Digitized spiral drawing classification for Parkinson's disease diagnosis

Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring of PD is costly and inconvenient process even today, in under developing parts of the world. The observable symptoms of PD at early stag...

Full description

Saved in:
Bibliographic Details
Published inMeasurement. Sensors Vol. 16; p. 100047
Main Authors Kamble, Megha, Shrivastava, Prashant, Jain, Megha
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2665-9174
2665-9174
DOI10.1016/j.measen.2021.100047

Cover

Abstract Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring of PD is costly and inconvenient process even today, in under developing parts of the world. The observable symptoms of PD at early stage include disorders in handwriting and repetitive tasks of spiral drawing. With advancement of IT it is easier to collect spiral drawing samples using digitized tablet. We proposed detailed analysis of Static and dynamic spirals drawn by PD patients. For this, in-air and on-surface kinematic variables are taken out from data files generated for 25 patients and 15 healthy controls, using mathematical models. Results demonstrated nearly 91% classification accuracy to separate PD patients from healthy controls by applying feature engineering and four machine learning (ML) classifiers Logistic Regression, C-Support Vector Classification (SVC), K- nearest neighbor(KNN) classifier and ensemble model Random Forest Classifier(RFC). This paper confirms that digitized spiral drawings have major impact on classification of PD patients and healthy controls and hence can support future differential diagnosis of PD.
AbstractList Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring of PD is costly and inconvenient process even today, in under developing parts of the world. The observable symptoms of PD at early stage include disorders in handwriting and repetitive tasks of spiral drawing. With advancement of IT it is easier to collect spiral drawing samples using digitized tablet. We proposed detailed analysis of Static and dynamic spirals drawn by PD patients. For this, in-air and on-surface kinematic variables are taken out from data files generated for 25 patients and 15 healthy controls, using mathematical models. Results demonstrated nearly 91% classification accuracy to separate PD patients from healthy controls by applying feature engineering and four machine learning (ML) classifiers Logistic Regression, C-Support Vector Classification (SVC), K- nearest neighbor(KNN) classifier and ensemble model Random Forest Classifier(RFC). This paper confirms that digitized spiral drawings have major impact on classification of PD patients and healthy controls and hence can support future differential diagnosis of PD.
ArticleNumber 100047
Author Jain, Megha
Shrivastava, Prashant
Kamble, Megha
Author_xml – sequence: 1
  givenname: Megha
  surname: Kamble
  fullname: Kamble, Megha
  email: meghak@lnct.ac.in
– sequence: 2
  givenname: Prashant
  orcidid: 0000-0003-1409-1014
  surname: Shrivastava
  fullname: Shrivastava, Prashant
– sequence: 3
  givenname: Megha
  surname: Jain
  fullname: Jain, Megha
BookMark eNqNkE1LAzEQhoMoWLX_wMPePLXmY5vsehCkfhUKetBzmE2yZeo2Kcmq6K932xURD-pphsk875DngOz64B0hx4yOGWXydDleOUjOjznlrBtRmqsdMuBSTkYlU_nut36fDFNadiu86FieD8jsEhfY4ruzWVpjhCazEV7RLzLTQEpYo4EWg8_qELN7iE_oU_AnKbOYNme7CgsfEqYjsldDk9zwsx6Sx-urh-ntaH53M5tezEdGCKFGygonjSyKnBmZK8ZMYS0UBeSyqmuuGCgmeFUqSSsJxsmyko5VUppSlt2TOCSzPtcGWOp1xBXENx0A9XYQ4kJDbNE0TgOnqhYFTJSschAUSkqFpZO64kwVsMma9FnPfg1vr9A0X4GM6o1evdS9Xr3Rq3u9HXfWcyaGlKKrtcF266mNgM1fcP4D_ufN8x5zndwXdFEng84bZzE603a_x98DPgBIsKqV
CitedBy_id crossref_primary_10_1088_2632_2153_ad2627
crossref_primary_10_3390_healthcare10122493
crossref_primary_10_38124_ijisrt_IJISRT24APR1575
crossref_primary_10_1007_s40745_023_00482_4
crossref_primary_10_1109_ACCESS_2023_3291406
crossref_primary_10_3389_fninf_2022_877139
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_1007_s10072_024_07734_y
crossref_primary_10_1007_s13369_021_06544_0
crossref_primary_10_1109_JSYST_2023_3308333
crossref_primary_10_3389_fmed_2024_1453743
crossref_primary_10_7717_peerj_cs_1702
crossref_primary_10_1007_s11042_023_17385_4
crossref_primary_10_1007_s12652_022_04361_3
crossref_primary_10_1515_bmt_2023_0080
crossref_primary_10_1038_s41531_023_00625_7
crossref_primary_10_3390_brainsci11101297
crossref_primary_10_1038_s41598_024_55077_7
crossref_primary_10_3390_electronics13234638
Cites_doi 10.3390/s17102341
10.1371/journal.pone.0162799
10.1002/mds.21874
10.1016/j.cmpb.2014.08.007
10.1016/j.jneumeth.2005.08.007
10.1109/TNSRE.2014.2359997
10.1016/j.eswa.2011.11.067
10.3389/fneur.2017.00435
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.measen.2021.100047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2665-9174
ExternalDocumentID oai_doaj_org_article_a207f38a576b4a30a9003d05fb2178a3
10.1016/j.measen.2021.100047
10_1016_j_measen_2021_100047
S266591742100009X
GroupedDBID 0SF
53G
6I.
AAEDW
AAFTH
AALRI
AAXUO
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c3337-7d3e6c68841c64711c8dda88a46bff271a7132b9760b6ace69b6e1b66c9697133
IEDL.DBID DOA
ISSN 2665-9174
IngestDate Fri Oct 03 12:40:40 EDT 2025
Tue Aug 19 18:23:10 EDT 2025
Wed Oct 01 01:48:24 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Fri Feb 23 02:45:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parkinson's disease classification
Ensemble model
Machine learning classification
Spiral kinematics
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3337-7d3e6c68841c64711c8dda88a46bff271a7132b9760b6ace69b6e1b66c9697133
ORCID 0000-0003-1409-1014
OpenAccessLink https://doaj.org/article/a207f38a576b4a30a9003d05fb2178a3
ParticipantIDs doaj_primary_oai_doaj_org_article_a207f38a576b4a30a9003d05fb2178a3
unpaywall_primary_10_1016_j_measen_2021_100047
crossref_citationtrail_10_1016_j_measen_2021_100047
crossref_primary_10_1016_j_measen_2021_100047
elsevier_sciencedirect_doi_10_1016_j_measen_2021_100047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Measurement. Sensors
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Peter (bib2) 2016; 67
Impedovo, Pirlo (bib4) 2019; vol. 12
Poonam (bib5) 2019; 10
San Luciano (bib8) 2016; 11
Aghanavesi (bib9) 2017 Oct 13; 17
Thomas (bib13) Dec 2017; vol. 4
Peter (bib1) December 2014; 117
Peter Drotar (bib14) MAY 2015; 23
Saunders-Pullman, Derby, Stanley, Floyd, Bressman, Lipton (bib11) 2008; 23
Isenkul (bib7) 2014
Martin (bib15) 2019; 8
Omer Eskidere (bib6) 2012; 39
Zham, Kumar, Dabnichki, Poosapadi Arjunan, Raghav (bib12) 2017; 8
Impedovo (bib3) 2018; 9
Miralles (bib10) 2006; 152
Omer Eskidere (10.1016/j.measen.2021.100047_bib6) 2012; 39
Zham (10.1016/j.measen.2021.100047_bib12) 2017; 8
San Luciano (10.1016/j.measen.2021.100047_bib8) 2016; 11
Poonam (10.1016/j.measen.2021.100047_bib5) 2019; 10
Peter Drotar (10.1016/j.measen.2021.100047_bib14) 2015; 23
Peter (10.1016/j.measen.2021.100047_bib1) 2014; 117
Isenkul (10.1016/j.measen.2021.100047_bib7) 2014
Impedovo (10.1016/j.measen.2021.100047_bib3) 2018; 9
Impedovo (10.1016/j.measen.2021.100047_bib4) 2019; vol. 12
Thomas (10.1016/j.measen.2021.100047_bib13) 2017; vol. 4
Saunders-Pullman (10.1016/j.measen.2021.100047_bib11) 2008; 23
Aghanavesi (10.1016/j.measen.2021.100047_bib9) 2017; 17
Miralles (10.1016/j.measen.2021.100047_bib10) 2006; 152
Martin (10.1016/j.measen.2021.100047_bib15) 2019; 8
Peter (10.1016/j.measen.2021.100047_bib2) 2016; 67
References_xml – volume: vol. 4
  start-page: 806
  year: Dec 2017
  end-page: 818
  ident: bib13
  article-title: Handwriting Analysis in Parkinson's Disease: Current Status and Future Directions
  publication-title: Movement
– volume: 17
  start-page: E2341
  year: 2017 Oct 13
  ident: bib9
  article-title: Verification of a method for measuring Parkinson's disease related temporal irregularity in spiral drawings
  publication-title: Sensors
– volume: 67
  start-page: 39
  year: 2016
  end-page: 46
  ident: bib2
  article-title: Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease”
  publication-title: AI in Medicine
– volume: 152
  start-page: 18
  year: 2006
  end-page: 31
  ident: bib10
  article-title: Quantification of the drawing of an Archimedes spiral through the analysis of its digitized picture
  publication-title: J. Neurosci. Methods
– volume: 23
  start-page: 508
  year: MAY 2015
  end-page: 516
  ident: bib14
  article-title: Decision Support framework for Parkinson's disease based on novel handwriting marker
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 8
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib15
  article-title: Parkinson's disease detection from Drawing movements using Convolutional Neural Networks
  publication-title: Electronics
– start-page: 171
  year: 2014
  end-page: 175
  ident: bib7
  article-title: Improved spiral test using digitized graphics tablet for monitoring Parkinson's disease
  publication-title: Proc. of ICEHTM
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib5
  article-title: A kinematic study of progressive micrographia in Parkinson's disease
  publication-title: Front. Neurol.
– volume: 11
  year: 2016
  ident: bib8
  article-title: Digitized spiral drawing: a possible biomarker for early Parkinson's disease
  publication-title: PloS One
– volume: 39
  start-page: 5523
  year: 2012
  end-page: 5528
  ident: bib6
  article-title: A Comparison of regression methods for remote tracking of Parkinson's disease progression
  publication-title: Experts Syst. Appl.
– volume: 117
  start-page: 405
  year: December 2014
  end-page: 411
  ident: bib1
  article-title: Analysis of in-air movement in handwriting: a novel marker for Parkinson's disease
  publication-title: Comput. Methods Progr. Biomed.
– volume: 9
  start-page: 247
  year: 2018
  ident: bib3
  article-title: Dynamic Handwriting Analysis for Supporting Earlier Parkinson’s Disease Information
– volume: 23
  start-page: 531
  year: 2008
  end-page: 537
  ident: bib11
  article-title: Validity of spiral analysis in early Parkinson's disease
  publication-title: Mov. Disord.
– volume: vol. 12
  start-page: 209
  year: 2019
  end-page: 220
  ident: bib4
  article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 8
  start-page: 435
  year: 2017
  ident: bib12
  article-title: Distinguishing different stages of Parkinson's disease using composite index of speed and pen-pressure of sketching a spiral
  publication-title: Front. Neurol.
– volume: 10
  start-page: 1
  issue: No.403
  year: 2019
  ident: 10.1016/j.measen.2021.100047_bib5
  article-title: A kinematic study of progressive micrographia in Parkinson's disease
  publication-title: Front. Neurol.
– volume: 17
  start-page: E2341
  issue: 10
  year: 2017
  ident: 10.1016/j.measen.2021.100047_bib9
  article-title: Verification of a method for measuring Parkinson's disease related temporal irregularity in spiral drawings
  publication-title: Sensors
  doi: 10.3390/s17102341
– start-page: 171
  year: 2014
  ident: 10.1016/j.measen.2021.100047_bib7
  article-title: Improved spiral test using digitized graphics tablet for monitoring Parkinson's disease
– volume: 9
  start-page: 247
  year: 2018
  ident: 10.1016/j.measen.2021.100047_bib3
– volume: 11
  issue: 10
  year: 2016
  ident: 10.1016/j.measen.2021.100047_bib8
  article-title: Digitized spiral drawing: a possible biomarker for early Parkinson's disease
  publication-title: PloS One
  doi: 10.1371/journal.pone.0162799
– volume: 8
  start-page: 1
  issue: 907
  year: 2019
  ident: 10.1016/j.measen.2021.100047_bib15
  article-title: Parkinson's disease detection from Drawing movements using Convolutional Neural Networks
  publication-title: Electronics
– volume: 23
  start-page: 531
  issue: 4
  year: 2008
  ident: 10.1016/j.measen.2021.100047_bib11
  article-title: Validity of spiral analysis in early Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21874
– volume: 117
  start-page: 405
  issue: 3
  year: 2014
  ident: 10.1016/j.measen.2021.100047_bib1
  article-title: Analysis of in-air movement in handwriting: a novel marker for Parkinson's disease
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2014.08.007
– volume: 152
  start-page: 18
  year: 2006
  ident: 10.1016/j.measen.2021.100047_bib10
  article-title: Quantification of the drawing of an Archimedes spiral through the analysis of its digitized picture
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.08.007
– volume: 67
  start-page: 39
  year: 2016
  ident: 10.1016/j.measen.2021.100047_bib2
  article-title: Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease”
  publication-title: AI in Medicine
– volume: 23
  start-page: 508
  issue: NO. 3
  year: 2015
  ident: 10.1016/j.measen.2021.100047_bib14
  article-title: Decision Support framework for Parkinson's disease based on novel handwriting marker
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2359997
– volume: 39
  start-page: 5523
  year: 2012
  ident: 10.1016/j.measen.2021.100047_bib6
  article-title: A Comparison of regression methods for remote tracking of Parkinson's disease progression
  publication-title: Experts Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.067
– volume: 8
  start-page: 435
  year: 2017
  ident: 10.1016/j.measen.2021.100047_bib12
  article-title: Distinguishing different stages of Parkinson's disease using composite index of speed and pen-pressure of sketching a spiral
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00435
– volume: vol. 12
  start-page: 209
  year: 2019
  ident: 10.1016/j.measen.2021.100047_bib4
  article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective
– volume: vol. 4
  start-page: 806
  year: 2017
  ident: 10.1016/j.measen.2021.100047_bib13
  article-title: Handwriting Analysis in Parkinson's Disease: Current Status and Future Directions
SSID ssj0002810124
Score 2.4091558
Snippet Parkinson's disease (PD) is the most common neurodegenerative disease affecting significantly motor functions of elderly persons. The diagnosis and monitoring...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100047
SubjectTerms Ensemble model
Machine learning classification
Parkinson's disease classification
Spiral kinematics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HsSDb7GikoPgxZQku91Njj5RQfFgoZ7CviLRWkVbRH-9M3mUVpDWUyDZSYbZSeabzAvgIMwiYYyL_ITycXhiQvwOOnRWeGgzopGWaodvbsVlh1932905OKprYSbi90Ue1guFKahTaRRSSD_gch4WRBuRdwMWOrd3xw80P04IGjkoeV0d9wfphPUpmvRPGKHFYf9NfX2qXm_MyFyswE3NXplb8twaDnTLfP_q3Dgr_6uwXKFN77hUjzWYc_11WBrrQbgBV2f5Yz7Iv531iqB7z7Pv6hMveYaANWUSFZvnIbr1qEa6KBc7_PCq0A4ei2S9_GMTOhfn96eXfjVfwTeMMelLy5wwIo55aAQaqdDE1qo4VlzoLItkqNCDjTQClkALZZxItHChFsIkIiHndgsa_de-2waPSWeVy6xKdJvTIomuCpoBkbHY2CxoAqvlnpqq-TjNwOildZbZU1oKKiVBpaWgmuCPqN7K5htT1p_Qlo7WUuvs4gTuSFq9iamKAolcKXS0NFcsUPQv1wbtTKN3FivWBFkrRFqhkBJd4K3yKY9vjfRnJn53_kuwC43B-9DtIQ4a6P1K_X8A7BYFKQ
  priority: 102
  providerName: Unpaywall
Title Digitized spiral drawing classification for Parkinson's disease diagnosis
URI https://dx.doi.org/10.1016/j.measen.2021.100047
https://doi.org/10.1016/j.measen.2021.100047
https://doaj.org/article/a207f38a576b4a30a9003d05fb2178a3
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2665-9174
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810124
  issn: 2665-9174
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2665-9174
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810124
  issn: 2665-9174
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHtSD-MT6KDkInqJ5dTc5Vm2pQosHC_UU9hWJxFj6oOjB3-7MJinxVA9eEkh2k2Vm2flmZ_YbQi7dxKNSas-OMB8niKQL66AGZyVwVYJ9mMKzw4Mh7Y-Cx3F7XCv1hTlhBT1wIbgb7jks8UMOuFgE3Hc4br0pp50IANMhNzyfThjVnKk3s2WEvFUYUgYDhMUIWVCdmzPJXe8Y-0D6U8_FPAEHq6vU7JKh7_9lnrYW-YR_LnmW1cxPb4_slrjR6hTj3ScbOj8gOzU2wUPycJ--pvP0SyvLhM8zS035El5ZEiEy5gQZNViAUy087WwOfl3NrDJIA3eTdpfOjsio132-69tlpQRb-r7PbKZ8TSUNw8CVFMyNK0OleBjygIok8ZjLwRf1BEAPR1AuNY0E1a6gVEY0Qjf1mDTyj1yfEMtnWnGdKB6JdoCNGDgdsKBTUIJUidMkfiWnWJY04ljNIourfLG3uJBujNKNC-k2ib3qNSloNNa0v0UVrNoiCbZ5AFMjLqdGvG5qNAmrFBiXeKLACfCpdM3vr1f6_tN4T_9jvGdkGz9ZpBeek8Z8utAXAHnmomVmN1wH390W2RwNnzovPxXS_jI
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HsSDb7GikoPgxZQku91Njj5RQfFgoZ7CviLRWkVbRH-9M3mUVpDWUyDZSYbZSeabzAvgIMwiYYyL_ITycXhiQvwOOnRWeGgzopGWaodvbsVlh1932905OKprYSbi90Ue1guFKahTaRRSSD_gch4WRBuRdwMWOrd3xw80P04IGjkoeV0d9wfphPUpmvRPGKHFYf9NfX2qXm_MyFyswE3NXplb8twaDnTLfP_q3Dgr_6uwXKFN77hUjzWYc_11WBrrQbgBV2f5Yz7Iv531iqB7z7Pv6hMveYaANWUSFZvnIbr1qEa6KBc7_PCq0A4ei2S9_GMTOhfn96eXfjVfwTeMMelLy5wwIo55aAQaqdDE1qo4VlzoLItkqNCDjTQClkALZZxItHChFsIkIiHndgsa_de-2waPSWeVy6xKdJvTIomuCpoBkbHY2CxoAqvlnpqq-TjNwOildZbZU1oKKiVBpaWgmuCPqN7K5htT1p_Qlo7WUuvs4gTuSFq9iamKAolcKXS0NFcsUPQv1wbtTKN3FivWBFkrRFqhkBJd4K3yKY9vjfRnJn53_kuwC43B-9DtIQ4a6P1K_X8A7BYFKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digitized+spiral+drawing+classification+for+Parkinson%27s+disease+diagnosis&rft.jtitle=Measurement.+Sensors&rft.au=Megha+Kamble&rft.au=Prashant+Shrivastava&rft.au=Megha+Jain&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=2665-9174&rft.eissn=2665-9174&rft.volume=16&rft.spage=100047&rft_id=info:doi/10.1016%2Fj.measen.2021.100047&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a207f38a576b4a30a9003d05fb2178a3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon