Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm
One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is...
Saved in:
| Published in | Energies (Basel) Vol. 13; no. 23; p. 6225 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
MDPI AG
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en13236225 |
Cover
| Abstract | One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is selected in such a way as to minimize the total fuel cost while satisfying the load demand, subject to operational constraints. Different numerical and metaheuristic optimization techniques have gained prominent importance and are widely used to solve the nonlinear problem. Although metaheuristic techniques have a good convergence rate than numerical techniques, however, their implementation seems difficult in the presence of nonlinear and dynamic parameters. This work is devoted to solving the ELD problem with the integration of variable energy resources using a modified directional bat algorithm (dBA). Then the proposed technique is validated via different realistic test cases consisting of thermal and renewable energy sources (RESs). From simulation results, it is observed that dBA reduces the operational cost with less computational time and has better convergence characteristics than that of standard BA and other popular techniques like particle swarm optimization (PSO) and genetic algorithm (GA). |
|---|---|
| AbstractList | One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation facilities to meet growing power demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power generating units is selected in such a way as to minimize the total fuel cost while satisfying the load demand, subject to operational constraints. Different numerical and metaheuristic optimization techniques have gained prominent importance and are widely used to solve the nonlinear problem. Although metaheuristic techniques have a good convergence rate than numerical techniques, however, their implementation seems difficult in the presence of nonlinear and dynamic parameters. This work is devoted to solving the ELD problem with the integration of variable energy resources using a modified directional bat algorithm (dBA). Then the proposed technique is validated via different realistic test cases consisting of thermal and renewable energy sources (RESs). From simulation results, it is observed that dBA reduces the operational cost with less computational time and has better convergence characteristics than that of standard BA and other popular techniques like particle swarm optimization (PSO) and genetic algorithm (GA). |
| Author | Tariq, Faisal Alelyani, Salem Abbas, Ghulam Qahmash, Ayman Hussain, Mohammad Rashid |
| Author_xml | – sequence: 1 givenname: Faisal surname: Tariq fullname: Tariq, Faisal – sequence: 2 givenname: Salem surname: Alelyani fullname: Alelyani, Salem – sequence: 3 givenname: Ghulam orcidid: 0000-0002-2909-654X surname: Abbas fullname: Abbas, Ghulam – sequence: 4 givenname: Ayman orcidid: 0000-0001-9480-5560 surname: Qahmash fullname: Qahmash, Ayman – sequence: 5 givenname: Mohammad Rashid orcidid: 0000-0001-5035-274X surname: Hussain fullname: Hussain, Mohammad Rashid |
| BookMark | eNp9kFtvGyEQhVGUSk3TvPQX8JzIKTC7eHlMc2ktuWrV2-tqFmZtojVYQBL535fUVRNVVXmA0XDOp6Pzih2GGIixN1KcAxjxloIEBVqp9oAdSWP0TIo5HD6bX7KTnG9FPQASAI5Y_Bqnex9W_AsFesBhojxbhEKrhIUcv7YxxI23fBnR8Suft1jsmn9OsSo3fNjxH5g8hsLjyD9SwTXdJZ9LdbzDUkl561PlXEyrmHxZb16zFyNOmU5-v8fs-831t8sPs-Wn94vLi-XM1lilhjWahkY1VrQA9VLGto1rsCGyWlk92I7abpTzVmr5-DeiEq5TXWccDADHbLHnuoi3_Tb5DaZdH9H3vxYxrXpMNeZEvW0VNJ3Tbhi7BqQZjNadaI2YqzlZ5yrrbM-6C1vcPeA0_QFK0T9W3z9VX9Vir7Yp5pxo7K0vWHwMJaGf_m05_cvyH_5Pgn-Vgg |
| CitedBy_id | crossref_primary_10_1016_j_tbench_2024_100187 crossref_primary_10_3390_biomimetics9050292 crossref_primary_10_1155_2023_5395658 crossref_primary_10_1016_j_rineng_2023_101354 crossref_primary_10_3389_fenrg_2022_952354 crossref_primary_10_1109_ACCESS_2021_3066329 crossref_primary_10_3390_en16021011 crossref_primary_10_1080_15567036_2023_2207498 crossref_primary_10_3389_fenrg_2023_1339020 crossref_primary_10_21926_jept_2303030 crossref_primary_10_3390_en15072418 crossref_primary_10_1109_ACCESS_2024_3458149 crossref_primary_10_1016_j_prime_2024_100754 crossref_primary_10_1109_ACCESS_2021_3083531 crossref_primary_10_3390_su15139924 crossref_primary_10_3390_su151511837 crossref_primary_10_1007_s41403_022_00343_1 crossref_primary_10_1155_2024_8420107 crossref_primary_10_4018_IJAMC_292510 crossref_primary_10_1007_s00202_023_02183_w crossref_primary_10_3390_app14051991 crossref_primary_10_1109_ACCESS_2022_3194012 crossref_primary_10_1016_j_knosys_2024_112098 crossref_primary_10_1007_s00521_022_07662_y crossref_primary_10_1016_j_compeleceng_2025_110149 crossref_primary_10_3390_info14060339 |
| Cites_doi | 10.1007/s00521-016-2795-5 10.1109/CINTI.2014.7028669 10.1109/JSYST.2012.2225732 10.18517/ijaseit.7.6.2328 10.1109/TSTE.2011.2179954 10.14257/ijast.2016.86.05 10.1109/TPWRS.2004.831275 10.1109/ACCESS.2018.2865960 10.1109/TPWRS.2018.2812711 10.1109/IPACT.2017.8245011 10.1016/j.energy.2015.01.104 10.1109/TPWRS.2009.2030359 10.1109/TPWRS.2013.2267057 10.1109/ICETET.2010.142 10.1109/ICCDA.2010.5541218 10.1049/iet-gtd.2017.0257 10.1109/JAS.2018.7511138 10.1109/ACCESS.2017.2768522 10.1109/TPWRS.2015.2428714 10.1109/ICEETS.2013.6533526 10.3390/en13143721 10.1109/ISGT.2012.6175747 10.1109/TPWRS.2009.2030293 10.1049/iet-gtd.2012.0142 10.1109/ACCESS.2017.2723862 10.1109/TPWRS.2012.2208273 10.1109/ICPEICES.2016.7853728 10.1016/j.enconman.2014.12.029 10.1007/978-3-319-67669-2_9 10.1109/TPWRS.2019.2891227 10.1016/j.energy.2015.12.096 10.1002/etep.2081 10.1007/978-3-642-12538-6_6 10.1016/j.eswa.2016.10.050 10.1109/TPWRS.2003.814889 10.1109/EPSCICON.2018.8379595 10.1049/iet-rpg.2017.0744 10.3390/en12224392 10.1109/JSYST.2012.2191831 10.1049/iet-gtd.2010.0109 10.3390/a7030328 10.1049/iet-gtd.2017.1638 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3390/en13236225 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_c52348d6dbf84319b96680590727ecdd 10.3390/en13236225 10_3390_en13236225 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ADTOC C1A IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c333t-1096eb424c0533c0529c54d4a4eec62c6bc8e58f1751619c54fa20d82889d3b33 |
| IEDL.DBID | DOA |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:43:06 EDT 2025 Sun Oct 26 04:16:27 EDT 2025 Thu Oct 16 04:26:22 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-1096eb424c0533c0529c54d4a4eec62c6bc8e58f1751619c54fa20d82889d3b33 |
| ORCID | 0000-0001-9480-5560 0000-0002-2909-654X 0000-0001-5035-274X |
| OpenAccessLink | https://doaj.org/article/c52348d6dbf84319b96680590727ecdd |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c52348d6dbf84319b96680590727ecdd unpaywall_primary_10_3390_en13236225 crossref_citationtrail_10_3390_en13236225 crossref_primary_10_3390_en13236225 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Khamsawang (ref_15) 2009; 3 Nguyen (ref_21) 2016; 86 Abbas (ref_17) 2017; 5 ref_11 Meng (ref_13) 2009; 25 ref_51 ref_19 Kheshti (ref_41) 2018; 12 Latif (ref_23) 2014; 7 Khan (ref_32) 2015; 92 Tang (ref_40) 2019; 34 Zaman (ref_8) 2016; 31 Dekhici (ref_9) 2012; 16 Zhao (ref_10) 2018; 5 Trivedi (ref_18) 2018; 30 Abdullah (ref_14) 2006; 11 Park (ref_2) 2005; 20 Han (ref_35) 2018; 12 ref_28 Liang (ref_29) 2018; 33 ref_27 ref_26 Niknam (ref_1) 2012; 28 Matias (ref_30) 2015; 82 Park (ref_4) 2009; 25 Gaing (ref_12) 2003; 18 Roy (ref_38) 2012; 3 Niknam (ref_24) 2013; 7 Gherbi (ref_22) 2014; 24 Farhat (ref_33) 2010; 4 ref_37 Brini (ref_36) 2009; 14 Chakri (ref_48) 2017; 69 Abbas (ref_16) 2017; 5 Vo (ref_6) 2013; 7 Niknam (ref_7) 2013; 7 Yang (ref_5) 2018; 6 Rahmat (ref_50) 2017; 7 ref_47 ref_46 Sakthivel (ref_20) 2013; 67 ref_45 Adarsh (ref_25) 2016; 96 Nikmehr (ref_31) 2015; 26 ref_44 ref_43 ref_42 Jadoun (ref_39) 2018; 12 ref_3 ref_49 Li (ref_34) 2013; 28 |
| References_xml | – volume: 30 start-page: 2173 year: 2018 ident: ref_18 article-title: An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2795-5 – ident: ref_27 doi: 10.1109/CINTI.2014.7028669 – volume: 67 start-page: 35 year: 2013 ident: ref_20 article-title: Application of bat optimization algorithm for economic load dispatch considering valve point effects publication-title: Int. J. Comput. Appl. – volume: 7 start-page: 763 year: 2013 ident: ref_24 article-title: Reserve constrained dynamic environmental/economic dispatch: A new multiobjective self-adaptive learning bat algorithm publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2012.2225732 – volume: 7 start-page: 2012 year: 2017 ident: ref_50 article-title: Optimizing economic load dispatch with renewable energy sources via differential evolution immunized ant colony optimization technique publication-title: Int. J. Adv. Sci. Eng. Inf. Technol. doi: 10.18517/ijaseit.7.6.2328 – volume: 3 start-page: 265 year: 2012 ident: ref_38 article-title: Inclusion of short duration wind variations in economic load dispatch publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2011.2179954 – volume: 86 start-page: 51 year: 2016 ident: ref_21 article-title: Bat algorithm for economic emission load dispatch problem publication-title: Int. J. Adv. Sci. Technol. doi: 10.14257/ijast.2016.86.05 – volume: 20 start-page: 34 year: 2005 ident: ref_2 article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.831275 – volume: 6 start-page: 45907 year: 2018 ident: ref_5 article-title: Chaos firefly algorithm with self-adaptation mutation mechanism for solving large-scale economic dispatch with valve-point effects and multiple fuel options publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2865960 – volume: 14 start-page: 204 year: 2009 ident: ref_36 article-title: Economic dispatch for power system included wind and solar thermal energy publication-title: Leonardo J. Sci. – volume: 33 start-page: 5052 year: 2018 ident: ref_29 article-title: A hybrid bat algorithm for economic dispatch with random wind power publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2812711 – ident: ref_26 doi: 10.1109/IPACT.2017.8245011 – volume: 82 start-page: 949 year: 2015 ident: ref_30 article-title: A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources publication-title: Energy doi: 10.1016/j.energy.2015.01.104 – volume: 16 start-page: 45 year: 2012 ident: ref_9 article-title: Firefly algorithm for economic power dispatching with pollutants emission publication-title: Inform. Econ. – volume: 25 start-page: 215 year: 2009 ident: ref_13 article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2030359 – volume: 28 start-page: 4516 year: 2013 ident: ref_34 article-title: Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-newton method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2267057 – ident: ref_44 doi: 10.1109/ICETET.2010.142 – ident: ref_11 doi: 10.1109/ICCDA.2010.5541218 – volume: 11 start-page: 6663 year: 2006 ident: ref_14 article-title: Solving economic dispatch (ED) problem using artificial immune system, evolutionary programming and particle swarm optimization publication-title: ARPN J. Eng. Appl. Sci. – volume: 12 start-page: 104 year: 2018 ident: ref_41 article-title: Lightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraints publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2017.0257 – volume: 5 start-page: 794 year: 2018 ident: ref_10 article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2018.7511138 – volume: 5 start-page: 24426 year: 2017 ident: ref_17 article-title: Solution of an economic dispatch problem through particle swarm optimization: A detailed survey; Part II publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2768522 – ident: ref_45 – volume: 31 start-page: 1486 year: 2016 ident: ref_8 article-title: Evolutionary algorithms for dynamic economic dispatch problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2428714 – ident: ref_19 doi: 10.1109/ICEETS.2013.6533526 – ident: ref_51 doi: 10.3390/en13143721 – ident: ref_3 – ident: ref_43 doi: 10.1109/ISGT.2012.6175747 – volume: 25 start-page: 156 year: 2009 ident: ref_4 article-title: An improved particle swarm optimization for nonconvex economic dispatch problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2030293 – volume: 7 start-page: 645 year: 2013 ident: ref_6 article-title: Cuckoo search algorithm for non-convex economic dispatch publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2012.0142 – volume: 5 start-page: 15105 year: 2017 ident: ref_16 article-title: Solution of an economic dispatch problem through particle swarm optimization: A detailed survey-Part I publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2723862 – volume: 28 start-page: 749 year: 2012 ident: ref_1 article-title: A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2012.2208273 – ident: ref_28 doi: 10.1109/ICPEICES.2016.7853728 – ident: ref_37 – volume: 92 start-page: 82 year: 2015 ident: ref_32 article-title: Combined emission economic dispatch of power system including solar photo voltaic generation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.12.029 – ident: ref_49 doi: 10.1007/978-3-319-67669-2_9 – volume: 34 start-page: 2685 year: 2019 ident: ref_40 article-title: Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2891227 – volume: 96 start-page: 666 year: 2016 ident: ref_25 article-title: Economic dispatch using chaotic bat algorithm publication-title: Energy doi: 10.1016/j.energy.2015.12.096 – volume: 26 start-page: 208 year: 2015 ident: ref_31 article-title: A study on optimal power sharing in interconnected microgrids under uncertainty publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2081 – ident: ref_47 doi: 10.1007/978-3-642-12538-6_6 – volume: 69 start-page: 159 year: 2017 ident: ref_48 article-title: New directional bat algorithm for continuous optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.050 – volume: 18 start-page: 1187 year: 2003 ident: ref_12 article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.814889 – ident: ref_42 doi: 10.1109/EPSCICON.2018.8379595 – volume: 12 start-page: 1004 year: 2018 ident: ref_39 article-title: Integration of renewable energy sources in dynamic economic load dispatch problem using an improved fireworks algorithm publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2017.0744 – volume: 24 start-page: 75 year: 2014 ident: ref_22 article-title: Economic dispatch problem using bat algorithm publication-title: Leonardo J. Sci. – volume: 3 start-page: 529 year: 2009 ident: ref_15 article-title: Solving the economic dispatch problem using novel particle swarm optimization publication-title: World Acad. Sci. Eng. Technol.-Int. J. Electr. Comput. Energ. Electron. Commun. Eng. – ident: ref_46 doi: 10.3390/en12224392 – volume: 7 start-page: 754 year: 2013 ident: ref_7 article-title: Enhanced bee swarm optimization algorithm for dynamic economic dispatch publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2012.2191831 – volume: 4 start-page: 989 year: 2010 ident: ref_33 article-title: Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2010.0109 – volume: 7 start-page: 328 year: 2014 ident: ref_23 article-title: Economic dispatch using modified bat algorithm publication-title: Algorithms doi: 10.3390/a7030328 – volume: 12 start-page: 2861 year: 2018 ident: ref_35 article-title: Economic dispatch considering the wind power forecast error publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2017.1638 |
| SSID | ssj0000331333 |
| Score | 2.367757 |
| Snippet | One of the most important concerns in the planning and operation of an electric power generation system is the effective scheduling of all power generation... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 6225 |
| SubjectTerms | convergence characteristics directional bat algorithm (dBA) operational cost renewables incorporated ELD problem |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7QF64I1YHpUleuGQphs7lnNC20JVEK0qYFE5RX5M2hUhWS1ZqvLrO5NktwtCCIlrMnEcjTP-PtvzDcB2oqQ1waVRiiMdKTRpRJOgjAxxEcRd9FkrknR0rA8n6t1perqWxc_HKomKT9sg3Z6QJX4i45GMExlrGnzxLBSvfvRrSSOC32akU84k39ApofEBbEyOT8Zf2s3k_ulOlVQSu4-xIvYluZ1f5qFWrn8Tbi6qmb28sGW5Nscc3AG77F13tOTrzqJxO_7nb8KN_9P9u3C7B6Bi3I2Ye3ADq_uwuSZL-ADqj3XJ6wziAwXCC86t-h69XcpKBLHMZRbvaxvE6ynFJHK9OOlK0wh3KT4TASePiboQR9jYc1x0etBizzbUEm_uUzvj8qyeT5vzbw9hcvDm0_5h1BdmiLyUsqFvyjQ6lSjPmbyeNwt9qoKyCtHrxGvnDaamIGhCgJLvFTbZDUTuTBakk_IRDKq6wscgMKGIwXWxlEZCbpk1zhHkcUEZWfjEDOHl0k2571XLuXhGmRN7YZfm1y4dwouV7azT6vij1R57e2XB-trthXp-lve_a-6JnyvDxbYKQxArc8QKDefpEtxDH8IQtldj5S_vevJvZk_hVsI0vj0l8wwGzXyBzwnrNG6rH85XoOv20Q priority: 102 providerName: Unpaywall |
| Title | Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm |
| URI | https://www.mdpi.com/1996-1073/13/23/6225/pdf?version=1606816521 https://doaj.org/article/c52348d6dbf84319b96680590727ecdd |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate [EBSCO] customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QHIAD4inGS5HgwqFiNGmVHsdjPAQIAUPjVOXhskmlRaMT2r_HbrfRA4ILlx5aK2kd1_anxJ8ZO_Cl0MqZwAvgOPQkqMDDICg8hVgEoAk2KkmSbu_Cy4687gbdWqsvOhNW0QNXijuyiJSkorZHicJgFxnMzxVVTGLgBesced-mimpgqvTBQiD4EhUfqUBcfwQZ4i701tQTuxaBSqL-RTY_zN716FOnaS26tJfZ0jgt5K3qdVbYDGSrbLFGFrjG8sc8JfTPH9A9fVLF04d3NSF7cHxSYcxvcu34WR89BS4Iv68axnAz4s8Ii1GPPE_4LRS6B8OKpZmf6AJHoi13HKeVvuaDftF7W2ed9vnT6aU3bpfgWfzUAh1qFIKRvrRUX2tpC88G0kktAWzo29BYBYFKMGHANI-eJdpvOoRcKnLCCLHBZrM8g03Gwcf_mLpVyRAwn4q0MgYTEeOkEon1VYMdTlQY2zGXOLW0SGPEFKTu-FvdDbY_lX2vGDR-lDqhlZhKEOt1eQNtIR7bQvyXLTTYwXQdf5lr6z_m2mYLPkHv8mTLDpstBkPYxfykMHulKeL1onu8x-Y6d_etly_Z3eN7 |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7QF64I1YHpUleuGQphs7lnNC20JVEK0qYFE5RX5M2hUhWS1ZqvLrO5NktwtCCIlrMnEcjTP-PtvzDcB2oqQ1waVRiiMdKTRpRJOgjAxxEcRd9FkrknR0rA8n6t1perqWxc_HKomKT9sg3Z6QJX4i45GMExlrGnzxLBSvfvRrSSOC32akU84k39ApofEBbEyOT8Zf2s3k_ulOlVQSu4-xIvYluZ1f5qFWrn8Tbi6qmb28sGW5Nscc3AG77F13tOTrzqJxO_7nb8KN_9P9u3C7B6Bi3I2Ye3ADq_uwuSZL-ADqj3XJ6wziAwXCC86t-h69XcpKBLHMZRbvaxvE6ynFJHK9OOlK0wh3KT4TASePiboQR9jYc1x0etBizzbUEm_uUzvj8qyeT5vzbw9hcvDm0_5h1BdmiLyUsqFvyjQ6lSjPmbyeNwt9qoKyCtHrxGvnDaamIGhCgJLvFTbZDUTuTBakk_IRDKq6wscgMKGIwXWxlEZCbpk1zhHkcUEZWfjEDOHl0k2571XLuXhGmRN7YZfm1y4dwouV7azT6vij1R57e2XB-trthXp-lve_a-6JnyvDxbYKQxArc8QKDefpEtxDH8IQtldj5S_vevJvZk_hVsI0vj0l8wwGzXyBzwnrNG6rH85XoOv20Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Renewables-Integrated+Economic+Load+Dispatch+Problem+by+Variant+of+Metaheuristic+Bat-Inspired+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Faisal+Tariq&rft.au=Salem+Alelyani&rft.au=Ghulam+Abbas&rft.au=Ayman+Qahmash&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=23&rft.spage=6225&rft_id=info:doi/10.3390%2Fen13236225&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c52348d6dbf84319b96680590727ecdd |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |