Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm

One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 23; p. 6225
Main Authors Tariq, Faisal, Alelyani, Salem, Abbas, Ghulam, Qahmash, Ayman, Hussain, Mohammad Rashid
Format Journal Article
LanguageEnglish
Published MDPI AG 01.12.2020
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en13236225

Cover

Abstract One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is selected in such a way as to minimize the total fuel cost while satisfying the load demand, subject to operational constraints. Different numerical and metaheuristic optimization techniques have gained prominent importance and are widely used to solve the nonlinear problem. Although metaheuristic techniques have a good convergence rate than numerical techniques, however, their implementation seems difficult in the presence of nonlinear and dynamic parameters. This work is devoted to solving the ELD problem with the integration of variable energy resources using a modified directional bat algorithm (dBA). Then the proposed technique is validated via different realistic test cases consisting of thermal and renewable energy sources (RESs). From simulation results, it is observed that dBA reduces the operational cost with less computational time and has better convergence characteristics than that of standard BA and other popular techniques like particle swarm optimization (PSO) and genetic algorithm (GA).
AbstractList One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is selected in such a way as to minimize the total fuel cost while satisfying the load demand, subject to operational constraints. Different numerical and metaheuristic optimization techniques have gained prominent importance and are widely used to solve the nonlinear problem. Although metaheuristic techniques have a good convergence rate than numerical techniques, however, their implementation seems difficult in the presence of nonlinear and dynamic parameters. This work is devoted to solving the ELD problem with the integration of variable energy resources using a modified directional bat algorithm (dBA). Then the proposed technique is validated via different realistic test cases consisting of thermal and renewable energy sources (RESs). From simulation results, it is observed that dBA reduces the operational cost with less computational time and has better convergence characteristics than that of standard BA and other popular techniques like particle swarm optimization (PSO) and genetic algorithm (GA).
Author Tariq, Faisal
Alelyani, Salem
Abbas, Ghulam
Qahmash, Ayman
Hussain, Mohammad Rashid
Author_xml – sequence: 1
  givenname: Faisal
  surname: Tariq
  fullname: Tariq, Faisal
– sequence: 2
  givenname: Salem
  surname: Alelyani
  fullname: Alelyani, Salem
– sequence: 3
  givenname: Ghulam
  orcidid: 0000-0002-2909-654X
  surname: Abbas
  fullname: Abbas, Ghulam
– sequence: 4
  givenname: Ayman
  orcidid: 0000-0001-9480-5560
  surname: Qahmash
  fullname: Qahmash, Ayman
– sequence: 5
  givenname: Mohammad Rashid
  orcidid: 0000-0001-5035-274X
  surname: Hussain
  fullname: Hussain, Mohammad Rashid
BookMark eNp9kFtvGyEQhVGUSk3TvPQX8JzIKTC7eHlMc2ktuWrV2-tqFmZtojVYQBL535fUVRNVVXmA0XDOp6Pzih2GGIixN1KcAxjxloIEBVqp9oAdSWP0TIo5HD6bX7KTnG9FPQASAI5Y_Bqnex9W_AsFesBhojxbhEKrhIUcv7YxxI23fBnR8Suft1jsmn9OsSo3fNjxH5g8hsLjyD9SwTXdJZ9LdbzDUkl561PlXEyrmHxZb16zFyNOmU5-v8fs-831t8sPs-Wn94vLi-XM1lilhjWahkY1VrQA9VLGto1rsCGyWlk92I7abpTzVmr5-DeiEq5TXWccDADHbLHnuoi3_Tb5DaZdH9H3vxYxrXpMNeZEvW0VNJ3Tbhi7BqQZjNadaI2YqzlZ5yrrbM-6C1vcPeA0_QFK0T9W3z9VX9Vir7Yp5pxo7K0vWHwMJaGf_m05_cvyH_5Pgn-Vgg
CitedBy_id crossref_primary_10_1016_j_tbench_2024_100187
crossref_primary_10_3390_biomimetics9050292
crossref_primary_10_1155_2023_5395658
crossref_primary_10_1016_j_rineng_2023_101354
crossref_primary_10_3389_fenrg_2022_952354
crossref_primary_10_1109_ACCESS_2021_3066329
crossref_primary_10_3390_en16021011
crossref_primary_10_1080_15567036_2023_2207498
crossref_primary_10_3389_fenrg_2023_1339020
crossref_primary_10_21926_jept_2303030
crossref_primary_10_3390_en15072418
crossref_primary_10_1109_ACCESS_2024_3458149
crossref_primary_10_1016_j_prime_2024_100754
crossref_primary_10_1109_ACCESS_2021_3083531
crossref_primary_10_3390_su15139924
crossref_primary_10_3390_su151511837
crossref_primary_10_1007_s41403_022_00343_1
crossref_primary_10_1155_2024_8420107
crossref_primary_10_4018_IJAMC_292510
crossref_primary_10_1007_s00202_023_02183_w
crossref_primary_10_3390_app14051991
crossref_primary_10_1109_ACCESS_2022_3194012
crossref_primary_10_1016_j_knosys_2024_112098
crossref_primary_10_1007_s00521_022_07662_y
crossref_primary_10_1016_j_compeleceng_2025_110149
crossref_primary_10_3390_info14060339
Cites_doi 10.1007/s00521-016-2795-5
10.1109/CINTI.2014.7028669
10.1109/JSYST.2012.2225732
10.18517/ijaseit.7.6.2328
10.1109/TSTE.2011.2179954
10.14257/ijast.2016.86.05
10.1109/TPWRS.2004.831275
10.1109/ACCESS.2018.2865960
10.1109/TPWRS.2018.2812711
10.1109/IPACT.2017.8245011
10.1016/j.energy.2015.01.104
10.1109/TPWRS.2009.2030359
10.1109/TPWRS.2013.2267057
10.1109/ICETET.2010.142
10.1109/ICCDA.2010.5541218
10.1049/iet-gtd.2017.0257
10.1109/JAS.2018.7511138
10.1109/ACCESS.2017.2768522
10.1109/TPWRS.2015.2428714
10.1109/ICEETS.2013.6533526
10.3390/en13143721
10.1109/ISGT.2012.6175747
10.1109/TPWRS.2009.2030293
10.1049/iet-gtd.2012.0142
10.1109/ACCESS.2017.2723862
10.1109/TPWRS.2012.2208273
10.1109/ICPEICES.2016.7853728
10.1016/j.enconman.2014.12.029
10.1007/978-3-319-67669-2_9
10.1109/TPWRS.2019.2891227
10.1016/j.energy.2015.12.096
10.1002/etep.2081
10.1007/978-3-642-12538-6_6
10.1016/j.eswa.2016.10.050
10.1109/TPWRS.2003.814889
10.1109/EPSCICON.2018.8379595
10.1049/iet-rpg.2017.0744
10.3390/en12224392
10.1109/JSYST.2012.2191831
10.1049/iet-gtd.2010.0109
10.3390/a7030328
10.1049/iet-gtd.2017.1638
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3390/en13236225
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_c52348d6dbf84319b96680590727ecdd
10.3390/en13236225
10_3390_en13236225
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ADTOC
C1A
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c333t-1096eb424c0533c0529c54d4a4eec62c6bc8e58f1751619c54fa20d82889d3b33
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Fri Oct 03 12:43:06 EDT 2025
Sun Oct 26 04:16:27 EDT 2025
Thu Oct 16 04:26:22 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-1096eb424c0533c0529c54d4a4eec62c6bc8e58f1751619c54fa20d82889d3b33
ORCID 0000-0001-9480-5560
0000-0002-2909-654X
0000-0001-5035-274X
OpenAccessLink https://doaj.org/article/c52348d6dbf84319b96680590727ecdd
ParticipantIDs doaj_primary_oai_doaj_org_article_c52348d6dbf84319b96680590727ecdd
unpaywall_primary_10_3390_en13236225
crossref_citationtrail_10_3390_en13236225
crossref_primary_10_3390_en13236225
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Khamsawang (ref_15) 2009; 3
Nguyen (ref_21) 2016; 86
Abbas (ref_17) 2017; 5
ref_11
Meng (ref_13) 2009; 25
ref_51
ref_19
Kheshti (ref_41) 2018; 12
Latif (ref_23) 2014; 7
Khan (ref_32) 2015; 92
Tang (ref_40) 2019; 34
Zaman (ref_8) 2016; 31
Dekhici (ref_9) 2012; 16
Zhao (ref_10) 2018; 5
Trivedi (ref_18) 2018; 30
Abdullah (ref_14) 2006; 11
Park (ref_2) 2005; 20
Han (ref_35) 2018; 12
ref_28
Liang (ref_29) 2018; 33
ref_27
ref_26
Niknam (ref_1) 2012; 28
Matias (ref_30) 2015; 82
Park (ref_4) 2009; 25
Gaing (ref_12) 2003; 18
Roy (ref_38) 2012; 3
Niknam (ref_24) 2013; 7
Gherbi (ref_22) 2014; 24
Farhat (ref_33) 2010; 4
ref_37
Brini (ref_36) 2009; 14
Chakri (ref_48) 2017; 69
Abbas (ref_16) 2017; 5
Vo (ref_6) 2013; 7
Niknam (ref_7) 2013; 7
Yang (ref_5) 2018; 6
Rahmat (ref_50) 2017; 7
ref_47
ref_46
Sakthivel (ref_20) 2013; 67
ref_45
Adarsh (ref_25) 2016; 96
Nikmehr (ref_31) 2015; 26
ref_44
ref_43
ref_42
Jadoun (ref_39) 2018; 12
ref_3
ref_49
Li (ref_34) 2013; 28
References_xml – volume: 30
  start-page: 2173
  year: 2018
  ident: ref_18
  article-title: An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2795-5
– ident: ref_27
  doi: 10.1109/CINTI.2014.7028669
– volume: 67
  start-page: 35
  year: 2013
  ident: ref_20
  article-title: Application of bat optimization algorithm for economic load dispatch considering valve point effects
  publication-title: Int. J. Comput. Appl.
– volume: 7
  start-page: 763
  year: 2013
  ident: ref_24
  article-title: Reserve constrained dynamic environmental/economic dispatch: A new multiobjective self-adaptive learning bat algorithm
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2012.2225732
– volume: 7
  start-page: 2012
  year: 2017
  ident: ref_50
  article-title: Optimizing economic load dispatch with renewable energy sources via differential evolution immunized ant colony optimization technique
  publication-title: Int. J. Adv. Sci. Eng. Inf. Technol.
  doi: 10.18517/ijaseit.7.6.2328
– volume: 3
  start-page: 265
  year: 2012
  ident: ref_38
  article-title: Inclusion of short duration wind variations in economic load dispatch
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2011.2179954
– volume: 86
  start-page: 51
  year: 2016
  ident: ref_21
  article-title: Bat algorithm for economic emission load dispatch problem
  publication-title: Int. J. Adv. Sci. Technol.
  doi: 10.14257/ijast.2016.86.05
– volume: 20
  start-page: 34
  year: 2005
  ident: ref_2
  article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.831275
– volume: 6
  start-page: 45907
  year: 2018
  ident: ref_5
  article-title: Chaos firefly algorithm with self-adaptation mutation mechanism for solving large-scale economic dispatch with valve-point effects and multiple fuel options
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2865960
– volume: 14
  start-page: 204
  year: 2009
  ident: ref_36
  article-title: Economic dispatch for power system included wind and solar thermal energy
  publication-title: Leonardo J. Sci.
– volume: 33
  start-page: 5052
  year: 2018
  ident: ref_29
  article-title: A hybrid bat algorithm for economic dispatch with random wind power
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2812711
– ident: ref_26
  doi: 10.1109/IPACT.2017.8245011
– volume: 82
  start-page: 949
  year: 2015
  ident: ref_30
  article-title: A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.104
– volume: 16
  start-page: 45
  year: 2012
  ident: ref_9
  article-title: Firefly algorithm for economic power dispatching with pollutants emission
  publication-title: Inform. Econ.
– volume: 25
  start-page: 215
  year: 2009
  ident: ref_13
  article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030359
– volume: 28
  start-page: 4516
  year: 2013
  ident: ref_34
  article-title: Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-newton method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2267057
– ident: ref_44
  doi: 10.1109/ICETET.2010.142
– ident: ref_11
  doi: 10.1109/ICCDA.2010.5541218
– volume: 11
  start-page: 6663
  year: 2006
  ident: ref_14
  article-title: Solving economic dispatch (ED) problem using artificial immune system, evolutionary programming and particle swarm optimization
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 12
  start-page: 104
  year: 2018
  ident: ref_41
  article-title: Lightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraints
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2017.0257
– volume: 5
  start-page: 794
  year: 2018
  ident: ref_10
  article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2018.7511138
– volume: 5
  start-page: 24426
  year: 2017
  ident: ref_17
  article-title: Solution of an economic dispatch problem through particle swarm optimization: A detailed survey; Part II
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2768522
– ident: ref_45
– volume: 31
  start-page: 1486
  year: 2016
  ident: ref_8
  article-title: Evolutionary algorithms for dynamic economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2428714
– ident: ref_19
  doi: 10.1109/ICEETS.2013.6533526
– ident: ref_51
  doi: 10.3390/en13143721
– ident: ref_3
– ident: ref_43
  doi: 10.1109/ISGT.2012.6175747
– volume: 25
  start-page: 156
  year: 2009
  ident: ref_4
  article-title: An improved particle swarm optimization for nonconvex economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030293
– volume: 7
  start-page: 645
  year: 2013
  ident: ref_6
  article-title: Cuckoo search algorithm for non-convex economic dispatch
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2012.0142
– volume: 5
  start-page: 15105
  year: 2017
  ident: ref_16
  article-title: Solution of an economic dispatch problem through particle swarm optimization: A detailed survey-Part I
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2723862
– volume: 28
  start-page: 749
  year: 2012
  ident: ref_1
  article-title: A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2208273
– ident: ref_28
  doi: 10.1109/ICPEICES.2016.7853728
– ident: ref_37
– volume: 92
  start-page: 82
  year: 2015
  ident: ref_32
  article-title: Combined emission economic dispatch of power system including solar photo voltaic generation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.029
– ident: ref_49
  doi: 10.1007/978-3-319-67669-2_9
– volume: 34
  start-page: 2685
  year: 2019
  ident: ref_40
  article-title: Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2891227
– volume: 96
  start-page: 666
  year: 2016
  ident: ref_25
  article-title: Economic dispatch using chaotic bat algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.096
– volume: 26
  start-page: 208
  year: 2015
  ident: ref_31
  article-title: A study on optimal power sharing in interconnected microgrids under uncertainty
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2081
– ident: ref_47
  doi: 10.1007/978-3-642-12538-6_6
– volume: 69
  start-page: 159
  year: 2017
  ident: ref_48
  article-title: New directional bat algorithm for continuous optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.050
– volume: 18
  start-page: 1187
  year: 2003
  ident: ref_12
  article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.814889
– ident: ref_42
  doi: 10.1109/EPSCICON.2018.8379595
– volume: 12
  start-page: 1004
  year: 2018
  ident: ref_39
  article-title: Integration of renewable energy sources in dynamic economic load dispatch problem using an improved fireworks algorithm
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2017.0744
– volume: 24
  start-page: 75
  year: 2014
  ident: ref_22
  article-title: Economic dispatch problem using bat algorithm
  publication-title: Leonardo J. Sci.
– volume: 3
  start-page: 529
  year: 2009
  ident: ref_15
  article-title: Solving the economic dispatch problem using novel particle swarm optimization
  publication-title: World Acad. Sci. Eng. Technol.-Int. J. Electr. Comput. Energ. Electron. Commun. Eng.
– ident: ref_46
  doi: 10.3390/en12224392
– volume: 7
  start-page: 754
  year: 2013
  ident: ref_7
  article-title: Enhanced bee swarm optimization algorithm for dynamic economic dispatch
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2012.2191831
– volume: 4
  start-page: 989
  year: 2010
  ident: ref_33
  article-title: Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2010.0109
– volume: 7
  start-page: 328
  year: 2014
  ident: ref_23
  article-title: Economic dispatch using modified bat algorithm
  publication-title: Algorithms
  doi: 10.3390/a7030328
– volume: 12
  start-page: 2861
  year: 2018
  ident: ref_35
  article-title: Economic dispatch considering the wind power forecast error
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2017.1638
SSID ssj0000331333
Score 2.367757
Snippet One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 6225
SubjectTerms convergence characteristics
directional bat algorithm (dBA)
operational cost
renewables incorporated ELD problem
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7QF64I1YHpUleuGQphs7lnNC20JVEK0qYFE5RX5M2hUhWS1ZqvLrO5NktwtCCIlrMnEcjTP-PtvzDcB2oqQ1waVRiiMdKTRpRJOgjAxxEcRd9FkrknR0rA8n6t1perqWxc_HKomKT9sg3Z6QJX4i45GMExlrGnzxLBSvfvRrSSOC32akU84k39ApofEBbEyOT8Zf2s3k_ulOlVQSu4-xIvYluZ1f5qFWrn8Tbi6qmb28sGW5Nscc3AG77F13tOTrzqJxO_7nb8KN_9P9u3C7B6Bi3I2Ye3ADq_uwuSZL-ADqj3XJ6wziAwXCC86t-h69XcpKBLHMZRbvaxvE6ynFJHK9OOlK0wh3KT4TASePiboQR9jYc1x0etBizzbUEm_uUzvj8qyeT5vzbw9hcvDm0_5h1BdmiLyUsqFvyjQ6lSjPmbyeNwt9qoKyCtHrxGvnDaamIGhCgJLvFTbZDUTuTBakk_IRDKq6wscgMKGIwXWxlEZCbpk1zhHkcUEZWfjEDOHl0k2571XLuXhGmRN7YZfm1y4dwouV7azT6vij1R57e2XB-trthXp-lve_a-6JnyvDxbYKQxArc8QKDefpEtxDH8IQtldj5S_vevJvZk_hVsI0vj0l8wwGzXyBzwnrNG6rH85XoOv20Q
  priority: 102
  providerName: Unpaywall
Title Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm
URI https://www.mdpi.com/1996-1073/13/23/6225/pdf?version=1606816521
https://doaj.org/article/c52348d6dbf84319b96680590727ecdd
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate [EBSCO]
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QHIAD4inGS5HgwqFiNGmVHsdjPAQIAUPjVOXhskmlRaMT2r_HbrfRA4ILlx5aK2kd1_anxJ8ZO_Cl0MqZwAvgOPQkqMDDICg8hVgEoAk2KkmSbu_Cy4687gbdWqsvOhNW0QNXijuyiJSkorZHicJgFxnMzxVVTGLgBesced-mimpgqvTBQiD4EhUfqUBcfwQZ4i701tQTuxaBSqL-RTY_zN716FOnaS26tJfZ0jgt5K3qdVbYDGSrbLFGFrjG8sc8JfTPH9A9fVLF04d3NSF7cHxSYcxvcu34WR89BS4Iv68axnAz4s8Ii1GPPE_4LRS6B8OKpZmf6AJHoi13HKeVvuaDftF7W2ed9vnT6aU3bpfgWfzUAh1qFIKRvrRUX2tpC88G0kktAWzo29BYBYFKMGHANI-eJdpvOoRcKnLCCLHBZrM8g03Gwcf_mLpVyRAwn4q0MgYTEeOkEon1VYMdTlQY2zGXOLW0SGPEFKTu-FvdDbY_lX2vGDR-lDqhlZhKEOt1eQNtIR7bQvyXLTTYwXQdf5lr6z_m2mYLPkHv8mTLDpstBkPYxfykMHulKeL1onu8x-Y6d_etly_Z3eN7
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7QF64I1YHpUleuGQphs7lnNC20JVEK0qYFE5RX5M2hUhWS1ZqvLrO5NktwtCCIlrMnEcjTP-PtvzDcB2oqQ1waVRiiMdKTRpRJOgjAxxEcRd9FkrknR0rA8n6t1perqWxc_HKomKT9sg3Z6QJX4i45GMExlrGnzxLBSvfvRrSSOC32akU84k39ApofEBbEyOT8Zf2s3k_ulOlVQSu4-xIvYluZ1f5qFWrn8Tbi6qmb28sGW5Nscc3AG77F13tOTrzqJxO_7nb8KN_9P9u3C7B6Bi3I2Ye3ADq_uwuSZL-ADqj3XJ6wziAwXCC86t-h69XcpKBLHMZRbvaxvE6ynFJHK9OOlK0wh3KT4TASePiboQR9jYc1x0etBizzbUEm_uUzvj8qyeT5vzbw9hcvDm0_5h1BdmiLyUsqFvyjQ6lSjPmbyeNwt9qoKyCtHrxGvnDaamIGhCgJLvFTbZDUTuTBakk_IRDKq6wscgMKGIwXWxlEZCbpk1zhHkcUEZWfjEDOHl0k2571XLuXhGmRN7YZfm1y4dwouV7azT6vij1R57e2XB-trthXp-lve_a-6JnyvDxbYKQxArc8QKDefpEtxDH8IQtldj5S_vevJvZk_hVsI0vj0l8wwGzXyBzwnrNG6rH85XoOv20Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Renewables-Integrated+Economic+Load+Dispatch+Problem+by+Variant+of+Metaheuristic+Bat-Inspired+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Faisal+Tariq&rft.au=Salem+Alelyani&rft.au=Ghulam+Abbas&rft.au=Ayman+Qahmash&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=23&rft.spage=6225&rft_id=info:doi/10.3390%2Fen13236225&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c52348d6dbf84319b96680590727ecdd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon