Digitized spiral drawing classification for Parkinson's disease diagnosis
Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring of PD is costly and inconvenient process even today, in under developing parts of the world. The observable symptoms of PD at early stag...
Saved in:
| Published in | Measurement. Sensors Vol. 16; p. 100047 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2665-9174 2665-9174 |
| DOI | 10.1016/j.measen.2021.100047 |
Cover
| Abstract | Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring of PD is costly and inconvenient process even today, in under developing parts of the world. The observable symptoms of PD at early stage include disorders in handwriting and repetitive tasks of spiral drawing. With advancement of IT it is easier to collect spiral drawing samples using digitized tablet. We proposed detailed analysis of Static and dynamic spirals drawn by PD patients. For this, in-air and on-surface kinematic variables are taken out from data files generated for 25 patients and 15 healthy controls, using mathematical models. Results demonstrated nearly 91% classification accuracy to separate PD patients from healthy controls by applying feature engineering and four machine learning (ML) classifiers Logistic Regression, C-Support Vector Classification (SVC), K- nearest neighbor(KNN) classifier and ensemble model Random Forest Classifier(RFC). This paper confirms that digitized spiral drawings have major impact on classification of PD patients and healthy controls and hence can support future differential diagnosis of PD. |
|---|---|
| AbstractList | Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring of PD is costly and inconvenient process even today, in under developing parts of the world. The observable symptoms of PD at early stage include disorders in handwriting and repetitive tasks of spiral drawing. With advancement of IT it is easier to collect spiral drawing samples using digitized tablet. We proposed detailed analysis of Static and dynamic spirals drawn by PD patients. For this, in-air and on-surface kinematic variables are taken out from data files generated for 25 patients and 15 healthy controls, using mathematical models. Results demonstrated nearly 91% classification accuracy to separate PD patients from healthy controls by applying feature engineering and four machine learning (ML) classifiers Logistic Regression, C-Support Vector Classification (SVC), K- nearest neighbor(KNN) classifier and ensemble model Random Forest Classifier(RFC). This paper confirms that digitized spiral drawings have major impact on classification of PD patients and healthy controls and hence can support future differential diagnosis of PD. |
| ArticleNumber | 100047 |
| Author | Jain, Megha Shrivastava, Prashant Kamble, Megha |
| Author_xml | – sequence: 1 givenname: Megha surname: Kamble fullname: Kamble, Megha email: meghak@lnct.ac.in – sequence: 2 givenname: Prashant orcidid: 0000-0003-1409-1014 surname: Shrivastava fullname: Shrivastava, Prashant – sequence: 3 givenname: Megha surname: Jain fullname: Jain, Megha |
| BookMark | eNqNkE1LAzEQhoMoWLX_wMPePLXmY5vsehCkfhUKetBzmE2yZeo2Kcmq6K932xURD-pphsk875DngOz64B0hx4yOGWXydDleOUjOjznlrBtRmqsdMuBSTkYlU_nut36fDFNadiu86FieD8jsEhfY4ruzWVpjhCazEV7RLzLTQEpYo4EWg8_qELN7iE_oU_AnKbOYNme7CgsfEqYjsldDk9zwsx6Sx-urh-ntaH53M5tezEdGCKFGygonjSyKnBmZK8ZMYS0UBeSyqmuuGCgmeFUqSSsJxsmyko5VUppSlt2TOCSzPtcGWOp1xBXENx0A9XYQ4kJDbNE0TgOnqhYFTJSschAUSkqFpZO64kwVsMma9FnPfg1vr9A0X4GM6o1evdS9Xr3Rq3u9HXfWcyaGlKKrtcF266mNgM1fcP4D_ufN8x5zndwXdFEng84bZzE603a_x98DPgBIsKqV |
| CitedBy_id | crossref_primary_10_1088_2632_2153_ad2627 crossref_primary_10_3390_healthcare10122493 crossref_primary_10_38124_ijisrt_IJISRT24APR1575 crossref_primary_10_1007_s40745_023_00482_4 crossref_primary_10_1109_ACCESS_2023_3291406 crossref_primary_10_3389_fninf_2022_877139 crossref_primary_10_3390_diagnostics12071543 crossref_primary_10_1007_s10072_024_07734_y crossref_primary_10_1007_s13369_021_06544_0 crossref_primary_10_1109_JSYST_2023_3308333 crossref_primary_10_3389_fmed_2024_1453743 crossref_primary_10_7717_peerj_cs_1702 crossref_primary_10_1007_s11042_023_17385_4 crossref_primary_10_1007_s12652_022_04361_3 crossref_primary_10_1515_bmt_2023_0080 crossref_primary_10_1038_s41531_023_00625_7 crossref_primary_10_3390_brainsci11101297 crossref_primary_10_1038_s41598_024_55077_7 crossref_primary_10_3390_electronics13234638 |
| Cites_doi | 10.3390/s17102341 10.1371/journal.pone.0162799 10.1002/mds.21874 10.1016/j.cmpb.2014.08.007 10.1016/j.jneumeth.2005.08.007 10.1109/TNSRE.2014.2359997 10.1016/j.eswa.2011.11.067 10.3389/fneur.2017.00435 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.measen.2021.100047 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2665-9174 |
| ExternalDocumentID | oai_doaj_org_article_a207f38a576b4a30a9003d05fb2178a3 10.1016/j.measen.2021.100047 10_1016_j_measen_2021_100047 S266591742100009X |
| GroupedDBID | 0SF 53G 6I. AAEDW AAFTH AALRI AAXUO AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3337-7d3e6c68841c64711c8dda88a46bff271a7132b9760b6ace69b6e1b66c9697133 |
| IEDL.DBID | DOA |
| ISSN | 2665-9174 |
| IngestDate | Fri Oct 03 12:40:40 EDT 2025 Tue Aug 19 18:23:10 EDT 2025 Wed Oct 01 01:48:24 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Fri Feb 23 02:45:07 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parkinson's disease classification Ensemble model Machine learning classification Spiral kinematics |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3337-7d3e6c68841c64711c8dda88a46bff271a7132b9760b6ace69b6e1b66c9697133 |
| ORCID | 0000-0003-1409-1014 |
| OpenAccessLink | https://doaj.org/article/a207f38a576b4a30a9003d05fb2178a3 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a207f38a576b4a30a9003d05fb2178a3 unpaywall_primary_10_1016_j_measen_2021_100047 crossref_citationtrail_10_1016_j_measen_2021_100047 crossref_primary_10_1016_j_measen_2021_100047 elsevier_sciencedirect_doi_10_1016_j_measen_2021_100047 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement. Sensors |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Peter (bib2) 2016; 67 Impedovo, Pirlo (bib4) 2019; vol. 12 Poonam (bib5) 2019; 10 San Luciano (bib8) 2016; 11 Aghanavesi (bib9) 2017 Oct 13; 17 Thomas (bib13) Dec 2017; vol. 4 Peter (bib1) December 2014; 117 Peter Drotar (bib14) MAY 2015; 23 Saunders-Pullman, Derby, Stanley, Floyd, Bressman, Lipton (bib11) 2008; 23 Isenkul (bib7) 2014 Martin (bib15) 2019; 8 Omer Eskidere (bib6) 2012; 39 Zham, Kumar, Dabnichki, Poosapadi Arjunan, Raghav (bib12) 2017; 8 Impedovo (bib3) 2018; 9 Miralles (bib10) 2006; 152 Omer Eskidere (10.1016/j.measen.2021.100047_bib6) 2012; 39 Zham (10.1016/j.measen.2021.100047_bib12) 2017; 8 San Luciano (10.1016/j.measen.2021.100047_bib8) 2016; 11 Poonam (10.1016/j.measen.2021.100047_bib5) 2019; 10 Peter Drotar (10.1016/j.measen.2021.100047_bib14) 2015; 23 Peter (10.1016/j.measen.2021.100047_bib1) 2014; 117 Isenkul (10.1016/j.measen.2021.100047_bib7) 2014 Impedovo (10.1016/j.measen.2021.100047_bib3) 2018; 9 Impedovo (10.1016/j.measen.2021.100047_bib4) 2019; vol. 12 Thomas (10.1016/j.measen.2021.100047_bib13) 2017; vol. 4 Saunders-Pullman (10.1016/j.measen.2021.100047_bib11) 2008; 23 Aghanavesi (10.1016/j.measen.2021.100047_bib9) 2017; 17 Miralles (10.1016/j.measen.2021.100047_bib10) 2006; 152 Martin (10.1016/j.measen.2021.100047_bib15) 2019; 8 Peter (10.1016/j.measen.2021.100047_bib2) 2016; 67 |
| References_xml | – volume: vol. 4 start-page: 806 year: Dec 2017 end-page: 818 ident: bib13 article-title: Handwriting Analysis in Parkinson's Disease: Current Status and Future Directions publication-title: Movement – volume: 17 start-page: E2341 year: 2017 Oct 13 ident: bib9 article-title: Verification of a method for measuring Parkinson's disease related temporal irregularity in spiral drawings publication-title: Sensors – volume: 67 start-page: 39 year: 2016 end-page: 46 ident: bib2 article-title: Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease” publication-title: AI in Medicine – volume: 152 start-page: 18 year: 2006 end-page: 31 ident: bib10 article-title: Quantification of the drawing of an Archimedes spiral through the analysis of its digitized picture publication-title: J. Neurosci. Methods – volume: 23 start-page: 508 year: MAY 2015 end-page: 516 ident: bib14 article-title: Decision Support framework for Parkinson's disease based on novel handwriting marker publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 8 start-page: 1 year: 2019 end-page: 10 ident: bib15 article-title: Parkinson's disease detection from Drawing movements using Convolutional Neural Networks publication-title: Electronics – start-page: 171 year: 2014 end-page: 175 ident: bib7 article-title: Improved spiral test using digitized graphics tablet for monitoring Parkinson's disease publication-title: Proc. of ICEHTM – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: bib5 article-title: A kinematic study of progressive micrographia in Parkinson's disease publication-title: Front. Neurol. – volume: 11 year: 2016 ident: bib8 article-title: Digitized spiral drawing: a possible biomarker for early Parkinson's disease publication-title: PloS One – volume: 39 start-page: 5523 year: 2012 end-page: 5528 ident: bib6 article-title: A Comparison of regression methods for remote tracking of Parkinson's disease progression publication-title: Experts Syst. Appl. – volume: 117 start-page: 405 year: December 2014 end-page: 411 ident: bib1 article-title: Analysis of in-air movement in handwriting: a novel marker for Parkinson's disease publication-title: Comput. Methods Progr. Biomed. – volume: 9 start-page: 247 year: 2018 ident: bib3 article-title: Dynamic Handwriting Analysis for Supporting Earlier Parkinson’s Disease Information – volume: 23 start-page: 531 year: 2008 end-page: 537 ident: bib11 article-title: Validity of spiral analysis in early Parkinson's disease publication-title: Mov. Disord. – volume: vol. 12 start-page: 209 year: 2019 end-page: 220 ident: bib4 article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective publication-title: IEEE Reviews in Biomedical Engineering – volume: 8 start-page: 435 year: 2017 ident: bib12 article-title: Distinguishing different stages of Parkinson's disease using composite index of speed and pen-pressure of sketching a spiral publication-title: Front. Neurol. – volume: 10 start-page: 1 issue: No.403 year: 2019 ident: 10.1016/j.measen.2021.100047_bib5 article-title: A kinematic study of progressive micrographia in Parkinson's disease publication-title: Front. Neurol. – volume: 17 start-page: E2341 issue: 10 year: 2017 ident: 10.1016/j.measen.2021.100047_bib9 article-title: Verification of a method for measuring Parkinson's disease related temporal irregularity in spiral drawings publication-title: Sensors doi: 10.3390/s17102341 – start-page: 171 year: 2014 ident: 10.1016/j.measen.2021.100047_bib7 article-title: Improved spiral test using digitized graphics tablet for monitoring Parkinson's disease – volume: 9 start-page: 247 year: 2018 ident: 10.1016/j.measen.2021.100047_bib3 – volume: 11 issue: 10 year: 2016 ident: 10.1016/j.measen.2021.100047_bib8 article-title: Digitized spiral drawing: a possible biomarker for early Parkinson's disease publication-title: PloS One doi: 10.1371/journal.pone.0162799 – volume: 8 start-page: 1 issue: 907 year: 2019 ident: 10.1016/j.measen.2021.100047_bib15 article-title: Parkinson's disease detection from Drawing movements using Convolutional Neural Networks publication-title: Electronics – volume: 23 start-page: 531 issue: 4 year: 2008 ident: 10.1016/j.measen.2021.100047_bib11 article-title: Validity of spiral analysis in early Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.21874 – volume: 117 start-page: 405 issue: 3 year: 2014 ident: 10.1016/j.measen.2021.100047_bib1 article-title: Analysis of in-air movement in handwriting: a novel marker for Parkinson's disease publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2014.08.007 – volume: 152 start-page: 18 year: 2006 ident: 10.1016/j.measen.2021.100047_bib10 article-title: Quantification of the drawing of an Archimedes spiral through the analysis of its digitized picture publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.08.007 – volume: 67 start-page: 39 year: 2016 ident: 10.1016/j.measen.2021.100047_bib2 article-title: Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease” publication-title: AI in Medicine – volume: 23 start-page: 508 issue: NO. 3 year: 2015 ident: 10.1016/j.measen.2021.100047_bib14 article-title: Decision Support framework for Parkinson's disease based on novel handwriting marker publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2359997 – volume: 39 start-page: 5523 year: 2012 ident: 10.1016/j.measen.2021.100047_bib6 article-title: A Comparison of regression methods for remote tracking of Parkinson's disease progression publication-title: Experts Syst. Appl. doi: 10.1016/j.eswa.2011.11.067 – volume: 8 start-page: 435 year: 2017 ident: 10.1016/j.measen.2021.100047_bib12 article-title: Distinguishing different stages of Parkinson's disease using composite index of speed and pen-pressure of sketching a spiral publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00435 – volume: vol. 12 start-page: 209 year: 2019 ident: 10.1016/j.measen.2021.100047_bib4 article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective – volume: vol. 4 start-page: 806 year: 2017 ident: 10.1016/j.measen.2021.100047_bib13 article-title: Handwriting Analysis in Parkinson's Disease: Current Status and Future Directions |
| SSID | ssj0002810124 |
| Score | 2.4091558 |
| Snippet | Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 100047 |
| SubjectTerms | Ensemble model Machine learning classification Parkinson's disease classification Spiral kinematics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HsSDb7GikoPgxZQku91Njj5RQfFgoZ7CviLRWkVbRH-9M3mUVpDWUyDZSYbZSeabzAvgIMwiYYyL_ITycXhiQvwOOnRWeGgzopGWaodvbsVlh1932905OKprYSbi90Ue1guFKahTaRRSSD_gch4WRBuRdwMWOrd3xw80P04IGjkoeV0d9wfphPUpmvRPGKHFYf9NfX2qXm_MyFyswE3NXplb8twaDnTLfP_q3Dgr_6uwXKFN77hUjzWYc_11WBrrQbgBV2f5Yz7Iv531iqB7z7Pv6hMveYaANWUSFZvnIbr1qEa6KBc7_PCq0A4ei2S9_GMTOhfn96eXfjVfwTeMMelLy5wwIo55aAQaqdDE1qo4VlzoLItkqNCDjTQClkALZZxItHChFsIkIiHndgsa_de-2waPSWeVy6xKdJvTIomuCpoBkbHY2CxoAqvlnpqq-TjNwOildZbZU1oKKiVBpaWgmuCPqN7K5htT1p_Qlo7WUuvs4gTuSFq9iamKAolcKXS0NFcsUPQv1wbtTKN3FivWBFkrRFqhkBJd4K3yKY9vjfRnJn53_kuwC43B-9DtIQ4a6P1K_X8A7BYFKQ priority: 102 providerName: Unpaywall |
| Title | Digitized spiral drawing classification for Parkinson's disease diagnosis |
| URI | https://dx.doi.org/10.1016/j.measen.2021.100047 https://doi.org/10.1016/j.measen.2021.100047 https://doaj.org/article/a207f38a576b4a30a9003d05fb2178a3 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2665-9174 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810124 issn: 2665-9174 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2665-9174 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810124 issn: 2665-9174 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHtSD-MT6KDkInqJ5dTc5Vm2pQosHC_UU9hWJxFj6oOjB3-7MJinxVA9eEkh2k2Vm2flmZ_YbQi7dxKNSas-OMB8niKQL66AGZyVwVYJ9mMKzw4Mh7Y-Cx3F7XCv1hTlhBT1wIbgb7jks8UMOuFgE3Hc4br0pp50IANMhNzyfThjVnKk3s2WEvFUYUgYDhMUIWVCdmzPJXe8Y-0D6U8_FPAEHq6vU7JKh7_9lnrYW-YR_LnmW1cxPb4_slrjR6hTj3ScbOj8gOzU2wUPycJ--pvP0SyvLhM8zS035El5ZEiEy5gQZNViAUy087WwOfl3NrDJIA3eTdpfOjsio132-69tlpQRb-r7PbKZ8TSUNw8CVFMyNK0OleBjygIok8ZjLwRf1BEAPR1AuNY0E1a6gVEY0Qjf1mDTyj1yfEMtnWnGdKB6JdoCNGDgdsKBTUIJUidMkfiWnWJY04ljNIourfLG3uJBujNKNC-k2ib3qNSloNNa0v0UVrNoiCbZ5AFMjLqdGvG5qNAmrFBiXeKLACfCpdM3vr1f6_tN4T_9jvGdkGz9ZpBeek8Z8utAXAHnmomVmN1wH390W2RwNnzovPxXS_jI |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HsSDb7GikoPgxZQku91Njj5RQfFgoZ7CviLRWkVbRH-9M3mUVpDWUyDZSYbZSeabzAvgIMwiYYyL_ITycXhiQvwOOnRWeGgzopGWaodvbsVlh1932905OKprYSbi90Ue1guFKahTaRRSSD_gch4WRBuRdwMWOrd3xw80P04IGjkoeV0d9wfphPUpmvRPGKHFYf9NfX2qXm_MyFyswE3NXplb8twaDnTLfP_q3Dgr_6uwXKFN77hUjzWYc_11WBrrQbgBV2f5Yz7Iv531iqB7z7Pv6hMveYaANWUSFZvnIbr1qEa6KBc7_PCq0A4ei2S9_GMTOhfn96eXfjVfwTeMMelLy5wwIo55aAQaqdDE1qo4VlzoLItkqNCDjTQClkALZZxItHChFsIkIiHndgsa_de-2waPSWeVy6xKdJvTIomuCpoBkbHY2CxoAqvlnpqq-TjNwOildZbZU1oKKiVBpaWgmuCPqN7K5htT1p_Qlo7WUuvs4gTuSFq9iamKAolcKXS0NFcsUPQv1wbtTKN3FivWBFkrRFqhkBJd4K3yKY9vjfRnJn53_kuwC43B-9DtIQ4a6P1K_X8A7BYFKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digitized+spiral+drawing+classification+for+Parkinson%27s+disease+diagnosis&rft.jtitle=Measurement.+Sensors&rft.au=Megha+Kamble&rft.au=Prashant+Shrivastava&rft.au=Megha+Jain&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=2665-9174&rft.eissn=2665-9174&rft.volume=16&rft.spage=100047&rft_id=info:doi/10.1016%2Fj.measen.2021.100047&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a207f38a576b4a30a9003d05fb2178a3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon |