6 doi: 10.1002/cpa.20132 – ident: ref30 doi: 10.1109/ISIT.2013.6620271 – ident: ref23 doi: 10.1109/TSP.2016.2550020 – ident: ref13 doi: 10.1109/TIT.2013.2288639 – start-page: 199 year: 0 ident: ref26 article-title: Near-optimal sparse recovery in the $\ell _1$-norm publication-title: Proc 49th Annu IEEE Symp Found Comput Sci – ident: ref29 doi: 10.1109/TIT.2011.2181819 – ident: ref16 doi: 10.1109/TIT.2013.2248414 – ident: ref1 doi: 10.1137/S1064827596304010 – ident: ref10 doi: 10.1073/pnas.1219540110 – year: 2005 ident: ref36 article-title: Graph-cover decoding and finite-length analysis of message-passing iterative decoding of LDPC codes publication-title: arXiv cs/0512078 – ident: ref35 doi: 10.1109/TIT.2011.2173244 – ident: ref40 doi: 10.1073/pnas.0909892106 – ident: ref39 doi: 10.1214/14-AAP1010 – year: 0 ident: ref37 article-title: Graph-covers and iterative decoding of finite-length codes publication-title: 3rd Intern Symp on Turbo Codes and Related Topics (Brest France) – ident: ref38 doi: 10.1098/rsta.2009.0152 – ident: ref34 doi: 10.1109/TIT.2004.831841 – start-page: 11 year: 0 ident: ref22 article-title: A fast reconstruction algorithm for deterministic compressive sensing using second order reedmuller codes publication-title: Proc Ann 42nd Conf Inf Sci Syst – ident: ref27 doi: 10.1109/TSP.2018.2841881 – volume: 346 start-page: 589 year: 2008 ident: ref12 article-title: The restricted isometry property and its implications for compresed sensing publication-title: Comptes-Rendus de l'Académie des Sci Série I – ident: ref7 doi: 10.1073/pnas.0502258102 – ident: ref25 doi: 10.1109/TIT.2009.2037043 – ident: ref14 doi: 10.1109/TIT.2017.2705741 – ident: ref18 doi: 10.1016/j.laa.2012.10.003 – ident: ref17 doi: 10.1109/ALLERTON.2008.4797608 – ident: ref24 doi: 10.2307/1967920 – ident: ref4 doi: 10.1090/S0894-0347-08-00610-3 – ident: ref3 doi: 10.1109/TIT.2005.858979  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.4646013 | 
    
| Snippet | In this paper, we study the problem of compressed sensing using binary measurement matrices and <inline-formula><tex-math notation="LaTeX">\ell... In this paper, we study the problem of compressed sensing using binary measurement matrices and [Formula Omitted]-norm minimization (basis pursuit) as the...  | 
    
| SourceID | unpaywall proquest crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3008 | 
    
| SubjectTerms | Algorithms array codes Arrays Binary codes binary matrices Bipartite graph Compressed sensing Detection Lower bounds Manganese Matrices (mathematics) Null space Optimization Phase measurement phase transition Phase transitions Random variables Recovery robust null space property Robustness Sparse matrices  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BF-AAy0vb5SEfuLDatEltJ84RWBBCKiABUm9R7NgcKGm1TYV2f_3OOGlE2RXiloNjJzP2-Bt75huAYylMWnAlgkSLNMCVGAVamCLQkttQOyOFowTnwU189Siuh3K4BD_aXBhrrQ8-s1169Hf5xdjM6Kish46cUnGyDMuJiutcrfbGQAhfiwvhAg-kSobzK8kw7T3c36Ej2A-7ZHojKRa2IF9TZQFers7KSf77NR-N3uw0l5swmH9jHWDy3J1Vumv-vKNv_OxPfIGNBnKy03qObMGSLbdh_Q0R4Q5ckFnwNOIFu6eQ9vKJ-WACdubzddnAM_nbKRs7dmOJFJndorF5wX5_Un0AOnOb7sLj5cXD-VXQFFgIDOe8CmJJOVdorRHmJX2Dzg2ZG6FRWyKKLFHZ5CZyMnZRbBGaWHQ2baqUTLQyOY_4HqyU49J-BVY45Swx1XDnhNE85yJHdKn7SWLRhyw60JvLPDMN-zgVwRhl3gsJ0wy1lJGWskZLHThp35jUzBsftN0hQbftGhl34GCu1qxZmtMMIUyKMEXIsAPfW1X_M0Q1nSwM8e3_Q-zDGrWqD2UOYKX6NbOHCFMqfeTn518FAeEx priority: 102 providerName: IEEE  | 
    
| Title | Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions | 
    
| URI | https://ieeexplore.ieee.org/document/9078867 https://www.proquest.com/docview/2409381450 https://ieeexplore.ieee.org/ielx7/78/8933520/09078867.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 68 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5t5QHtgW2wiSKG_LCXTUqa1HbsPLINhCbRIUGlwksUOzaaVkJFUwH79btz06oFadL2lodLnPjs83e5u-8APkph84prESkj8gh3YhoZYavISO4S460UngqcTwfZyVB8H8nRSqsv6nASks9cTJchlv_TjR9UT-ketYaXfXTj0aPTOlPxpPIvYSOTCMM7sDEcnB1ehuim5JHUahQiygLdZaGWIcok7zVTIqrsJzGZ4lSKtSMp9FhZg5ubs3pSPt6X4_HKyXP8Gq4W7zxPOPkVzxoT299P6Bz_66PewFaLR9nhfAG9hReu3oZXKyyFO3BENiNwjFfsnPLd62sWMg3Yl1DMy04Dzb-bslvPBo4Yk9kPtEQ3-Nxv1DyAfshN38Hw-Oji60nUdl-ILOe8iTJJBVloyhEDqr5Fz4dskTCoSpGmjnhuSpt6mfk0c4hbHHqiLtdaKqNtyVP-Hjr1be12gVVee0c0Ntx7YQ0vuSgRepq-Ug4dzKoLvYUCCttSk1OHjHERXJQkLy7OzwpSWdGqrAuflndM5rQcf5HdoVlfyrXz3IX9hY6Ldt9OC8Q3OWIYIZMufF7q_dkQuILWhtj7F-F96DR3M_cBwUxjDkLF4UG7eP8AnWPtSg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8TB42IAx0THAD7yASJvU5_x4ZLCpwFqQ1kl9i2LH5oGSVjTVNP567pw0WgEh3vJgx4nPPn_nu_sO4KVCk5UyxSDRmAW0E6NAoykDraQNtTMKHSc4jyfx6Ao_ztRsB950uTDWWh98Zvv86H355cKs-apsQIZcmsbJHbirEFE12VqdzwDRV-MiwCADlSazjVMyzAbTyy9kCg7DPivfSOHWIeSrqmwBzL11tSxurov5_NZZc34A481XNiEm3_rrWvfNz98IHP_3Nx7Afgs6xdtmlTyEHVs9gvu3qAgP4YwVgycSL8UlB7VXX4UPJxCnPmNXjD2Xv12JhRMTy7TI4jOpm-_03vdcIYBv3VaP4er8bPpuFLQlFgIjpayDWHHWFelrAnrJ0JB5wwoHNckLo8gymU1hIqdiF8WWwIklc9NmaaoSnZpCRvIIdqtFZZ-AKF3qLHPVSOfQaFlILAhf6mGSWLIiyx4MNnOem5Z_nMtgzHNvh4RZTlLKWUp5K6UevOp6LBvujX-0PeSJ7tq1c9yDk41Y83ZzrnICMRkBFVRhD153ov5jiHq13Bri-O9DvIC90XR8kV98mHx6Cve4R3NFcwK79Y-1fUagpdbP_Vr9Bfpl5H4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH4a5TBxGGwM0YkhH3YBKWlS27FzBAZCk-iQoFK3SxQ7NkJ0oVpT7cdfz3tuWrWbNIndcnDixM9-_r685-8BfJDC5hXXIlJG5BGuxDQywlaRkdwlxlspPB1wvhpkl0PxaSRHK6W-qMJJSD5zMV2GWP69G_9UPaV7VBpe9pHGI6PTOlPxpPIbsJlJhOEd2BwOrk--hOim5JHUahQiygLpslDLEGWS95opCVX2k5hccSrF2pYUaqyswc2Xs3pS_vpRjscrO8_FNnxdvPM84eQhnjUmtr__kHP8r4_agVctHmUn8wn0Gl64-g1sragU7sI5-YygMV6xG8p3r-9YyDRgp-EwL7sKMv9uyh49GzhSTGaf0RN9w-d-pOIB9ENu-haGF-e3Z5dRW30hspzzJsokHchCV44YUPUtMh_yRcKgKUWaOtK5KW3qZebTzCFucchEXa61VEbbkqd8Dzr1Y-32gVVee0cyNtx7YQ0vuSgRepq-Ug4JZtWF3sIAhW2lyalCxrgIFCXJi9ub64JMVrQm68LR8o7JXJbjH213adSX7dpx7sLBwsZFu26nBeKbHDGMkEkXjpd2_6sLnEFrXbx7TuMD6DTfZ-49gpnGHLbT9gkS7exJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Sensing+Using+Binary+Matrices+of+Nearly+Optimal+Dimensions&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Lotfi%2C+Mahsa&rft.au=Vidyasagar%2C+Mathukumalli&rft.date=2020&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=3008&rft.epage=3021&rft_id=info:doi/10.1109%2FTSP.2020.2990154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_2990154 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |